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QCD sum rules for D and B mesons in nuclear matter
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QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass
splitting of D − D and B − B mesons as a function of the nuclear matter density; extrapolated to saturation
density it is in the order of 60 and 130 MeV, respectively, driven essentially by the condensates 〈q†q〉, 〈q†gσ�q〉,
and 〈qq〉. The poorly known condensate 〈q†gσ�q〉 may leave room for an even larger D − D mass splitting.
The genuine chiral condensate 〈qq〉, amplified by heavy-quark masses, enters the Borel transformed sum rules
for the mass splitting beyond linear density dependence. The inclusion of strange quark condensates reveals a
numerically smaller and opposite effect for the Ds − Ds mass splitting.
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I. INTRODUCTION

QCD sum rules offer a link from hadronic properties,
encoded in spectral functions, to QCD related quantities, like
condensates, in the nonperturbative domain. A particularly
valuable aspect of QCD sum rules is, therefore, the possibility
to predict in-medium modifications of hadrons, supposing
the density and temperature dependence of the relevant
condensates is known. Taking the attitude that this is the case,
one arrives at testable predictions for changes of hadronic
properties in an ambient strongly interacting medium. There
is a vast amount of literature on the in-medium changes of light
vector mesons, cf. Refs. [1–9] and references therein. Vector
mesons are of interest as their spectral functions determine,
e.g., the dilepton emissivity of hot and compressed nuclear
matter. Via the direct decays V → l+l−, where V stands
for a vector meson and l+l− for a dilepton, the spectral
distribution of V can be probed experimentally. Accordingly,
heavy-ion experiments are often accompanied by special
devices for measurements of l+l− = e+e− or µ+µ−. The
questions addressed concern, in particular, signals for chiral
restoration [8]. Clearly, in addition to the QCD sum rules, also
purely hadronic models have been employed to understand the
behavior of vector mesons in nuclear matter, cf. Refs. [4,8,9]
for examples.

Such hadronic models are also used in the strangeness
sector [10]. Here, the distinct behavior of kaons and antikaons
attracted much attention, cf. Ref. [11] for experimental aspects.
The upcoming accelerator complex FAIR at GSI/Darmstadt
offers the opportunity to extend the experimental studies into
the charm sector. The CBM Collaboration [12] intends to
study the near-threshold production of D and J/ψ mesons in
heavy-ion collisions, while the PANDA Collaboration [13] will
focus on charm spectroscopy, as well as on charmed mesons
produced by antiproton annihilation in nuclei. In the CBM
experiments, charm degrees of freedom will serve as probes of
nuclear matter at the maximum compression achievable in the
laboratory, at moderate temperatures. Despite this interest in D

mesons and their behavior in nuclear matter, the literature on
in-medium D mesons is fairly scarce. While there are a variety
of calculations within a hadronic basis, e.g., Refs. [14–16], or

within the quark-meson coupling model, e.g., Ref. [17], the use
of QCD sum rules is fairly seldom [18–20]. In contrast, the
treatment of vacuum D (and Ds) ground states is performed
in a concise manner [21–23].

The aim of the present article is the reevaluation of the
QCD sum rules for D and D mesons in cold nuclear matter
and an extension to B and B mesons as well. Even for the
operator product expansion (OPE) up to mass dimension 5,
there are conflicting results in the literature concerning the
open charm sector [18–20,23–26]. While in Ref. [18] only
the even part of the in-medium OPE up to mass dimension 4
has been used, we present here the even as well as the odd
in-medium OPE up to mass dimension 5. Moreover, a term
∝ 〈qgσ�q〉, i.e., the lowest-order quark-gluon condensate,
can be found in the literature with various factors and
signs already for the vacuum. As the subtle D − D mass
splitting is of paramount experimental interest, a safe basis is
mandatory.

Our article is organized as follows. Section II contains the
QCD sum rules formalism for D and D mesons. The spectral
functions are discussed in Sec. III. The numerical evaluation
for D,D and B,B mesons is executed in Secs. IV and V. The
discussion and summary can be found in Sec. VI.

II. QCD SUM RULES

The basic quantity to be evaluated is the two-point function

�(q) = i

∫
d4xeiqx〈�|T[j(x)j†(0)]|�〉 (2.1)

as the Fourier transform of the expectation value of the time-
ordered product of the currents j(x) and j†(0); the state |�〉 has
properties �|�〉 = E�|�〉, 〈�|�〉 = 1, a|�〉 �= 0. � is the
full Hamiltonian of the theory, a is an arbitrary annihilation
operator, and the field operators are taken in the Heisenberg
picture. Splitting up �(q0, �q) into an even (e) and an odd (o)
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part according to �(q0, �q) = �e(q2
0 , �q) + q0�

o(q2
0 , �q) with

�e(q0, �q) = 1
2 (�(q0, �q) + �(−q0, �q)) = �e(−q0, �q),

(2.2a)

�o(q0, �q) = 1
2q0

(�(q0, �q) − �(−q0, �q)) = �o(−q0, �q),

(2.2b)

one arrives at the N -fold subtracted dispersion relations in the
complex q0 plane,

�e(q0, �q) − 1

2

N−1∑
n=0

�(n)(0, �q)

n!
(q0)n

(
1 + (−1)n

)

= 1

2π

∫ +∞

−∞
ds��(s, �q)

qN
0

sN−1

× (1 + (−1)N ) + q0

s
(1 − (−1)N )

s2 − q2
0

, (2.3a)

�o(q0, �q) − 1

2

N−1∑
n=0

�(n)(0, �q)

n!
(q0)n−1

(
1 − (−1)n

)

= 1

2π

∫ +∞

−∞
ds��(s, �q)

qN−1
0

sN−1

× (1 − (−1)N ) + q0

s
(1 + (−1)N )

s2 − q2
0

, (2.3b)

with ��(s) = Im�(s). From Eq. (2.3) we see that �e,o depend
on q2

0 . The Borel transformed sum rules are

�
[
�e

OPE(ω2, �q)
]
(M2)

=
[

1

π

∫ s+
0

s−
0

ds ��(s, �q)

+ 1

π

(∫ s−
0

−∞
+

∫ +∞

s+
0

)
ds ��(s, �q)

]
se−s2/M2

, (2.4a)

�
[
�o

OPE(ω2, �q)
]
(M2)

=
[

1

π

∫ s+
0

s−
0

ds��(s, �q)

+ 1

π

(∫ s−
0

−∞
+

∫ +∞

s+
0

)
ds ��(s, �q)

]
e−s2/M2

, (2.4b)

where the subscript OPE denotes the operator product
expansion of 〈�|T[j(x)j†(y)]|�〉 = ∑

O CO(x − y)〈�|O|�〉
with QCD condensates 〈�|O|�〉 and Wilson coeffi-
cients CO . We are interested in the low-lying strength

encoded in
∫ s+

0

s−
0

ds��se−s2/M2
and

∫ s+
0

s−
0

ds��e−s2/M2
,

while the continuum parts (
∫ s−

0
−∞ + ∫ +∞

s+
0

)ds��se−s2/M2
and

(
∫ s−

0
−∞ + ∫ +∞

s+
0

)ds��e−s2/M2
will be merged into the perturba-

tive OPE part �
per
D+(s) (see below) according to the semilocal

duality hypothesis; s±
0 are the corresponding continuum

thresholds and M is the Borel mass.
Employing the current operator jD+ = idγ5c (and jD− =

j†D+ = icγ5d for the antiparticle), we obtain for the OPE side
up to mass dimension 5, in the rest frame of nuclear matter

v = (1, �0) (v stands for the medium four-velocity), in the limit
md → 0 and sufficiently large charm-quark pole mass mc,

�
[
�e

OPE(ω2, �q = 0)
]
(M2)

= 1

π

∫ ∞

m2
c

dse−s/M2
Im�

per
D+(s, �q = 0)

+ e−m2
c/M

2

(
−mc〈dd〉 + 1

2

(
m3

c

2M4
− mc

M2

)
〈dgσ�d〉

+ 1

12

〈αs

π
G2

〉
+

[(
7

18
+ 1

3
ln

µ2m2
c

M4
− 2γE

3

)

×
(

m2
c

M2
− 1

)
− 2

3

m2
c

M2

] 〈
αs

π

(
(vG)2

v2
− G2

4

)〉

+ 2

(
m2

c

M2
− 1

)
〈d†iD0d〉 + 4

(
m3

c

2M4
− mc

M2

)

×
[
〈dD2

0d〉 − 1

8
〈dgσ�d〉

])
, (2.5a)

�
[
�o

OPE(ω2, �q = 0)
]

(M2)

= e−m2
c/M

2

(
〈d†d〉 − 4

(
m2

c

2M4
− 1

M2

)

×〈d†D2
0d〉 − 1

M2
〈d†gσ�d〉

)
, (2.5b)

where αs = g2/4π . (Analog relations hold for jD0 (x) = iuγ5c

with j
D

0 (x) = j†
D0 (x) = icγ5u.) The calculational details are

documented in Ref. [27]. While the perturbative spectral func-
tion Im�

per
D+(s) (see Refs. [23,24] for an explicit representation

in terms of the pole mass) has been known for a long time,
discrepancies, especially for Wilson coefficients of medium
specific condensates, exist. An important intermediate step is
the careful consideration of the operator mixing, which occurs
because of the introduction of non-normal ordered condensates
and the corresponding cancellation of infrared divergent terms
∝ m−2

q and log mq (mq is the light-quark mass) at zero and
nonzero densities [27]. This is not to be confused with the
operator mixing within renormalization group methods. In
vacuum our expression differs from Ref. [18] in the prefactor
of 〈(αs/π )G2〉; Ref. [23] reports an opposite sign; Ref. [19]
finds the same result. For the medium case, Ref. [19] does
not give explicit results, while terms ∝ 〈dd〉, ∝ 〈(αs/π )G2〉,
and ∝ 〈(αs/π )((vG)2/v2 − G2/4)〉 have different prefactors
compared to Ref. [18]. Higher order terms are partially
considered in Ref. [19] and are found to be numerically not
important.

We stress the occurrence of the term mc〈dd〉. In the pure
light quark sector, say for vector mesons, it would read
md〈dd〉; i.e., the small down-quark mass strongly suppresses
the numerical impact of the chiral condensate 〈dd〉. In fact,
only within the doubtful factorization of four-quark conden-
sates into the squared chiral condensate would it become
important [7]. Here, the large charm-quark mass acts as an
amplifier of the genuine chiral condensate entering the QCD
sum rules for the D+ meson.
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III. PARAMETRIZING THE SPECTRAL FUNCTION

Especially in vacuum the spectral strength of the isoscalar–
vector excitation exhibits a well-defined sharp peak (the ω

meson) and a well-separated flat continuum. Assuming the
same features for the ω meson in a medium gives rise to
the often exploited “pole + continuum” ansatz. One way to
avoid partially such a strong assumption is to introduce certain
moments of the spectral function, thus replacing the assumed
pole mass by a centroid of the distribution [7,28].

For D mesons the sum rule includes an integral that
arises from the dispersion relation over positive and negative
energies [see Eq. (2.4)]. Similar to baryons [29,30], one may
try to suppress the antiparticle contribution corresponding
here to D−. This, however, is not completely possible [6].
Nevertheless, one can identify with the ansatz ��(s) =
πF+δ(s − m+) − πF−δ(s + m−), motivated by the Lehmann
representation of the correlation function, the meaning of the
even and odd sum rules (2.4) with Eq. (2.5):

e ≡
∫ s+

0

s−
0

ds s��e−s2/M2

= m+F+e−m2
+/M2 + m−F−e−m2

−/M2
, (3.1a)

o ≡
∫ s+

0

s−
0

ds��e−s2/M2

= F+e−m2
+/M2 − F−e−m2

−/M2
. (3.1b)

With the decomposition m± = m ± �m and F± = F ± �F

the leading order terms of an expansion in �m for the
first and second lines become ∝ Fme−m2/M2

and ∝ (�F −
2�mF m

M2 )e−m2/M2
, meaning that Eq. (3.1a) is related to the

average D + D properties, while Eq. (3.1b) refers to the
D − D splitting. If one assumes, for the moment, m± and
F± to be independent of the Borel mass M , Eq. (3.1) can be
rewritten as

�m = 1

2

oe′ − eo′

e2 + oo′ , (3.2a)

m =
√

�m2 − ee′ + (o′)2

e2 + oo′ , (3.2b)

where a prime denotes the derivative w.r.t. 1/M2. To gain
further insight into the dependencies of �m and m on the
different OPE contributions, we expand Eq. (3.2) up to first
order in the density n employing e(n) ≈ e(0) + nde/dn|n=0

and o(n) ≈ ndo/dn|n=0, because o(0) must vanish to repro-
duce the vacuum sum rules where �m(n = 0) = 0 holds. We
remark that these expansions are exact for a linear density
dependence of the condensates and if s2

0 = ((s+
0 )2 + (s−

0 )2)/2
as well as �s2

0 = ((s+
0 )2 − (s−

0 )2)/2 is density independent and
the Borel mass M is kept fixed. This implies �s2

0 = 0 for all
densities, because otherwise o(0) = 0 cannot be fulfilled. For
small densities we get accordingly

�m(n) ≈ 1

2

do
dn

∣∣
0
e′(0) − e(0) do′

dn

∣∣
0

e(0)2
n, (3.3a)

m(n) ≈
√

−e′(0)

e(0)
+ 1

2

√
− e(0)

e′(0)

de
dn

∣∣
0
e′(0) − e(0) de′

dn

∣∣
0

e(0)2
n,

(3.3b)

which can be written as

�m(n) ≈ −1

2

do
dn

∣∣
0
m2(0) + do′

dn

∣∣
0

e(0)
n, (3.4a)

m(n) ≈ m(0) − 1

2m(0)

de
dn

∣∣
0
m2(0) + de′

dn

∣∣
0

e(0)
n. (3.4b)

Equation (3.2) and the approximations in Eq. (3.4) offer a
transparent interpretation. In vacuum (n = 0), there is no mass
splitting, of course; the mass parameter m(0) is determined by
the even part of the OPE. In the first order of n, the mass
splitting �m depends on both the even and the odd parts of
the OPE, whereas only the even part of the OPE determines
the mass parameter m, having the meaning of the centroid
of the doublet D+, D−. If one is only interested in the mass
shift of the doublet as a whole, for small densities it is sufficient
to consider the even OPE part alone, as was done in Ref. [18].
However, for the mass splitting the odd part of the OPE
is of paramount importance. In particular, it is the density
dependence of the odd part of the OPE alone that drives the
mass splitting in the first order of n. Interestingly, the density
dependent part of the chiral condensate, which belongs to the
even part of the OPE, enters the mass splitting in order n2.
The chiral condensate comes about in the combination mc〈dd〉.
The large charm mass amplifies the numerical impact, as
stressed above.

Furthermore, up to order n, only s2
0 (n = 0) and d�s2

0
dn

|0 enter

�m (i.e., neither ds2
0

dn
|0 nor dM

dn
|0), whereas s2

0 (n = 0), ds2
0

dn
|0, and

dM
dn

|0 enter m (not d�s2
0

dn
|0) as can be seen from the derivatives

needed to calculate m and �m from Eq. (3.3):

do

dn

∣∣∣∣
0

=
(

e−s2
0 /M2

πs0
Im�per(s

2
0 )

d�s2
0

dn

)
n=0

+ nonperturbative terms, (3.5a)

de

dn

∣∣∣∣
0

=
(

e−s2
0 /M2

π
Im�per(s

2
0 )

ds2
0

dn

− 1

π

∫ s2
0

m2
c

dsIm�per(s)se−s/M2 dM−2

dn

)
n=0

+ nonperturbative terms. (3.5b)

Whereas Eq. (3.4) suggests that one can independently
adjust m(0) to the respective vacuum value, Eq. (3.5) evidences
that further vacuum parameters (such as M , dM

dn
|0, s2

0 , �s2
0 ,

ds2
0

dn
|0, and d�s2

0
dn

|0) enter the density dependence and must be
chosen consistently to the vacuum mass. That means one has
to evaluate the complete sum rule, including consistently the
vacuum limit.

We remark that Eq. (3.2) or Eq. (3.4) are a consequence of
using a pole-ansatz for the first excitation. The OPE and the
special form of the continuum contribution to the spectral
integral are encoded as e and o. Likewise, the arguments
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following Eq. (3.2) merely use o(0) = 0. The last point must
always be fulfilled in any sum rule and/or dispersion relation,
because at zero density the current-current correlation function
[Eq. (2.1)] only depends on q2 and, hence, the odd part
[Eq. (2.2b)] vanishes. This can also be confirmed directly
from Eq. (3.1b), where s+

0 = s−
0 , due to particle-antiparticle

symmetry, and ��(s) = ��(s2), meaning that the spectral
density in vacuum merely depends on the squared energy, on
account for o(0) = 0.

To arrive at a more general result, one may seek a relation
of m± to certain normalized moments of �(s) (or ratios
thereof) independent of a special ansatz, as can be done in
the case of vector mesons [7,28]. In this spirit one would

be tempted to define
∫ s+

0
0 ds s��e−s2/M2 → m+F+e−m2

+/M2

and
∫ s+

0
0 ds��e−s2/M2 → F+e−m2

+/M2
and analogously for m−

and F−. However, such a separation of positive and negative
frequency parts leads to multiple but different expressions for
m± that can be fulfilled consistently only for special cases
of �(s), as for the above pole ansatz. (This can be seen by
combining these relations with derivatives according to M−2.)
Therefore, one is left with either the somewhat vague statement
that Eq. (3.1) refers to D + D and D − D properties or one
has to employ another explicit ansatz for the function �(s).

Alternatively, one can define moments that correspond to
the integrals in Eq. (3.1),

Sn(M) ≡
∫ s+

0

s−
0

ds sn��(s)e−s2/M2
. (3.6)

The odd and even OPE, o = S0(M) and e = −S1(M), and
their derivatives with respect to M−2, o′ = −S3(M) and e′ =
S4(M), can then be related via Eq. (3.2) to these moments.
Thereby, new quantities �m and m may be defined that encode
the combined mass-width properties of the particles under
consideration:

�m ≡ 1

2

S1S2 − S0S3

S2
1 − S0S2

, (3.7a)

m+m− ≡ −S2
2 − S1S3

S2
1 − S0S2

, (3.7b)

and m 2 ≡ �m
2 + m+m−. For the above pole ansatz, these

quantities become �m = �m and m = m; i.e., they allow
for an interpretation as mass splitting and mass centroid. The
relations (3.6) and (3.7) avoid the use of a special ansatz of
the spectral function, but prevent a direct physical and obvious
interpretation.

IV. EVALUATION FOR D AND D MESONS

We proceed with the above pole ansatz and evaluate
the behavior of m± having in mind that these parameters
characterize the combined D, D spectral functions, but
need not necessarily describe the pole positions in general.
According to the above defined current operators, D stands

for either D+ or D0 and D for either D− or D
0
.

Because dm±/dM = 0 has been used to derive Eq. (3.2)
we have to look for the extrema of m±(M). Furthermore, to

TABLE I. List of employed condensate parameters. A discussion
of these numerical values can be found in Ref. [29]; further remarks
on 〈q†gσ�q〉 are given in Ref. [19]. For the strong coupling we
utilize αs = 4π/[((11 − 2Nf /3) ln(µ2/�2

QCD))], with µ being the
renormalization scale, taken to be of the order of the largest quark
mass in the system and Nf being the number of quark flavors with
mass smaller than µ; �2

QCD = 0.25 GeV2 is the dimensional QCD
parameter. The employed quark pole masses are mc = 1.5 GeV and
mb = 4.7 GeV [25].

Condensate Vacuum value
〈· · ·〉vac

Density dependent
part 〈· · ·〉med

〈qq〉 (−0.245 GeV)3 45/11n

〈 αs

π
G2〉 (0.33 GeV)4 −0.65 GeVn

〈qgσ�q〉 0.8 GeV2 ×
(−0.245 GeV)3

3n GeV2

〈q†q〉 0 1.5n

〈 αs

π
( (vG)2

v2 − G2

4 )〉 0 −0.05 GeVn

〈q†iD0q〉 0 0.18 GeVn

〈q[D2
0 − 1

8 gσ�]q〉 0 −0.3 GeV2n

〈q†D2
0q〉 0 −0.0035 GeV2n

〈q†gσ�q〉 0 0.33 GeV2n

solve consistently the system of equations defined by Eq. (3.1),
the values taken for m± must be fixed at the same Borel mass
M . Therefore, we evaluate the sum rules using two threshold
parameters (s±

0 )2 = s2
0 ± �s2

0 and demand that the minima of
the respective Borel curves m+(M) and m−(M) must be at a
common Borel mass M . Hence, the thresholds are prescribed
and offer the possibility to give a consistent solution to
Eq. (3.1).

Analogously to the analysis in Ref. [18], we chose the
threshold parameter s2

0 = 6.0 GeV2, which approximately
reproduces the vacuum case. At zero density we obtained
for m± a value of 1.863 GeV, representing a reasonable
reproduction of the experimental value of the D mass. The
employed condensate values are listed in Table I.

The density dependence of the mass splitting parameter
�m and the D + D doublet mass centroid m are exhibited
in Fig. 1 as a function of the density. We observe an almost
linear behavior of the mass splitting with increasing density.
At n = 0.15 fm−3 a mass splitting of 2�m ≈ −60 MeV is
obtained. The mass splitting has negative values, i.e., m− >

m+ or mD > mD in line with previous estimates in Ref. [19].
For the mass centroid m our result differs from the one in
Ref. [18], where a mass shift of the order of −50 MeV is
obtained, while we find about +45 MeV. At n = 0.15 fm−3

the splitting of the threshold parameters is �s2
0 ≈ −0.3 GeV2

for the used set of parameters, and the minima of the Borel
curves are located at M ≈ 0.95 GeV and are slightly shifted
upward with increasing density.

While the mass splitting is fairly robust, we find a sensitivity
of the centroid mass shift under variation of the continuum
threshold parameter s2

0 . The above reported value of the mass
centroid changes toward zero when lowering s2

0 . In Fig. 1 we
therefore also use a density dependent prescription for the
threshold s2

0 (n) = s2
0 (0) ± n/n0 GeV2, where n0 = 0.15 fm−3

is the nuclear saturation density and ±1/n0 GeV2 corresponds
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FIG. 1. (Color online) (a) Mass
splitting parameter �m and (b)
mass centroid m for D, D mesons
for the density independent thresh-
old (solid line) and the density de-
pendent threshold s2

0 (n) = s2
0 (0) ±

n/n0 GeV2, where the dotted
(dashed) curve is for the positive
(negative) sign. Note that the D −
D mass splitting is 2�m.

to the first Taylor coefficient ds2
0/dn(0). This simple choice

enables us to identify the uncertainties that might emerge due
to the introduction of a density independent threshold. As can
be seen, the average mass shift may change in sign. In contrast,
the result for �m shows only a weak dependence on s2

0 .
At this point a comment concerning the sign of 〈q†gσ�q〉 is

in order. If one would use 〈q†gσ�q〉 = −0.33 GeV2n instead
(this option is also discussed in Ref. [29], 〈q†D2

0q〉 would
acquire a value of −0.0585 GeV2n accordingly), one would
get a much larger mass splitting of about −180 MeV, which is
far beyond the estimates obtained in Refs. [14–16]. Hence, we
favor the positive sign of 〈q†gσ�q〉 as advocated in Ref. [19],
too. Clearly, further correlators should be studied to investigate
the role of the condensate 〈q†gσ�q〉. In view of the strong
influence of this poorly known condensate, the D − D̄ mass
splitting may be considered as an indicator for its value.

We emphasize the special evaluation strategy employed so
far. Other possibilities are, e.g., variation of s2

0 and �s2 so that
m±(M) develop a section of maximum flatness. Interestingly,
this method leads to a rather low threshold s2

0 ≈ 4 GeV2 and a
low vacuum mass of about m ≈ 1.6 GeV. In contrast, averaging
over the Borel curves in the interval [0.9M0, 1.2M0], around
the minimum M0, we find the values for the mass splitting
�m ≈ −40 MeV and the average mass shift to be of the
same order as quoted above, whereas the absolute value of
the vacuum mass becomes m = 1.877 GeV.

Let us now further consider the impact of various conden-
sates. The result for the mass splitting �m strongly depends on
the quark density 〈q†q〉, whose density dependence is uniquely
fixed. The odd mixed quark-gluon condensate 〈q†gσGq〉 and
the chiral condensate 〈qq〉 are the next influential ones for
the mass splitting. The density dependent part of the chiral
condensate enters in order O(n2) gaining its influence from

the heavy quark mass amplification factor. The influence of
the chiral condensate is illustrated in Fig. 2. In a strictly
linearized sum rule evaluation, the density dependent part of
mc〈qq〉 would be omitted for the mass splitting. However,
numerically the influence of the chiral condensate is of the
same order as (but still smaller than) the above discussed
condensate 〈q†gσ�q〉, which enters the odd part of the OPE.
As expected, the density dependence of the mass centroid is
basically determined by the even part of the OPE.

The density dependent parts of the other even condensates
are of minor importance for the mass splitting. The shift of the
centroid’s mass is anyhow fragile.

Within the given formulation and with the first evaluation
strategy, one may also consider Ds and Ds mesons with the
replacements mq → ms , 〈qq〉 → 〈ss〉 = 0.8 〈qq〉vac + y

〈qq〉med, 〈qgσ�q〉 → 〈sgσ�s〉 = 0.8 GeV2 〈ss〉, 〈q†q〉 →
〈s†s〉 = 0, 〈q†iD0q〉 → 〈s†iD0s〉 = 0.018 GeVn, 〈q[D2

0 −
1
8gσ�]q〉 → 〈s[D2

0 − 1
8g σ�]s〉 = y 〈q[D2

0 − 1
8gσ�]q〉,

〈q†D2
0q〉 → 〈s†D2

0s〉 = y 〈q†D2
0q〉, and 〈q†gσ� q〉 → 〈s†g

σ�s〉 = y 〈q†gσ�q〉. The anomalous strangeness content of
the nucleon is varied as 0 � y � 0.5 [31]; lattice calculations,
for example, point to y = 0.36 [32]. The results are exhibited
in Fig. 3. At n = 0.15 fm−3 and y = 0.5 we observe a
mass splitting of 2�m ≈ +25 MeV and a shift of the mass
centroid of about +30 MeV. The splitting of the thresholds
becomes �s2

0 ≈ 0.83 GeV 2, and the minima of the Borel
curves are located at M ≈ 0.89 GeV and slightly shifted
upward with increasing density. The main reason for the
positive sign of the mass splitting is the vanishing strange
quark net density 〈s†s〉. The mass splitting acquires positive
values for 〈s†s〉 <∼ 0.4n (at y = 0.5). Mass splitting and the
average mass shift tend to zero for y → 0. In this case only
the pure gluonic condensates, which enter the even OPE and

FIG. 2. (Color online) Borel
curves m±(M) for the D meson
for two densities and two values
of the chiral condensate: (a) n = 0,
(b) n = 0.15 fm−3. (Solid curves,
chiral condensate from Table I;
dotted curves, (a) doubling the chi-
ral condensate or (b) doubling the
density dependent part of the chiral
condensate; lower (upper) curves in
panel (b) are for m+ (m−), while
m+ = m− for the vacuum case (a).)
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FIG. 3. (Color online) (a) �m and (b) m for Ds and Ds at s2
0 = 8.0 GeV 2 and for y = 0.5 (solid line), y = 0.25 (dotted line), y = 0 (dashed

line).

are numerically suppressed compared to other condensates,
have a density dependence. Note that these evaluations are, at
best, for a rough orientation, as mass terms ∝ ms have been
neglected. The too low vacuum mass of 1.91 GeV compared
to the experimental value mDs

= 1.968 GeV is an indication
for some importance of strange quark mass terms. Such mass
terms ∝ ms have been accounted for in Ref. [21] for the
vacuum case. The complete in-medium OPE and sum rule
evaluation deserve separate investigations, as ms introduces a
second mass scale.

V. EVALUATION FOR B AND B MESONS

We turn now to B and B mesons. The corresponding current
operators are jB+ = ibγ5u or jB0 = ibγ5d. The antiparticles
correspond to jB− = j†B+ = iuγ5b or j

B
0 = j†

B0 = idγ5b. The
above equations and, in particular, the OPE are applied with
the replacements mc → mb and mB± → m∓ to take into
account the distinct heavy-light structure compared to the D

meson case. The Borel curves m±(M) display, analogogous
to the case of open charm, pronounced minima at a Borel
mass of about 1.7 GeV. We utilize again the first evaluation
strategy. Numerical results are presented in Fig. 4. We employ
s2

0 = 40 GeV2 and obtain m ≈ 5.33 GeV for the vacuum
mass. One observes a mass splitting of 2�m ≈ −130 MeV
at n = 0.15 fm−3. The centroid is shifted upward by about
60 MeV. The splitting of the threshold parameters becomes
�s2

0 ≈ −3.4 GeV2 and the minima of the Borel curves m±(M)
are shifted from M ≈ 1.67 GeV in vacuum to M ≈ 1.71 GeV
at n = 0.15 fm−3. In the case of B, B mesons, the com-
bination mb〈dd〉 is expected to have numerically an even

stronger impact than the term mc〈dd〉 in the charm sector.
Indeed, the influence of the chiral condensate becomes even
larger than that of the odd mixed quark-gluon condensate
〈q†gσ�q〉 at higher densities. The overall pattern resembles
the results presented in Fig. 2, but with shifted mass scale
for m. The other evaluation strategies yield the same results.
Setting 〈q†gσ�q〉 = −0.33 GeV2n, and, hence, 〈q†D2

0q〉 =
−0.0585 GeV2n, a mass splitting of 2�m ≈ −220 MeV and
an average mass shift ≈45 MeV would be obtained.

VI. SUMMARY

In summary we have evaluated the Borel transformed QCD
sum rules for pseudoscalar mesons composed of a combination
of a light and a heavy quark. The heavy quark mass introduces
a new scale compared to QCD sum rules in the light quark
sector. The evaluation of the sum rules, complete up to
mass dimension 5, has been performed for D, D and B,
B mesons with a glimpse of Ds , Ds as well. Our analysis
relies on the often employed pole + continuum ansatz for
the hadronic spectral function. This is a severe restriction
of the generality of the practical use of sum rules. In this
respect, the extracted parameters refer to this special ansatz
and should be considered as indicators for changes of the true
spectral functions of hadrons embedded in cold nuclear matter.
Particles and antiparticles are coupled—a problem that is faced
also for hadrons with conserved quantum numbers in the light
quark sector [6,29,30].

We presented a transparent approximation to highlight the
role of the even and the odd parts of the OPE. Numerically,
we find fairly robust mass splittings (for the employed set of

FIG. 4. (Color online) (a) �m

and (b) m for B and B at s2
0 =

40 GeV 2 and mb = 4.7 GeV. For
line codes see Fig. 1. For density
dependent thresholds, s2

0 = s2
0 (0) ±

7n/n0 GeV 2 was used.

025202-6



QCD SUM RULES FOR D AND B MESONS IN . . . PHYSICAL REVIEW C 79, 025202 (2009)

condensates), whereas an assignment of a possible mass shift
of the centroids is not yet on firm ground. The impact of various
condensates is discussed, and 〈q†q〉, 〈q†gσ�q〉, and 〈qq〉 are
identified to drive essentially the mass splitting. While 〈qq〉 is
amplified by the heavy quark mass, it enters nevertheless the
sum rules beyond the linear density dependence. A concern is
the sign of the condensate 〈q†gσ�q〉, vanishing in vacuum but
with poorly known medium dependence, which determines the
size of the D − D mass splitting. These findings, in particular

for D, D, Ds , Ds , are of relevance for the planned experiments
at FAIR.
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