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Fluctuations of the K/π ratio in nucleus-nucleus collisions: Statistical and transport models
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Event-by-event fluctuations of the kaon to pion number ratio in nucleus-nucleus collisions are studied within the
statistical hadron-resonance gas model (SM) for different statistical ensembles and in the hadron-string-dynamics
(HSD) transport approach. We find that the HSD model can qualitatively reproduce the measured excitation
function for the K/π ratio fluctuations in central Au + Au (or Pb + Pb) collisions from low Super Proton
Synchrotron up to top Relativistic Heavy Ion Collider energies. Substantial differences in the HSD and SM
results are found for the fluctuations and correlations of the kaon and pion numbers. These predictions impose a
challenge for future experiments.
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I. INTRODUCTION

The study of event-by-event fluctuations in high-energy
nucleus-nucleus (A + A) collisions opens new possibilities to
investigate the phase transition between hadronic and partonic
matter as well as the quantum chromodynamics (QCD)
critical point (cf. Ref. [1]). By measuring the fluctuations one
might observe anomalies from the onset of deconfinement [2]
and dynamical instabilities when the expanding system goes
through the first-order transition line between the quark-gluon
plasma (QGP) and the hadron gas [3]. Furthermore, the QCD
critical point may be signaled by a characteristic pattern in the
fluctuations as pointed out in Ref. [4]. However, only recently,
due to a rapid development of experimental techniques, first
measurements of the event-by-event fluctuations of particle
multiplicities [5–8] and transverse momenta [9] in nucleus-
nucleus collisions have been performed.

From the theoretical side such event-by-event fluctuations
for charged hadron multiplicities (in nucleus-nucleus colli-
sions) have been studied in statistical models [10–19] and
in dynamical transport approaches [20–23], which have been
used as important tools to investigate high-energy nuclear
collisions. We recall that the statistical models reproduce
the mean multiplicities of the produced hadrons (see, e.g.,
Refs. [24–26]), whereas the transport models (see, e.g.,
Refs. [27–29]) provide, in addition, a dynamical description
of the various bulk properties of the system. By studying the
various fluctuations within statistical and transport models we
have found out that fluctuations provide an extremely sensitive
observable—depending on the details of the models—which
are partly washed out by looking at general quantities such as
ensemble averages.

In particular, there is a qualitative difference in the
properties of the mean multiplicity and the scaled vari-
ance of the multiplicity distribution in statistical models. In
the case of mean multiplicities the results obtained within the
grand canonical ensemble (GCE), canonical ensemble (CE),
and microcanonical ensemble (MCE) approach each other in
the large volume limit. One refers here to the thermodynamical
equivalence of the statistical ensembles. However, it was

recently found [10,14] that corresponding results for the scaled
variances are different in the GCE, CE, and MCE ensembles,
and thus the scaled variance is sensitive to global conservation
laws obeyed by a statistical system. These differences are
preserved in the thermodynamic limit.

Moreover, there is a qualitative difference in the behavior of
the scaled variances of multiplicity distributions in statistical
and transport models. The transport models predict [21,22]
that the scaled variances in central nucleus-nucleus collisions
remain close to the corresponding values in proton-proton
collisions and increase with collision energy in the same
way as the corresponding multiplicities, whereas in the
statistical models the scaled variances approach finite values
at high collision energy, i.e., become independent of energy.
Accordingly, the differences in the scaled variance of charged
hadrons can be about factor of 10 at the top RHIC energy [21].
Only upcoming experimental data can clarify the situation.

The QGP stage may form a specific set of primordial
fluctuation signals. A well-known example is the equilibrium
electric charge fluctuation in QGP that is about a factor
2–3 smaller than in an equilibrium hadron gas [30,31]. To
observe primordial QGP fluctuations they should be frozen out
during expansion, hadronization, and further hadron-hadron
rescatterings. Evolution and survival of the conserved charge
fluctuations in systems formed in nucleus-nucleus collisions
at the Super Proton Synchrotron (SPS) and Relativistic Heavy
Ion Collider (RHIC) energies were discussed in Refs. [32,33].
Note that both the statistical models and the HSD approach
used in our study do not include the quark-gluon degrees of
freedom. Thus, the fluctuations in the QGP are outside of the
scope of the present article.

The measurement of the fluctuations in the kaon-to-pion
ratio by the NA49 Collaboration [5] was the first event-
by-event measurement in nucleus-nucleus collisions. It was
suggested that this ratio might allow us to distinguish the
enhanced strangeness production attributed to the QGP phase.
Nowadays, the excitation function for this observable is avail-
able in a wide range of energies: from the NA49 Collaboration
in Pb + Pb collisions at the CERN SPS [7] and from the
STAR Collaboration in Au + Au collisions at RHIC [8]. First
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statistical model estimates of the K/π fluctuations have been
reported in Refs. [34,35], and results from the transport model
ultrarelativistic quantum molecular dynamics (UrQMD) in
Ref. [36].

In this article we present a systematic study of statistical
model results (in different ensembles) in comparison to HSD
transport model results for the fluctuations in the kaon to pion
number ratio. The article is organized as follows: In Sec. II the
characteristic definitions for fluctuations in particle number
ratios are introduced. In Sec. III the relevant formulas of
the statistical models (in different ensembles) are presented.
Statistical and HSD model results for the fluctuations in the
kaon-to-pion ratio for central nucleus-nucleus collisions are
compared in Sec. IV. In Sec. V the HSD transport model
results are additionally confronted with the available data on
K/π fluctuations. A summary in Sec. VI closes the article.

II. MEASURES OF PARTICLE RATIO FLUCTUATIONS

A. Notations and approximations

Let us introduce some notations. We define the deviation
�NA from the average number 〈NA〉 of the particle species A

by NA = 〈NA〉 + �NA. Then we define covariance for species
A and B

� (NA,NB) ≡ 〈�NA�NB〉 = 〈NANB〉 − 〈NA〉〈NB〉, (1)

scaled variance

ωA ≡ � (NA,NA)

〈NA〉 = 〈(�NA)2〉
〈NA〉 = 〈N2

A〉 − 〈NA〉2

〈NA〉 , (2)

and correlation coefficient

ρAB ≡ 〈�NA�NB〉
[〈(�NA)2〉〈(�NB)2〉]1/2

. (3)

The fluctuations of the ratio RAB ≡ NA/NB will be character-
ized by [34,35]

σ 2 ≡ 〈(�RAB)2〉
〈RAB〉2

. (4)

Using the expansion,

NA

NB

= 〈NA〉 + �NA

〈NB〉 + �NB

= 〈NA〉 + �NA

〈NB〉

×
[

1 − �NB

〈NB〉 +
(

�NB

〈NB〉
)2

− · · ·
]

, (5)

one finds to second order in �NA/〈NA〉 and �NB/〈NB〉 the
average value and the fluctuations of the A to B ratio:

〈RAB〉 ∼= 〈NA〉
〈NB〉

[
1 + ωB

〈NB〉 − � (NA,NB )

〈NA〉〈NB〉
]

, (6)

σ 2 ∼= � (NA,NA)

〈NA〉2
+ � (NB,NB)

〈NB〉2
− 2

� (NA,NB )

〈NA〉〈NB〉

= ωA

〈NA〉 + ωB

〈NB〉 − 2ρAB

[
ωAωB

〈NA〉〈NB〉
]1/2

. (7)

If species A and B fluctuate independently according to
Poisson distributions (this takes place, for example, in the

GCE for an ideal Boltzmann gas) one finds ωA = ωB = 1 and
ρAB = 0. Equation (7) then reads

σ 2 = 1

〈NA〉 + 1

〈NB〉 . (8)

In a thermal gas, the average multiplicities are proportional to
the system volume V . Equation (8) demonstrates then a simple
dependence of σ 2 ∝ 1/V on the system volume.

A few examples concerning to Eq. (7) are appropriate here.
When 〈NB〉 � 〈NA〉, e.g., A = K+ + K− and B = π+ + π−,
the quantity σ 2 (7) is dominated by the fluctuations of less
abundant particles. When 〈NA〉 ∼= 〈NB〉, e.g., A = π+ and
B = π−, the correlation term in Eq. (7) may become especially
important. A resonance decaying always into a π+π− pair
does not contribute to σ 2 (7) but contributes to the π+ and π−
average multiplicities. This leads [35] to a suppression of σ 2

(7) in comparison to its value given by Eq. (8). For example,
if all π+ and π− particles come in pairs from the decay of
resonances, one finds the correlation coefficient ρπ+π− = 1 in
Eq. (7) and thus σ 2 = 0. In this case, the numbers of π+ and
π− fluctuate as the number of resonances, but the ratio π+/π−
does not fluctuate.

B. Mixed-events procedure

The experimental data for NA/NB fluctuations are usually
presented in terms of the so-called dynamical fluctuations [37]1

σdyn ≡ sign
(
σ 2 − σ 2

mix

)∣∣σ 2 − σ 2
mix

∣∣1/2, (9)

where σ 2 is defined by Eq. (7) and σ 2
mix corresponds to

the following mixed-events procedure.2 One takes a large
number of nucleus-nucleus collision events and measures
the numbers of NA and NB in each event. Then all A and
B particles from all events are combined into one set. The
construction of mixed events is done as follows: One fixes a
random number N = NA + NB according to the experimental
probability distribution P (N ), takes randomly N particles (A
and/or B) from the whole set, fixes the values of NA and
NB , and returns these N particles into the set. This is the
mixed event number one. Then one constructs event number
2, number 3, and so on.

Note that the number of events is much larger than the
number of hadrons, N , in any single event. Therefore, the
probabilities pA and pB = 1 − pA, to take the A and B species
from the whole set, can be considered as constant values during
the event construction. Another consequence of a large number
of events is the fact that A and B particles in any constructed
mixed event belong to different physical events of nucleus-
nucleus collisions. Therefore, the correlations between the
NB and NA numbers in a physical event are expected to be
destroyed in a mixed event. This is the main purpose of the

1Other dynamical measures, such as � [38,39] and F [35], can be
also used.

2We describe the idealized mixed-events procedure appropriate for
the model analysis. The real experimental mixed-events procedure is
more complicated and includes experimental uncertainties, such as
particle identification, and so on.
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mixed-events construction. For any function f (NA,NB ) the
mixed-events averaging is then defined as

〈f (NA,NB )〉mix

=
∑
N

P (N )
∑

NA,NB

f (NA,NB )δ(N − NA − NB)

× (NA + NB)!

NA!NB!
p

NA

A p
NB

B . (10)

The straightforward calculations of mixed averages (10) can
be simplified by introducing the generating function Z(x, y),

Z(x, y) ≡
∑
N

P (N )
∑

NA,NB

δ(N − NA − NB)

× (NA + NB)!

NA!NB!
(xpA)NA(ypB)NB

=
∑
N

P (N ) (xpA + ypB)N , (11)

which depends on auxiliary variables x and y. The averages
(10) are then expressed as x and y derivatives of Z(x, y) at
x = y = 1. One finds:

〈NA〉mix =
(

∂Z

∂x

)
x=y=1

= pA〈N〉,

〈NB〉mix =
(

∂Z

∂y

)
x=y=1

= pB〈N〉,

(12)

〈NA(NA − 1)〉mix =
(

∂2Z

∂2x

)
x=y=1

= p2
A〈N (N − 1)〉, (13)

〈NB(NB − 1)〉mix =
(

∂2Z

∂2y

)
x=y=1

= p2
B〈N (N − 1)〉, (14)

〈NANB〉mix − 〈NA〉mix〈NB〉mix =
(

∂2Z

∂x∂y

)
x=y=1

= pApB ωN 〈N〉, (15)

where

〈N〉 ≡
∑
N

NP (N ), 〈N2〉 ≡
∑
N

N2P (N ),

ωN ≡ 〈N2〉 − 〈N〉2

〈N〉 . (16)

Calculating the NA/NB fluctuations for mixed events accord-
ing to Eq. (7) one gets:

σ 2
mix ≡ �mix (NA,NA)

〈NA〉2
+ �mix (NB,NB)

〈NB〉2
− 2

�mix (NA,NB )

〈NA〉〈NB〉
=

[
1

〈NA〉 + ωN − 1

〈N〉
]

+
[

1

〈NB〉 + ωN − 1

〈N〉
]

− 2
ωN − 1

〈N〉
= 1

〈NA〉 + 1

〈NB〉 . (17)

A comparison of the final result in Eq. (17) with Eq. (8)
shows that the mixed-events procedure gives the same σ 2

for NA/NB fluctuations as in the GCE formulation for an
ideal Boltzmann gas, i.e., for ωA = ωB = 1 and ρAB = 0. If
ωN = 1 [e.g., for the Poisson distribution P (N )], one indeed
finds ωmix

A = ωmix
B = 1 and ρmix

AB = 0. Otherwise, if ωN �= 1,
the mixed-events procedure leads to ωmix

A �= 1, ωmix
B �= 1, and

to nonzero NANB correlations, as seen from the second line
of Eq. (17). Thus, if, e.g., event-by-event fluctuations in the
total number of pions and kaons are stronger than Poissonian
ones, i.e., ωN > 1, positive pion-kaon correlations appear in
the mixed events. They lead to larger (smaller) NK in the
sample of mixed events with larger (smaller) Nπ . However,
the final result for σ 2

mix (17) is still the same as for ωN = 1,
it does not depend on the specific form of P (N ). Nontrivial
(ωmix

A,B �= 1) fluctuations of NA and NB as well as nonzero ρmix
AB

correlations may exist in the mixed-events procedure, but they
are canceled out in σ 2

mix.

III. FLUCTUATIONS OF RATIOS IN STATISTICAL
MODELS

A. Quantum statistics and resonance decays

The occupation numbers, np,j , of single quantum states
(with fixed projection of particle spin) labeled by the momen-
tum vector p are equal to np,j = 0, 1, . . . ,∞ for bosons and
np,j = 0, 1 for fermions. Their average values are

〈np,j 〉 = 1

exp[(εpj − µj )/T ] − αj

, (18)

and their fluctuations read

〈(�np,j )2〉gce ≡ 〈(np,j − 〈np,j 〉)2〉gce

= 〈np,j 〉(1 + αj 〈np,j 〉) ≡ v2
p,j , (19)

where T is the system temperature, mj is the mass of

a particle j, εpj =
√

p2 + m2
j is the single-particle energy.

The value of αj depends on quantum statistics, i.e., +1
for bosons and −1 for fermions, while αj = 0 gives the
Boltzmann approximation. The chemical potential µj of a
species j equals the following: µj = qjµQ + bjµB + sjµS ,
where qj , bj , sj are the particle electric charge, baryon
number, and strangeness, respectively, while µQ,µB,µS are
the corresponding chemical potentials that regulate the average
values of these global conserved charges in the GCE.

In the equilibrium hadron-resonance gas model the mean
number of primary particles (or resonances) is calculated as:

〈N∗
j 〉 ≡

∑
p

〈np,j 〉 = gjV

2π2

∫ ∞

0
p2dp 〈np,j 〉, (20)

where V is the system volume and gj is the degeneracy factor
of a particle of species j (the number of spin states). In the
thermodynamic limit, V → ∞, the sum over the momentum
states can be substituted by a momentum integral.

It is convenient to introduce a microscopic correlator,
〈�np,j�nk,i〉, which in the GCE has the simple form:

〈�np,j�nk,i〉gce = υ2
p,j δij δpk. (21)
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Hence there are no correlations between different particle
species, i �= j , and/or between different momentum states,
p �= k. Only the Bose enhancement, v2

p,j > 〈np,j 〉 for αj = 1,
and the Fermi suppression, v2

p,j < 〈np,j 〉 for αj = −1, exist for
fluctuations of primary particles in the GCE. The correlator (1)
can be presented in terms of microscopic correlators (21):

〈�N∗
j �N∗

i 〉gce =
∑
p,k

〈�np,j�nk,i〉gce = δij

∑
p

v2
p,j . (22)

In the case i = j Eq. (22) gives the variance of primordial
particles (before resonance decays) in the GCE.

For the hadron resonance gas formed in relativistic A + A

collisions the corrections due to quantum statistics (Bose
enhancement and Fermi suppression) are small.3 For the pion
gas at T = 160 MeV, one finds ωπ

∼= 1.1 instead of ω = 1 for
Boltzmann particles. The quantum statistics effects are even
smaller for heavier particles like kaons and almost negligible
for resonances.

The average final (after resonance decays) multiplicities
〈Ni〉 are equal to:

〈Ni〉 = 〈N∗
i 〉 +

∑
R

〈NR〉〈ni〉R. (23)

In Eq. (23), N∗
i denotes the number of stable primary hadrons

of species i, the summation
∑

R runs over all types of resonan-
ces R, and 〈ni〉R ≡ ∑

r bR
r nR

i,r is the average over resonance
decay channels. The parameters bR

r are the branching ratios
of the r-th branches; nR

i,r is the number of particles of species
i produced in resonance R decays via a decay mode r . The
index r runs over all decay channels of a resonance R with the
requirement

∑
r bR

r = 1. In the GCE the correlator (1) after
resonance decays can be calculated as [35]:

〈�NA�NB〉gce = 〈�N∗
A�N∗

B〉gce +
∑
R

[〈
�N2

R

〉〈nA〉R〈nB〉R

+〈NR〉〈�nA�nB〉R
]
, (24)

where 〈�nA�nB〉R ≡ ∑
r bR

r nR
A,rn

R
B,r − 〈nA〉R〈nB〉R .

B. Global conservation laws

In the MCE, the energy and conserved charges are fixed ex-
actly for each microscopic state of the system. This leads to two
modifications in comparison with the GCE. First, additional
terms appear for the primordial microscopic correlators in the
MCE. They reflect the (anti-)correlations between different
particles, i �= j , and different momentum levels, p �= k, due
to charge and energy conservation in the MCE [14],

〈�np,j�nk,i〉mce

= υ2
p,j δij δpk − υ2

p,j v
2
k,i

|A| [ qiqjMqq + bibjMbb + sisjMss

+ (qisj + qj si)Mqs − (qibj + qjbi)Mqb

− (bisj + bj si)Mbs + εpj εkiMεε − (qiεpj + qj εki)Mqε

+ (biεpj + bj εki)Mbε − (siεpj + sj εki)Msε ], (25)

3Possible strong Bose effects are discussed in Ref. [12].

where |A| is the determinant and Mij are the minors of the
following matrix,

A =




�(q2) �(bq) �(sq) �(εq)

�(qb) �(b2) �(sb) �(εb)

�(qs) �(bs) �(s2) �(εs)

�(qε) �(bε) �(sε) �(ε2),




(26)

with the elements �(q2) ≡ ∑
p,j q2

j υ
2
p,j , �(qb) ≡∑

p,j qj bjυ
2
p,j , �(qε) ≡ ∑

p,j qj εpjυ
2
p,j , and so on.

The sum,
∑

p,j , means integration over momentum p and the
summation over all hadron-resonance species j contained
in the model. The first term in the right-hand side of
Eq. (25) corresponds to the microscopic correlator (21) in
the GCE. Note, that the presence of the terms containing

the single particle energy εpj =
√

p2 + m2
j in Eq. (25) is a

consequence of energy conservation. In the CE, only charges
are conserved, thus the terms containing εpj in Eq. (25) are
absent. The matrix A in Eq. (26) then becomes a 3 × 3 matrix
(see Ref. [13]). An important property of the microscopic
correlator method is that the particle number fluctuations and
the correlations in the MCE or CE, although being different
from those in the GCE, are expressed by quantities calculated
within the GCE. The microscopic correlator (25) can be used
to calculate the primordial particle (or resonances) correlator
in the MCE (or in the CE):

〈�Ni�Nj 〉mce =
∑
p,k

〈�np,i�nk,j 〉mce. (27)

A second feature of the MCE (or CE) is the modification of the
resonance decay contribution to the fluctuations in comparison
to the GCE (24). In the MCE (or CE) it reads [13,14]:

〈�NA �NB〉mce

= 〈�N∗
A�N∗

B〉mce +
∑
R

〈NR〉 〈�nA �nB〉R

+
∑
R

〈�N∗
A�NR〉mce〈nB〉R +

∑
R

〈�N∗
B�NR〉mce〈nA〉R

+
∑
R,R′

〈�NR�NR′ 〉mce〈nA〉R〈nB〉R′ . (28)

Additional terms in Eq. (28) compared to Eq. (24) are due to the
correlations (for primordial particles) induced by energy and
charge conservations in the MCE. Equation (28) has the same
form in the CE [13] and MCE [14]; the difference between
these two ensembles appears because of different microscopic
correlators (25). The microscopic correlators of the MCE
together with Eq. (27) should be used to calculate the cor-
relators 〈�N∗

A�N∗
B〉mce, 〈�N∗

A �NR〉mce, 〈�N∗
A �NR〉mce,

〈�N∗
B �NR〉mce, and 〈�NR �NR′ 〉mce entering in Eq. (28).

The correlators (28) define finally the scaled variances ωA

and ωB (2) and correlations ρAB (3) between the NA and NB

numbers. Together with the average multiplicities 〈NA〉 and
〈NB〉 they define completely the fluctuations σ 2 (7) of the A

to B number ratio.
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IV. STATISTICAL AND HSD MODEL RESULTS FOR THE
K/π RATIO

In this section we present the results of the hadron-
resonance gas statistical model (SM) and the HSD transport
model for the fluctuations of the K/π ratio in central nucleus-
nucleus collisions. To carry out the SM calculations one has to
fix the chemical freeze-out parameters. The dependence of the
chemical potential µB on the collision energy is parameterized
as [25]: µB(

√
sNN ) = 1.308 GeV × (1 + 0.273

√
sNN )−1,

where the center-of-mass nucleon-nucleon collision energy,√
sNN , is taken in units of GeV. The system is assumed to be net

strangeness free, i.e., S = 0, and to have the charge to baryon
ratio of the initial colliding nuclei, i.e., Q/B = 0.4. These
two conditions define the system strange, µS , and electric,
µQ, chemical potentials. For the chemical freeze-out condition
we chose the average energy per particle, 〈E〉/〈N〉 = 1 GeV
[40]. Finally, the strangeness saturation factor, γS , is param-
eterized as in Ref. [26]: γS = 1 − 0.396 exp(−1.23T/µB ).
This determines all parameters of the model. An extended
version of the THERMUS framework [41] is used for the
SM calculations (for more details see Ref. [14]). Note that
average multiplicities of pions and kaons measured in central
nucleus-nucleus collisions at SPS and RHIC energies [42] are
nicely described in the SM (see, e.g., Refs. [25,26]) as well as
HSD (cf. Ref. [29]).

A. Results for ωK , ωπ , and ρKπ

According to Eq. (7) the fluctuations of the K = K+ + K−
to π = π+ + π− ratio is given by

σ 2 = ωK

〈NK〉 + ωπ

〈Nπ 〉 − 2ρKπ

[
ωKωπ

〈NK〉〈Nπ 〉
]1/2

. (29)

The values of ωπ, ωK , and ρKπ in different statistical
ensembles are presented in Table I and for the HSD simulations
of Pb + Pb (Au + Au) central (with impact parameter b = 0)
collisions in Table II. Both the SM and HSD results are shown
in Figs. 1 and 2. Let us first comment the SM results. In the
SM the scaled variances ωπ and ωK and correlation parameter

FIG. 1. (Color online) The SM results in the GCE, CE, and
MCE ensembles and the HSD results (impact parameter b = 0) are
presented for the scaled variances ωπ, ωK for Pb + Pb (Au + Au)
collisions at different center-of-mass energies

√
sNN . For comparison

the HSD results for inelastic proton-proton collisions are also
presented in terms of the dotted lines with open circles.

TABLE I. The chemical freeze-out parameters T and µB for central Pb + Pb (Au + Au) collisions at different center-of-mass energies√
sNN . The hadron-resonance gas model results are presented for final (after resonance decays) number densities of pions nπ and kaons nK

(they are the same in all statistical ensembles), scaled variances ωπ, ωK and correlation parameter ρKπ in the GCE, CE, and MCE.

√
sNN T µB nπ nK GCE CE MCE

(GeV) (MeV) (MeV) (fm−3) (fm−3)
ωπ ωK ρKπ ωπ ωK ρKπ ωπ ωK ρKπ

6.27 130.7 482.4 0.106 0.011 1.247 1.030 0.055 1.122 0.930 0.038 0.641 0.833 −0.243
7.62 138.3 424.6 0.134 0.016 1.301 1.039 0.066 1.184 0.961 0.049 0.656 0.853 −0.249
8.77 142.9 385.4 0.155 0.020 1.337 1.045 0.073 1.228 0.980 0.057 0.669 0.866 −0.251
12.3 151.5 300.1 0.202 0.029 1.408 1.058 0.086 1.324 1.018 0.074 0.705 0.893 −0.242
17.3 157 228.6 0.239 0.038 1.457 1.068 0.095 1.397 1.044 0.087 0.743 0.915 −0.226
62.4 163.1 72.7 0.293 0.055 1.514 1.084 0.110 1.506 1.081 0.109 0.824 0.947 −0.186
130 163.6 36.1 0.298 0.058 1.519 1.086 0.112 1.516 1.085 0.111 0.833 0.950 −0.181
200 163.7 23.4 0.298 0.058 1.519 1.086 0.112 1.519 1.085 0.112 0.835 0.950 −0.180
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TABLE II. The HSD average multiplicities 〈Nπ 〉, 〈NK〉 and
values of ωπ, ωK , and ρKπ for central (impact parameter b = 0)
Pb + Pb (Au + Au) collisions at different center-of-mass energies√

sNN .

√
sNN HSD full acceptance

(GeV) 〈Nπ 〉 〈NK〉 ωπ ωK ρKπ

6.27 612.03 43.329 0.961 1.107 −0.091
7.62 732.11 60.801 1.077 1.141 −0.063
8.77 823.71 75.133 1.159 1.168 −0.033
12.3 1072.3 116.44 1.378 1.250 0.046
17.3 1364.6 165.52 1.619 1.348 0.126
62.4 2933.9 449.29 3.006 1.891 0.412
130 4304.2 692.59 4.538 2.378 0.557
200 5204.0 861.77 5.838 2.765 0.634

ρKπ approach finite values in the thermodynamic limit of
large volumes. These limiting values are presented in Table I
and in Figs. 1 and 2. For central Pb + Pb and Au + Au
collisions the corresponding volumes in the SM are large
enough. Finite volume corrections are expected to be on the
level of a few percentages. The finite volume effects for the
scaled variances and correlation parameters in the CE and
MCE are, however, difficult to calculate (see Ref. [15]) and
they will not be considered in the present article. The GCE
values of ωπ and ωK reflect the Bose statistics of pions and
kaons and the contributions from resonance decays.

The π -K correlations ρKπ are due to resonances having
simultaneously K and π mesons in their decay products. In
the hadron-resonance gas within the GCE ensemble, these
quantum statistics and resonance decay effects are responsible
for deviations of ωK and ωπ from 1, and of ρKπ from 0. The
most important effect of an exact charge conservation in the CE

FIG. 2. (Color online) The SM results in the GCE, CE, and
MCE ensembles and the HSD results (impact parameter b = 0) are
presented for the correlation parameter ρKπ for Pb + Pb (Au + Au)
collisions at different center-of-mass energies

√
sNN . For comparison

the HSD results for inelastic proton-proton collisions are also
presented by the dotted line with open circles.

ensemble is a suppression of the kaon number fluctuation.
This happens mainly due to exact strangeness conservation
and is reflected in smaller CE values of ωK at low collision
energies in comparison to those from the GCE ensemble.
The MCE values of ωK and ωπ are further suppressed in
comparison those from the CE ensemble, which is due to
exact energy conservation. The effect is stronger for pions
than for kaons since pions carry a larger part of the total
energy. An important feature of the MCE is the anticorrelation
between Nπ and NK , i.e., negative values of ρKπ . This is also
a consequence of energy conservation for each microscopic
state of the system in the MCE [14]. The presented results
demonstrate that global conservation laws are rather important
for the values of ωπ, ωK , and ρKπ . In particular, the exact
energy conservation strongly suppresses the fluctuations in the
pion and kaon numbers and leads to ωK < 1 and ωπ < 1 in the
MCE ensemble instead of ωK > 1 and ωπ > 1 in the GCE and
CE ensembles. The exact energy conservation changes also the
π -K correlation into an anticorrelation: instead of ρKπ > 0 in
the GCE and CE ensembles one finds ρKπ < 0 in the MCE.

As seen from Figs. 1 and 2 the HSD results for ωπ, ωK ,
and ρKπ (solid lines) are rather different from those in the SM.
For a comparison the HSD results for inelastic proton-proton
collisions are also presented in Figs. 1 and 2 (dotted lines). The
HSD scaled variances ωπ and ωK increase at higher energies.
A similar behavior has been observed earlier in Ref. [21] for the
scaled variance of all charged hadrons. The HSD calculations
reveal the anticorrelation between Nπ and NK , i.e., negative
values of ρKπ , for low SPS energies, where the influence of
conservation laws is more stringent.

Comparing this result with the SM (in different ensembles)
one may conclude that negative values of ρKπ in HSD
appear because of a dominant role of energy conservation
in joint π -K production at small collision energies. The
HSD values of ρKπ become, however, positive and strongly
increases with increasing collision energy. This is due to the
contribution of heavy strings to joint π -K (or K∗) production
at high energies in the HSD simulations. Note that the HSD
results for ωπ, ωK , and ρKπ in nucleus-nucleus collisions
become larger than those in proton-proton inelastic reactions
at high collision energies. This is due to an increase of
secondary (i.e., meson-baryon and meson-meson) collisions
at higher bombarding energy. Thus, a strong deviation of HSD
from the SM with increasing energies is a consequence of
nonequilibrium dynamics in the hadron-string model that is
driven by the formation of heavy strings and their decay.
Indeed, future experimental data on the fluctuations of K,π

and Kπ correlations will allow us to shed more light on the
equilibration pattern achieved in heavy-ion collisions at RHIC
energies.

Two comments are appropriate here. The first one concerns
a correspondence between the HSD and SM results. In HSD
three charges—net baryon number B (equal to the number
of participating nucleons), net electric charge Q (equal to the
number of participating protons), and net strangeness S (equal
to zero)—are conserved exactly during the system evolution.
However, B and Q can fluctuate from event to event because
of the fluctuations in the number of nucleon participants. They
also cause fluctuations of the energy of produced hadrons in
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the HSD simulations. Moreover, an essential part of the system
energy is transformed to collective motion. Thus, even in the
sample of the HSD events with fixed number of participants,
the thermal energy of the created particles can fluctuate from
event to event. Both the charge and energy fluctuations in
HSD are not of thermal origin. Therefore, an attempt to
interpret the HSD multiplicity fluctuations in statistical terms
would require use of a more general concept of statistical
ensembles with fluctuating extensive quantities [17,18]. In
particular, large values of the scaled variances, ωi ∼ 〈Ni〉, in
high-energy proton-proton collisions are also present in the
HSD simulations of nucleus-nucleus collisions. In the SM
model this would require a special form of scaling volume
fluctuations as recently suggested in Ref. [19].

Our second comment concerns the physical origin of
the correlation parameter ρKπ . Two sources of the π -K
correlations are resonance, string decays, and electric charge
conservation. To estimate their relative weights, one can bene-
fit from measuring the correlations ρKπ in the separate charge
channels: π−K− and π−K+ as suggested in Ref. [43]. The
resonances decaying into π−K+ produce the corresponding
correlation, while an analogous correlation in the π−K−
system is absent. Note that electric charge conservation leads
also to qualitatively different correlation effects in π−K− and
π−K+ channels.

B. Results for σ, σmix, and σdyn

The fluctuation in the kaon-to-pion ratio is dominated by
the fluctuations of kaons alone because the average multiplicity
of kaons is about 10 times smaller than that of pions. Thus,
the first term in the right-hand side of Eq. (29) gives the
dominant contribution, whereas the second and third terms in
Eq. (29) give only small corrections. The model calculations
of Eq. (29) require, in addition to ωK,ωπ , and ρKπ values,
the knowledge of the average multiplicities 〈NK〉 and 〈Nπ 〉.
For the HSD simulations (impact parameter b = 0 in Pb + Pb
collisions at SPS energies and Au + Au collisions at RHIC)
the corresponding average multiplicities are presented in
Table II. To fix average multiplicities in the SM one needs
to choose the system volume. For each collision energy we fix
the volume of the statistical system to obtain the same kaon
average multiplicity in the SM as in the HSD calculations:
〈NK〉stat = 〈NK〉HSD. We recall that average multiplicities of
kaons and pions are the same in all statistical ensembles. The
SM volume in central Pb + Pb (Au + Au) collisions is large
enough and all statistical ensembles are thermodynamically
equivalent for the average pion and kaon multiplicities since
these multiplicities are much larger than 1.

In Fig. 3 the values of σ (in percentages)—calculated
according to Eq. (29) and Eq. (17)—are presented in the
left and right panels, respectively, for the SM in different
ensembles as well as for the HSD simulations. The first
conclusion from Fig. 3 (left) is that all results for σ in the
different models are rather similar. One observes a monotonic
decrease of σ with collision energy. This is just because of
an increase of the kaon and pion average multiplicities with
collision energy. The mixed-event fluctuations σmix in the

FIG. 3. (Color online) (Left) The SM results in the GCE, CE, and
MCE ensembles as well as the HSD results (impact parameter b = 0)
are presented for σ × 100% defined by Eq. (29) for Pb + Pb (Au +
Au) collisions at different center-of-mass energies

√
sNN . (Right) The

same as in the left panel but for σmix × 100% in mixed events defined
by Eq. (17), σ 2

mix = 1/〈NK〉 + 1/〈Nπ 〉.

model analysis are fully defined by these average multiplicities
according to Eq. (17). The values of σmix are therefore the same
in the different statistical ensembles. They are also very close
to the HSD values because we have fixed the statistical system
volume to obtain the same kaon average multiplicities in the
statistical model as in HSD at each collision energy. As seen
from Fig. 3 (right) the requirement of 〈NK〉stat = 〈NK〉HSD

leads to practically equal values of σmix in both HSD and the
SM.

Differences between the statistical ensembles as well as
between the statistical and HSD results become visible for
other measures of K/π fluctuations such as σdyn defined by
Eq. (9) and F = σ 2/σ 2

mix. They are shown in Fig. 4, (left)
and (right), respectively. At small collision energies the CE
and MCE results in Fig. 4 demonstrate negative values of
σdyn, respectively F < 1. When the collision energy increases,
σdyn in the CE and MCE ensembles becomes positive, i.e.,
F > 1. Moreover, the different statistical ensembles approach
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FIG. 4. (Color online) (Left) The results for the K/π fluctuations
at different center-of-mass energies

√
sNN in the GCE, CE, and

MCE ensembles as well as from HSD (impact parameter b = 0)
are presented for σdyn × 100% defined by Eq. (9). (Right) The same
as in the left panel but for F = σ 2/σ 2

mix.

the same values of σdyn and F at high collision energy. In the
SM the values of σ and σmix approach zero at high collision
energies due to an increase of the average multiplicities. The
same limit should be also valid for σdyn in the SM. In contrast,
the measure F shows a different behavior at high energies: the
SM gives F ∼= 1.05 in the high energy limit, while the HSD
result for F demonstrates a monotonic increase with collision
energy. An interesting feature of the SM is approximately the
same result for σ (and, thus, σdyn and F ) in the CE and MCE
ensembles. From Table I and Figs. 1 and 2 one observes that
ωK,ωπ , and ρKπ are rather different in the CE and MCE. Thus,
as discussed above, an exact energy conservation influences the
particle scaled variances and correlations. These changes are,
however, canceled out in the fluctuations of the kaon-to-pion
ratio.

C. Volume fluctuations

It has been mentioned in the literature (see, e.g.,
Ref. [34]) that the particle number ratio is independent of

volume fluctuations because both multiplicities are propor-
tional to the volume. In fact, the average multiplicities 〈NK〉
and 〈Nπ 〉, but not NK and Nπ , are proportional to the
system volume. Let us consider the problem in the SM
assuming the presence of volume fluctuations at fixed values
of T and µB . This assumption corresponds approximately
to volume fluctuations in nucleus-nucleus collisions from
different impact parameters in each collision event. Under
these assumptions the SM values in Table I remain the same
for any volume (if only this volume is large enough and
the finite size corrections can be neglected). However, the
average hadron multiplicities are proportional to the volume.
Therefore, the SM result for σ 2 reads, σ 2 = σ 2

0 V0/V , where
V0 is the average system volume and σ 2

0 is calculated for the
average multiplicities corresponding to this average volume
V0. Expanding V0/V = V0/(V0 + δV ) in powers of δV/V0,
one finds to second order in δV/V0,

σ 2 ∼= σ 2
0

[
1 + 〈(δV )2〉

V 2
0

]
, (30)

where

〈(δV )2〉 =
∫

dV (V − V0)2 W (V ) (31)

corresponds to an average over the volume distribution
function W (V ) that describes the volume fluctuations. As
clearly seen from Eq. (30) the volume fluctuations influence, of
course, the K/π particle number fluctuations and make them
larger. Comparing the K/π particle number fluctuations in,
e.g., 1% of most central nucleus-nucleus collisions with those
in, e.g., 10% one should take into account two effects. First, in
the 10% sample the average volume V0 is smaller than that
in 1% sample and, thus, σ 2

0 in Eq. (30) is larger. Second, the
volume fluctuations (31) in the 10% sample is larger, and this
gives an additional contribution to σ 2 according to Eq. (30).

One may also consider volume fluctuations at fixed energy
and conserved charges (see, e.g., Ref. [19]). In this case the
connection between the average multiplicity and the volume
becomes more complicated. The volume fluctuation within
the MCE ensemble can strongly affect the fluctuations in the
particle number ratios. This possibility will be discussed in
more detail in a forthcoming study.

V. EXCITATION FUNCTION FOR THE K/π RATIO:
COMPARISON WITH DATA

A comparison of the SM results for K/π fluctuations
in different ensembles with the data looks problematic at
present. This is because of difficulties with implementing
the experimental acceptance in the SM (see a discussion of
this point in Ref. [16]). A similar problem exists in the SM
with chemical nonequilibrium effects discussed in Ref. [44].
The experimental acceptance can be taken into account in the
transport code. To compare the HSD calculations with the
measured data the experimental cuts are applied for the
simulated set of the HSD events. In Fig. 5 the HSD results
for the excitation function in σdyn (9) for the K/π ratio is
shown in comparison with the experimental data measured by
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FIG. 5. (Color online) (Left) The HSD results for the excitation
function in σdyn (9) for the K/π ratio for full acceptance (dotted line)
and within the experimental acceptance (solid line) in comparison
to the experimental data measured by the NA49 Collaboration at the
CERN SPS [7] and by the STAR Collaboration at BNL RHIC [8].
3.5% most central HSD events were selected for the analysis for SPS
energies and 5% for the RHIC energies. (Right) The HSD results
(circles) and two different versions of UrQMD (triangles) calculations
[36,45] for σdyn versus the NA49 data. Statistical uncertainties in the
transport calculations are shown by error bars.

the NA49 Collaboration at the CERN SPS [7] and by the STAR
Collaboration at BNL RHIC [8].

For the SPS energies we used a cut plab � 3 GeV/c applied
by NA49 to provide a precise particle identification. For
the RHIC energies the cuts are in pseudorapidity, |η| < 1,
and in the transverse momentum, 0.2 < pT < 0.6 GeV/c,
Ref. [8]. We note also that the HSD results presented in
Fig. 5 correspond to the specific centrality selections as in
the experiment—the NA49 data correspond to the 3.5% most
central collisions selected via the veto calorimeter, whereas
in the STAR experiment the 5% most central events with the
highest multiplicities in the pseudorapidity range |η| < 0.5
have been selected.

The HSD results—within the acceptance cuts—are shown
in Fig. 5 (left) as solid lines. In addition in the left-hand side
of Fig. 5 the result for the full acceptance is indicated by a
dotted line. One can see that the experimental cuts lead to
a systematic increase of σdyn; however, they do not change
the shape of the excitation function. By comparing the full
acceptance line to those in Fig. 4 (left) for b = 0 one sees
also a small enhancement of σdyn that is due to slight decrease
of the hadron multiplicities and, correspondingly, increase of
those fluctuations.

In the right panel of Fig. 5 the HSD results for σdyn

within the experimental acceptance are compared with two
different versions of UrQMD v1.3 simulations [36,45] and
the NA49 data in the SPS energy range. The remaining
differences between the UrQMD v1.3 calculations from 2006
and 2004 at 160 A GeV can be attributed to the differences in
implementation of acceptance cuts (cf. discussion in Ref. [45]).
One sees that the UrQMD model gives practically a constant
σdyn, which is about 40% smaller than the results from HSD
at the lowest SPS energy. This difference between the two
transport models might be attributed to different realizations
of the string and resonance dynamics in HSD and UrQMD: in
UrQMD the strings decay first to heavy baryonic and mesonic
resonances that only later decay to “light” hadrons such as
kaons and pions. In HSD the strings dominantly decay directly
to “light” hadrons (from the pseudoscalar meson octet) or the
vector mesons ρ, ω, and K∗ (or the baryon octet and decouplet
in case of baryon number ±1). As discussed in the previous
section, σdyn is indeed very sensitive to the model details at
low bombarding energies: the SM in different ensembles and
the HSD give rather different behavior at the low SPS energies
[cf. Fig. 4 (left)].

Although the UrQMD results are available presently only
up to the top SPS energy, the HSD model shows a good
agreement with the recent STAR data [8] [cf. Fig. 5 (left)].
A good agreement with the STAR data [46] for K/π ratio
fluctuations in Cu+Cu at

√
sNN = 200 GeV was also obtained

in the multiphase transport model (AMPT) [47]. This is in
contrast to the corresponding result from the Heavy Ion Jet
Interaction Generator (HIJING) model [48] that overpredicts
substantially the experimental data [46]. The difference has
been attributed in Ref. [46] to an absence of the final
rescattering in HIJING that is incorporated in AMPT as well
as in HSD.

VI. SUMMARY AND CONCLUSIONS

We have studied the event-by-event fluctuations of the
kaon to pion number ratio in central Au + Au (or Pb + Pb)
collisions from low SPS up to top RHIC energies within the
statistical hadron-resonance gas model for different statistical
ensembles—GCE, CE, and MCE—and in the HSD transport
approach. We have obtained substantial differences in the HSD
and statistical model results for the scaled variances ωK,ωπ

and the correlation parameter ρKπ as presented in Figs. 1 and 2.
Thus, the second moments of the multiplicity distributions may
serve as a good probe for the amount of equilibration achieved
in central nucleus-nucleus collisions. Note that the differ-
ences between the transport and statistical model results for
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multiplicity fluctuations and correlations increase with colli-
sion energy (see Refs. [21,22]). There are also arguments that
the behavior of higher moments of event-by-event multiplic-
ities may serve as an important signature of the QCD critical
point [49].

The observable σdyn, which characterizes the fluctuations
of the kaon to pion ratio, shows to be rather sensitive to the
details of the model at low collision energies. The CE and MCE
results in Fig. 4 demonstrate negative values for σdyn, whereas
the GCE gives approximately a constant positive value for σdyn.
The HSD results correspond to larger values of σdyn than those
in the GCE statistical model. They even show an increase at
lower SPS energies. When the collision energy increases, the
quantity σdyn in the CE and MCE becomes positive. Moreover,
the different statistical ensembles approach to the same values
of σdyn at high collision energy. This is just because the values
of σ and σmix approach zero at high collision energies. Thus,
the same limit equal to zero should be also valid for σdyn in the
statistical models. However, the measure F = σ 2/σ 2

mix shows
another behavior at high energies. The statistical models give
a constant value F ∼= 1.05 in the high energy limit, whereas
the HSD results for F demonstrate a monotonic increase with
collision energy.

We find that the HSD model can qualitatively reproduce the
measured excitation function for the K/π ratio fluctuations in

central Au + Au (or Pb + Pb) collisions from low SPS up to
top RHIC energies. We have shown that accounting for the
experimental acceptance as well as the centrality selection
has a relatively small influence on σdyn and does not change
the shape of the σdyn excitation function. We conclude that
the HSD hadron-string model—which does not have a QGP
phase transition and not explicitly includes the quark and
gluon degrees of freedom—can reproduce qualitatively the
experimental excitation function. In particular, it gives the rise
of σdyn with decreasing bombarding energy. This fact brings
us to the conclusion that the observable enhancement of σdyn

at low SPS energies might dominantly signal nonequilibrium
string dynamics rather than a phase transition of hadronic to
partonic matter or the QCD critical point.
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[2] M. Gaździcki and M. I. Gorenstein, Acta Phys. Pol. B 30, 2705
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