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We study the J/ψ → p̄ηp and J/ψ → p̄K+� reactions with a unitary chiral approach. We find that the
unitary chiral approach, which generates the N∗(1535) dynamically, can describe the data reasonably well,
particularly the ratio of the integrated cross sections. This study provides further support for the unitary chiral
description of the N∗(1535). We also discuss some subtle differences between the coupling constants determined
from the unitary chiral approach and those determined from phenomenological studies.

DOI: 10.1103/PhysRevC.79.025203 PACS number(s): 14.20.Gk, 12.39.Fe, 13.30.Eg, 13.75.Jz

I. INTRODUCTION

Understanding the nature of various hadrons has always
been a main goal pursued in studies of strong interaction
phenomena. With the advent of quantum chromodynamics
(QCD) the hope was raised that one could understand the
various hadrons observed in nature as quarks and gluons bound
together by the strong interaction. For instance, in terms of
these degrees of freedom, baryons and mesons are often seen
as qqq or qq̄ composites, respectively. There are, however,
certain resonances that cannot easily fit into this picture, for
instance, the �(1405) and the N∗(1535).

The N∗(1535) with a mass higher than that of the lowest
JP = 1/2+ radial excitation state N∗(1440) has long been a
problem in conventional quark models [1]. In recent years,
a new interpretation has been proposed based on studies
performed within unitary chiral theories (UχPT); i.e., it is
dynamically generated from the interaction of the octet of
the pseudoscalar mesons and the octet of the proton [2–5].
In these studies, its extremely strong coupling to the ηN

channel [6] comes out naturally. In addition, a strong coupling
of the N∗(1535) to the K� and K� channels is predicted,
the latter seems to be consistent with recent analyses of the
J/ψ → p̄K+� [7,8], pp → pK+� [9], and γp → K+�

reactions [10,11]. Several further studies utilizing the UχPT
amplitudes have also been performed recently [12–14], which
all support the UχPT description of the N∗(1535).

The J/ψ and ψ ′ experiments at the Beijing Electron-
Positron Collider (BEPC) provide an excellent place for
studying excited nucleons and hyperons [15]. In Ref. [7],
based on the BES results on J/ψ → p̄ηp [16] and J/ψ →
p̄K+� [17], the ratio between the effective coupling con-
stants of the N∗(1535) to K� and pη is determined to be
R = gN∗(1535)K�/gN∗(1535)ηp = 1.3 ± 0.3. Together with the
previously fixed gN∗(1535)ηp, they were able to reproduce recent
pp → pK+� near-threshold cross-section data [18–21] very
well.

In Ref. [7], it was noted that the gN∗(1535)K�/gN∗(1535)ηp ratio
obtained there by fitting the BES data is larger by a factor of
two than the corresponding UχPT one [5]. This raises naturally
the question whether the UχPT picture of the N∗(1535) is
consistent with the BES data and how to understand the

difference in the values of the coupling constants. In the
present work, we aim to answer these questions by studying the
reactions J/ψ → p̄ηp and J/ψ → p̄K+� within the unitary
chiral approach.

This article is organized as follows. In Sec. II, we briefly
outline the unitary chiral theory and the dynamical generation
of the N∗(1535). In Sec. III, we lay down the formalisms to
study the reactions J/ψ → p̄ηp and J/ψ → p̄K+�. Results
and discussions are given in Sec. IV, followed by a brief
summary in Sec. V.

II. UNITARY CHIRAL THEORY AND THE DYNAMICAL
GENERATION OF THE N∗(1535)

Unitary chiral theories start with an interaction kernel,
V , provided by the corresponding chiral Lagrangians, either
lowest order or higher order. In Ref. [2] the Lippmann-
Schwinger equation in coupled channels was used to provide a
unitary amplitude in the study of meson-baryon interaction. In
Ref. [22] also the Lippmann-Schwinger equation in coupled
channels was used in the case of the meson-meson interaction.
Yet, as noted in Ref. [23], the method of Ref. [22], integrating
explicitly the q0 variable in the loops and using relativistic
propagators, corresponds to a coupled channel Bethe Salpeter
equation, and most of the recent works on the topic [4,5,24–29]
adhere to this method and this nomenclature.

Other unitarization procedures are obtained using the
Inverse Amplitude Method (IAM) [30–32] and the N/D

method [33,34].
In the Bethe-Salpeter equation method, which we employ

in the present work, one has in matrix form

T = (1 − V G)−1V, (1)

where T , V are complex matrices in coupled channels and
G is a diagonal matrix with its element the two-body loop
function. In “full form,” the Bethe-Salpeter equation is an
integral equation where the kernel V has the full spin and
angular momentum dependence and the propagators appear
in their full covariant form (see, e.g., Refs. [35,36]). In the
present case, one studies only the s-wave scattering amplitude
and V is already projected in s wave. In addition, in the case of

0556-2813/2009/79(2)/025203(7) 025203-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.025203


L. S. GENG, E. OSET, B. S. ZOU, AND M. DÖRING PHYSICAL REVIEW C 79, 025203 (2009)

meson-baryon interaction, only the positive energy part of the
baryon propagator (with relativistic energies) is kept, while the
relativistic propagator of the mesons is taken. As it has been
demonstrated with numerous examples, one can render the
complex integral equations into algebraic ones by using the on-
shell approach with the argument that the off-shell components
can be absorbed by redefining the corresponding coupling
constants [22]. It also finds an equivalent interpretation in
the N/D method that relies upon a dispersion relation for
T −1 [33,34].

The equivalence of the N/D method and the on-shell
factorized Bethe-Salpeter equation, Eq. (1), follows when
using the N/D method, neglecting the left-hand cut as a source
of the imaginary part in the dispersion relation (see Ref. [37]
for a precise and pedagogical exposition). As described in
Refs. [33] and [34], the contribution of the left-hand cut in the
physical region is either very small or, in any case, very weakly
energy dependent, such that its effects are easily incorporated
by means of the subtraction constants of the dispersion integral.
A more detailed explanation of these facts can be found in
Sec. II of Ref. [38].

To study the J/ψ → p̄ηp and J/ψ → p̄K+� reactions
through intermediate N∗(1535) [N̄∗(1535)], we are interested
in the S = 0 and Q = +1 sector with the following six coupled
channels:

π0p, π+n, ηp, K+�0, K+�, K0�+. (2)

The lowest order chiral Lagrangian responsible for the
meson-baryon interaction is [39]

L = 〈B̄(iγ µDµ − MB)B〉
+ D

2
〈B̄γ µγ5[uµ, B]〉 + F

2
〈B̄γ µγ5{uµ, B}〉. (3)

The term with the covariant derivative, Dµ, in this Lagrangian
provides the MMBB transition amplitude, i.e., the Weinberg-
Tomozawa interaction,

Vij = −Cij

1

4fifj

ū(p′)γ µu(p)(kµ + k′
µ), (4)

with p (k), p′ (k′) being the initial and final momenta of
the baryons (mesons). The coefficients Cij can be found in
Ref. [12]. The terms with the D and F couplings account for
the Yukawa coupling of a single meson to baryons and will
play a role, by analogy, in the posterior discussions. At low
energies, the amplitudes Vij can be simplified by retaining
the largely dominant γ 0 component and one finds an easy
analytical expression for Vij [5,25]. In Eq. (4) fi (fj ) is the
meson decay constant with fπ = 93 MeV, fK = 1.22fπ , and
fη = 1.3fπ [5].

The use of different meson decay constants, as well as
other details of the calculation in Ref. [5] require some
explanations. In Ref. [5] only the lowest order meson-baryon
chiral Lagrangian of Eq. (3) is used. The subtraction constants
in the dispersion integral or loop function, G of Eq. (1), are
assumed to account for effects of higher order Lagrangians.
There is, however, a caveat in this assumption because in
chiral perturbation theory the loop terms contribute to order
Q3 for the case of meson-baryon interaction (the counting
is different in the meson-meson interaction), while there are

chiral Lagrangians of order Q2 that would not be accounted
for by means of the subtraction constants [3,26,27,29]. The
effects of using different fi are also technically of order Q3.
Although the unitary resummation will mix different powers
of Q, the aim of the chiral unitary approach is to provide a
unitary framework at higher energies that matches exactly the
chiral perturbation theory amplitude at low energies [34]. For
the meson-baryon interaction the matching should be done
at order Q3. The ability of the method used in Ref. [5] to
provide realistic amplitudes depends upon the Q2 terms being
small. This is, of course, a matter of principle. In practice,
and as one is usually concerned about a relatively narrow
band of energies, the subtraction constants can approximately
account for these Q2 terms. Ultimately, it is the comparison of
theoretical calculations done with the lowest order Lagrangian
with those including higher order terms that must tell us how
accurate the lowest order can be. Such a comparison is possible
now. Indeed, in Ref. [29], where higher order Lagrangians are
used, an estimation of theoretical errors is done. This is very
useful and, comparing the results obtained there with those
of Ref. [40] using only the lowest order Lagrangian, one can
see that the results with the lowest order fall well within the
theoretical uncertainties of the higher order calculations.

Two modifications to the above transition amplitudes of
Eq. (4) must be introduced to better describe the phase shifts
and inelasticities of S11 and S31 πN scattering. The first
modification is due to the realization that the lowest order
chiral Lagrangian may be viewed as an effective manifestation
of the vector-meson exchange between the mesons and the
baryons in an alternative picture, the hidden gauge formalism
[41,42], which is shown to be equivalent to the use of chiral
Lagrangians [43]. Therefore, to account for the dependence on
the momentum transfer of the vector-meson propagator, one
replaces Cij with

Cij

∫
dk̂′

4π

−m2
v

(k′ − k)2 − m2
v

(5)

at √
s >

√
s0
ij , (6)

where
√

s0
ij is the energy where the above integral is unity and

which appears between the thresholds of the two i, j channels.
The second modification is the effective inclusion of the

πN → ππN channel. This channel was very important to
obtain a good description of the I = 3/2 amplitudes but
it has only a small influence in the I = 1/2 channel [5].
Following Refs. [12] and [44], in the Q = +1 sector, this
can be achieved by a modification of the potential, i.e.,
VπN→πN → VπN→πN + δV × GππN , with δV given by

δVπ0p→π0p =
(

−
√

2

3
v31 − 1

3
√

2
v11

)2

+
(

1

3
v31 − 1

3
v11

)2

,

(7)

δVπ0p→π+n =
(

−
√

2

3
v31 − 1

3
√

2
v11

) (
1

3
v31 − 1

3
v11

)

+
(

1

3
v31 − 1

3
v11

) (
− 1

3
√

2
v31 −

√
2

3
v11

)
, (8)
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δVπ+n→π+n

=
(

1

3
v31 − 1

3
v11

)2

+
(

− 1

3
√

2
v31 −

√
2

3
v11

)2

,

(9)

where GππN is the ππN loop function that incorporates
the two-pion relative momentum squared, whose analytic
expression together with those of v31 and v11 can be found
in Ref. [5].

Searching for poles in the isospin 1/2 channel on the
second Riemann sheet, one finds the N∗(1535) pole at 1543 −
i46 MeV [5], whose width is smaller than the PDG estimation
of 100 ∼ 250 MeV but in agreement with the BES J/ψ →
p̄ηp data, 95 ± 15 MeV [16].

The moduli of the unitarized amplitudes |Tij | with i any of
the six coupled channels and j ηp or K+� are shown in Fig. 1.
It is interesting to note that the amplitude around the N∗(1535)
does not behave like an usual Breit-Wigner resonance, even
at the peak position. Therefore, a pole simplification of this
resonance by

Tij = gigj√
s − MN∗ + i	/2

(10)

might lead to problems. We come back to this issue in Sec. IV.
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FIG. 1. (Color online) The moduli of the transition amplitudes in
different channels leading to the ηp and K+� final states.
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FIG. 2. The reaction mechanisms of J/ψ → p̄ηp and J/ψ →
p̄K+� through intermediate N∗(1535). For J/ψ → p̄pη a similar
diagram through N̄∗(1535) has been added.

III. REACTION MECHANISMS OF J/ψ → p̄ηp AND
J/ψ → p̄K+�

The picture of the N∗(1535) as dynamically generated
from the meson-baryon interaction has a repercussion in
the mechanisms of production. One must first produce the
relevant meson-baryon components, which upon interaction
produce the resonance. This means that the J/ψ decaying
into p̄ηp and p̄K+� proceeds through the following steps:
the J/ψ first decays into p̄MB, with MB being one of
the six coupled channels. The rescattering of the MB pair
generates dynamically the N∗(1535), which then decays back
into any of the coupled channels. Such a process is illustrated in
Fig. 2.

Because the J/ψ is a SU(3) singlet, its couplings to the
p̄MB system can be obtained from the D and F terms of
the lowest order chiral Lagrangian of Eq. (3). This SU(3)
argument still would have D and F as free parameters in
J/ψ → p̄ηp (p̄K+�). However, the J/ψ → P̄MB process
is OZI forbidden (the cc̄ quarks of J/ψ decouple from those
of the p̄MB system) and it only brings into the scheme a
�σ · �ε operator, which is SU(3) blind. We can then invoke
SU(6) symmetry, mixing spin and flavor, to evaluate the �σ · �ε
coupling with two octets of the baryons, with their SU(3) and
spin functions, and the octet of the mesons. Assuming this
symmetry, the ratio F/D is fixed to the value 2/3 [45], very
close to the empirical value. Because we only need the ratio
F/D, the SU(6) symmetry provides us with the needed value.
Therefore, we take F and D as the empirical values up to
a common constant C. The couplings are listed in Table I,
where we have assumed C to be 1 because later on we are only
interested in the ratio of the integrated cross sections, not their
respective absolute values.

The t matrix of the reaction mechanism of Fig. 2 can be
easily written down (up to a global �σ �ε factor with �ε being the
J/ψ polarization vector) as

ti =
6∑

j=1

Dj (δji + GjTj→i), (11)

where Dj is the coupling of the J/ψ to channel j (see
Table I), Gj the one-baryon one-meson loop function, and
Tj→i the unitarized amplitude. The corresponding invariant

TABLE I. The coupling of J/ψ to p̄MB with MB being one of
the six coupled channels.

π 0p π+n ηp K+�0 K+� K0�+

D+F

2fπ

D+F√
2fπ

3F−D

2
√

3fη

D−F

2fK
− D+3F

2
√

3fK

D−F√
2fK
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mass distribution for the J/ψ → p̄K+� reaction is quite
simple:

d	

dMI

= Mp̄M�

8π3

1

M2
J/ψ

kp̄k̃�|t5|2, (12)

where

kp̄ = λ1/2
(
M2

J/ψ ,M2
p̄,M2

I

)
2MJ/ψ

, (13)

k̃� = λ1/2
(
M2

I , m2
K,M2

�

)
2MI

(14)

with M� and mK being the masses of the � and kaon, and t5
given in Eq. (11).

For the reaction J/ψ → p̄ηp, because it can proceed
through either intermediate N∗ or intermediate N̄∗, one cannot
derive such a simple expression. The total width for this
reaction is

	 = 1

2MJ/ψ

1

(2π )5

M2
p

2

∫
dEp

∫
dp

∫
dωη

∫
dφη

× |t3(N∗) + t3(N̄∗)|2�(1 − A)2�(MJ/ψ − Ep − ωη),

(15)

where Mp,Ep, and p are the mass, energy, and solid angle
of the proton, while ωη and φη are the energy of the eta and its
azimuthal angle relative to the proton, and A is

A = 1

2kpkη

[
(MJ/ψ − Ep − ωη)2 − M2

p − k2
p − k2

η

]
, (16)

with kp and kη being the moduli of the three-momenta of the
proton and the eta in the J/ψ rest frame.

The amplitude t3(N̄∗) is the same as that of Eq. (11) for
the pη amplitude, omitting the δij not to double count, but
written as a function of the invariant mass of p̄η instead
of that of pη. The consideration of t3(N̄∗) accounts for the
final state interaction of ηp̄; however, we should in principle
also care about the final state interaction of K+p̄, p̄p, or
p̄�. The ηp̄ interaction has been singled out because one
can have the N̄∗(1535) formation with p̄η as well as the
N∗(1535) formation with pη. The interactions of the other
pairs are different. The K+p̄ couples strongly to the �̄(1405).
However, this resonance is below the K+p̄ threshold, and
we are interested in the region of K+� energies around
threshold, where the invariant mass of K+p̄ is far away from
the �̄(1405) in the J/� decay, which has 550 MeV of excess
energy. However, one spans the region where the �̄(1670)
appears. This resonance appears also as dynamically generated
in the chiral approach that we use for the K+p̄ (K−p)
interaction [25], and, because of that, we take this interaction
into account. We can use similar arguments for the p̄p and p̄�

interactions, which will have relatively large invariant masses.
In these cases the potential energy is small compared to the
kinetic energy and accordingly the wave function diverts little
from the plane wave, thus barely modifying the production
amplitudes [46–48].

IV. RESULTS AND DISCUSSIONS

A. Comparison with the data

The invariant mass distributions for the reactions J/ψ →
p̄ηp and J/ψ → p̄K+� are shown in Fig. 3. As argued
in the previous section, we have used the same D and F

coefficients as the couplings of the pseudoscalars to the baryon
octet: D = 0.795 and F = 0.465 [46,49,50]. In the figure,
the curves labeled with an “F” are obtained with the full
UχPT amplitudes as described above, while the curves labeled
with an “S” are obtained with the amplitudes without the
πN → ππN and vertex corrections as explained below. It
is seen that the differences between the results obtained with
the full amplitudes and those with the amplitudes without the
ππN channel and vertex corrections are rather large beyond
∼1650 MeV. This should not worry us much because we
are only interested up to this energy. Below this energy, the
invariant mass distributions peak at slightly different energies,
but this does not change the integrated cross section a lot.

Now we are in a position to compare the theoretical ratio
of the two integrated cross sections with the data. However,
our model for the dynamical generation of the N∗(1535) is
reliable only up to ∼1650 MeV. Thus, we can only compare
the integrated decay width up to this energy. The experimental
ratio is estimated to be

Rexp. = 	(J/ψ → p̄K+�)

	(J/ψ → p̄ηp)

= (0.89 ± 0.16 × 10−3) × 10%

(2.09 ± 0.18 × 10−3) × 31%
≈ 0.14 ± 0.04. (17)

The numbers 0.89 ± 0.16 × 10−3 and 2.09 ± 0.18 × 10−3 are
the branching ratios for the J/ψ decaying into p̄K+� and p̄ηp

[6]. The fraction 10% of the strength of J/ψ → p̄K+� up to
MI = 1650 MeV is estimated by studying the J/ψ → p̄K+�
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FIG. 3. (Color online) Invariant mass distributions of J/ψ →
p̄ηp and J/ψ → p̄K+�. The theoretical results labeled “F” are
obtained using the full UχPT amplitudes containing the vertex and
ππN loop corrections, while the ones labeled “S” are obtained by
using the amplitudes without these two corrections and with the
readjusted subtraction constants by fitting the π−p → KY data [14].
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experimental spectrum (see Fig. 9b of Ref. [17]). The number
31% is the estimated fraction of the amount of J/ψ → p̄ηp

up to the same energy (see Fig. 8 of Ref. [16]).
It should be noted that the above ratio has been obtained

by using only the raw data to avoid uncertainties related to
the further treatments of the data. On the other hand, using the
results of the partial wave analyses of Refs. [16] and [17], the
ratio is estimated to be

Rexp. = 	(J/ψ → p̄N∗ → p̄K+�)

	(J/ψ → p̄N∗ + pN̄∗ → p̄ηp)

= (0.89 ± 0.16 × 10−3) × (15 ∼ 22)%

(2.09 ± 0.18 × 10−3) × (56 ± 15)%
≈ 0.14+0.15

−0.07,

(18)

which is the ratio fitted to obtain the N∗(1535) coupling
constant to K� in Ref. [7]. We note that the ratios obtained
either way are consistent with each other, albeit with large
uncertainties.

On the other hand, our theoretical ratio of the inte-
grated cross sections from the respective thresholds up to
MI = 1650 MeV (using the full amplitudes) is

Rth = 	(J/ψ → p̄N∗ → p̄K+�)

	(J/ψ → p̄N∗ + pN̄∗ → p̄ηp)
= 0.16+0.06

−0.04, (19)

which is in reasonable agreement with the experimental
ratio determined either way. The theoretical uncertainties are
estimated by slightly changing the F/D ratio appearing in the
J/ψ couplings to p̄MB by 5%.

It is interesting to note that the theoretical ratio is obtained
by assuming SU(6) symmetry for the J/ψ to p̄MB couplings
and by assuming, for the reasons given above, that the D and
F coefficients are the same as those appearing in the Yukawa
couplings of one pseudoscalar to the octet of baryons, up to
a global constant. The agreement with the data supports these
assumptions.

Another source of inherent theoretical uncertainties comes
from the consideration of the ππN channel, the vertex correc-
tion, and the freedom one has in the values of the subtraction
constants. Following Ref. [14], we assess these uncertainties
by removing the contribution of the ππN channel and the
vertex corrections and adjusting the subtraction constants to
fit the π−p → KY cross-section data at higher energies. The
corresponding invariant mass distributions obtained this way
are shown in Fig. 3, the curves labeled with an “S”. It is
seen that the ηp peak position is moved to slightly higher
energies by ∼30 MeV, while the ratio of the two integrated
cross sections is reduced to ∼0.11. Combining the results with
the full and the “simplified” UχPT amplitudes, we arrive at
the theoretical ratio

Rth = 0.135 ± 0.06, (20)

where the central value is an average of the ratios obtained
with the full amplitudes and the simplified amplitudes and the
dispersion incorporates both the uncertainties in the UχPT
amplitudes and those in the D and F coefficients.

Above we have shown that the two experimental ratios
Eq. (17) and Eq. (18) are consistent with each other. However,
there is a caveat in our comparison with these two numbers.

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

 1610  1615  1620  1625  1630  1635  1640  1645  1650

dΓ
/d

M
I [

ar
bi

tr
ar

y 
un

it
s]

MI [MeV]

Data reconstructed

J/ψ-->pK+Λ (S)

Plus K+ p- final state interaction

FIG. 4. (Color online) The invariant mass distributions of the
J/ψ → p̄K+� reaction with and without the K+p̄ final state
interaction [40].

Our above comparison with the experimental ratio of
Eq. (18) is fine, because this ratio is obtained solely from N∗
contributions as explained by the corresponding experimental
analysis. Our comparison with the experimental ratio of
Eq. (17), on the other hand, is not very consistent because
in this case we have to include the K+p̄ final state interaction
in the same way we included the ηp̄ interaction. The K+p̄

interaction has been studied extensively in unitary chiral theo-
ries and is well understood around the K+p̄ threshold and, to a
lesser degree, around the �̄(1670) peak position. For energies
beyond the �̄(1670) peak position, it is less constrained and
the comparison with data is only qualitative [25]. Despite all
the uncertainties of the K+p̄ interaction, it is still interesting to
see how adding this part will change the scenario. Following a
procedure similar to that of including the ηp̄ contribution and
using the same argument to obtain the couplings of the J/ψ

to the ten channels coupling to K+p̄, we find that adding the
K+p̄ final state interaction only changes our calculated ratio
by ∼10% percent, which is smaller than the theoretical errors.
The corresponding invariant mass distributions are shown in
Fig. 4, in comparison with the results obtained without
including the K+p̄ final state interaction—the curve denoted
by (S) in Fig. 3. The experimental numbers are obtained by
multiplying by phase space the numbers shown in Fig. 9 of
Ref. [17].

We can conclude from the above discussion that the
theoretical ratio is rather stable despite the relatively large
uncertainties of the K+p̄ final state interaction. This is true
partly because we confine ourselves to K+� center of mass
energies below ∼1650 MeV where the K+p̄ interaction
is relatively well constrained due to the three-body phase
space.

B. Couplings constants in different models

It is instructive to compare the ratio of the N∗(1535)
effective couplings obtained in the unitary chiral approach
of Ref. [5] and that obtained in Ref. [7], because both
models describe the J/ψ decay data. Using the numbers from
Ref. [5], one has |gN∗(1535)K�| = 0.92 and |gN∗(1535)ηN | = 1.84
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obtained from the residues of the T amplitudes at the pole
position on the complex plane. On the other hand, from the
same study, one finds |gN∗(1535)K�| = 1.28 and |gN∗(1535)ηN | =
1.77 through a Breit-Wigner fit of the real energy scattering
amplitudes. Thus, we obtain

R = |gN∗(1535)K�|
|gN∗(1535)ηN | = 0.5 ∼ 0.7. (21)

This is a factor of two smaller than the one obtained in Ref. [7],
1.3 ± 0.3, from the comparative study of the reactions studied
in the present work, and is slightly smaller than the range of
0.8 ∼ 2.6 given in Ref. [51].

The relatively large discrepancy between the phenomeno-
logically determined R and the UχPT ones reveals a fun-
damental difference in these two different descriptions of
resonances, particularly in the region far from the reso-
nance peak position, which is relevant to the present study.
In the phenomenological description one often adopts a
Breit-Wigner-like formula to describe the distribution of a
resonance,

g̃i g̃j

(S − M2) + iM	(s)
, (22)

where g̃i , g̃j are the coupling constants of the resonance to
channels i and j,M is the mass of the resonance, and 	(s)
is the width of the resonance, which incorporates the explicit
energy dependence. This is the type of amplitudes used in
Ref. [7] to describe the J/ψ decay processes.

This approximation assumes that the resonance’s shape
in different channels is the same, while the only difference
comes from the coupling constants. This could be a valid
approximation in many cases, but it is not true in the
present case, as can be clearly seen from Fig. 1. There,
one can easily see that even around the resonance peak
position the shapes in different channels are not proportional
to each other. The deviations become even larger at the
K+� threshold. The dynamics of coupled channels is mostly
responsible for that [2–5], and particularly the large coupling
of the resonance to the ηN channel close to threshold.
This particular behavior of the resonance might explain the
relatively large discrepancy between the coupling constants
obtained in different methods, though they both describe the
data.

One may well conclude that the coupling constants deter-
mined from chiral unitary theory and those determined from
phenomenological studies cannot be directly compared: They
only have meanings inside the framework where they are
deduced, at least quantitatively. This has also been pointed
out recently in Ref. [14].

Of course, one of the aims of the present work is to show
consistency of the present two J/ψ decay reactions with
the idea of the N∗(1535) resonance as being dynamically
generated in the chiral unitary approach, and we see that
indeed the UχPT picture is consistent with the BES data.
Note that we have not fitted the experimental data to obtain
the N∗�K couplings, as is the case in Ref. [7]. We have
used the results of Ref. [5] in the context of the two J/ψ

reactions and have found consistency with the data, with some
uncertainties tied to the nature of these two reactions beyond

the dynamics of the meson-baryon interaction, as we have
explained above. We found consistency with the data even if
the UχPT picture produces a coupling for N∗K� different
than that in Ref. [7], but we also have mentioned that the
meaning of the couplings is not exactly the same because of
the different shapes used for the energy dependence of the
amplitudes. Furthermore, the approach followed here does not
make any explicit use of the gN∗(1535)K� coupling because we
used the full MB amplitudes. These amplitudes are different
from the simple pole approximation that one would obtain
extrapolating the form of Eq. (22) with constant 	 to higher
energies.

A further remark concerning the meaning of the couplings:
The one obtained in Ref. [5] comes from the residue of the
N∗ pole, while the one from Ref. [7] comes from fits to data
around the K� threshold. The former is a measure of the
strength of the K� component in the N∗(1535) wave function
and plays a role in the determination of the properties of
the N∗(1535). For instance, if one wishes to determine the
helicity amplitudes of the N∗(1535) as done in Ref. [13],
it is the residue of the N∗ pole that must be used in the
calculation.

V. SUMMARY

We have studied the J/ψ → p̄ηp and J/ψ → p̄K+�

reactions, more specifically, the ratio of the integrated cross
sections, using the unitary chiral approach. The unitary chiral
approach, which generates the N∗(1535) dynamically, can
describe the data reasonably well. This was despite the fact
that the coupling of the N∗(1535) to the K� channel is
different from the one obtained in the empirical study of
the present reactions in Ref. [7], but it was clarified that
the concepts are different. The couplings of the chiral unitary
approach come from the residues of the amplitudes at the N∗
pole, while the N∗�K coupling obtained in Ref. [7] comes
from a fit to the data close to the K� threshold assuming a
certain shape for the N∗ dominated amplitude. Furthermore,
it is interesting to note that although the couplings obtained
in different ways are quantitatively different, they both
indicate that the N∗(1535) wave function contains a large ss̄

component.
Certainly, the N∗(1535) may in fact be a mixture of

a three-quark component and a five-quark (meson-baryon)
component, as suggested by the studies of Ref. [52]. This
may slightly change the numbers obtained in this work, but
the main conclusions, taking into account both theoretical and
experimental uncertainties, will remain the same.
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[13] D. Jido, M. Döring, and E. Oset, Phys. Rev. C 77, 065207 (2008).
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