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Elliptic flow from final state interactions in the distorted-wave emission-function model
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The effect of final state interactions on the elliptic flow coefficient measured in relativistic heavy ion collisions
is investigated within the distorted-wave emission-function (DWEF) formalism established by G. A. Miller and
J. G. Cramer [Phys. Rev. Lett. 94, 102302 (2005); J. Phys. G. 34, 703 (2007); Phys. Rev. C 78, 054905 (2008)]. It
is found that the optical potential previously found to give the best fit of particle multiplicity and Hanbury Brown
and Twiss radii in BNL Relativistic Heavy Ion Collider events has a moderate effect on the resulting elliptic flow
coefficient v2. This indicates that final state interactions should be taken into account to confidently predict v2 to
better than ∼20% accuracy.
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I. INTRODUCTION

Hydrodynamic models have been quite successful at de-
scribing single-particle hadron spectra measured in experi-
ments at the BNL Relativistic Heavy Ion Collider (RHIC)
[1–5]. Recently, progress has been made in going beyond
simple ideal hydrodynamic models and using viscous hydrody-
namics to determine the value of various transport coefficients
in the RHIC “fireball,” e.g., the shear viscosity [6–9]. Of
particular interest is the azimuthal anisotropy of produced
particles. The existence of strong elliptic flow at RHIC is one
of the best indications of thermalization at RHIC [10–13], and
its precise value is sensitively connected to the viscosity of the
medium [6].

Not every aspect of these hydrodynamic models, however,
is completely physically justified. Because of uncertainty in
especially early and late time dynamics in the evolution of
a heavy ion collision, the initial and final conditions for
hydrodynamic evolution are treated somewhat simplistically.
In particular, the so-called Cooper-Frye freezeout algorithm
[14] is typically implemented to describe how the medium
transitions from hydrodynamic behavior to the essentially free
particles that enter the detectors. Using this procedure, the
medium, once it reaches some defined freezeout temperature,
instantaneously “freezes out” from a hydrodynamic fluid to
completely free particles that stream to the detectors. Knowing
that this is not entirely physical, it makes sense to investigate
how much this treatment might affect the conclusions reached
from using these hydrodynamic models.

To that end, Miller and Cramer et al. investigated the effect
of introducing some final state interactions to this freezeout
behavior in the form of a one-body optical potential that the
emitted particles interact with as they “fight” to escape the
medium [15–17]. The main motivation behind this previous
work was the notorious inability of hydrodynamic models to
fit two-particle correlation data [so-called Hanbury Brown and
Twiss (HBT) radii] while simultaneously fitting single-particle
data [18]. (For a review, see Ref. [19].) Thus only multiplicity
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and HBT radii data were calculated, while the present work
extends that to now investigate the effect of these final state
interactions on measured elliptic flow. For simplicity only
pions—the dominant hadron produced in a RHIC event—are
considered.

The distorted-wave emission-function (DWEF) formalism
is briefly reviewed in Sec. II, with the calculation of v2 in this
formalism described in Sec. III. Sections IV and V contain the
results and conclusions. Details of the calculation are included
in Appendix A for those interested, along with a semianalytic
derivation of a simple test case used to test the numerics in
Appendix B.

II. DWEF FORMALISM

The DWEF formalism was established in Ref. [15] and
described extensively in Ref. [16], and the relevant parts are
briefly summarized as follows.

The main quantity that we are interested in is the detected
particle momentum spectra

E
dN

d3p
= dN

dYd2p
=

∫
d4x S(p,x), (1)

from which v2 is defined as the second moment in the azimuthal
momentum angle,

v2 = 〈cos(2φp)〉 =
∫

dφp cos(2φp) dN
dYd2p∫

dφp
dN

dYd2p

, (2)

with p being the momentum of the detected particle and Y

the particle rapidity. φp is the angle of the particle momentum
with respect to the collision plane.

S(p,x) is known as the emission function. In conventional
hydrodynamical models, it resides in space on a freezeout
hypersurface defined by a surface of constant temperature (or
other thermodynamic quantity) in the hydrodynamic simula-
tion, with a momentum distribution at each point on the surface
given by the appropriate equilibrium (or off-equilibrium in
the viscous case) distribution at that given temperature. This
freezeout hypersurface represents the surface of last scattering,
from which free particles are emitted and travel directly to the
detector.
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Here, instead of running a full hydrodynamic simulation,
we follow Ref. [20] and use an analytical parametrization of the
freezeout surface, similar to one typically found in numerical
hydro simulations, but with tunable parameters. In addition it
is allowed to be a more general volume, with finite width in
all dimensions, rather than the infinitely thin surface obtained
in a conventional Cooper-Frye prescription.

Second, instead of freely streaming, particles that are
emitted from this surface are then made to interact with an
optical potential representing interactions with the medium
from which the particles are escaping.

Explicitly we have (see Ref. [16] for details)

S(p,x) = cosh η

(2π )3
e

−η2

2�η2
1√

2π �τ 2
e

−(τ−τ0)2

2�τ2

× M⊥ ρ(b)

e(p·u−µπ )/T − 1

∣∣ψ (−)
p (x)

∣∣2
. (3)

p is the asymptotic pion momentum, and M⊥ =
√

p2
⊥ + m2

π .
As usual, instead of Cartesian coordinates (t,x,y,z), we use
the set (τ,x,y,η) or (τ,b,φ,η) with

η = arctanh(z/t) τ =
√

t2 − z2 b =
√

x2 + y2

(4)
φ = arctan(y/x) b = (b,φ).

z is the beam direction, with the xz (φ = 0, π ) plane being the
reaction plane.

ψ (−)
p (x) are the aforementioned distorted waves (as opposed

to plane waves appropriate in the absence of interactions). They
obey the equation of motion(

∇2 − ∂2

∂t2
− U (b) − m2

π

)
ψ (−)

p (x) = 0 (5)

for pions interacting with optical potential

U (b) = −(w0 + w2 p2)ρ(b). (6)

Note that although the medium is time-dependent in
principle, for simplicity the optical potential is taken here to
be time independent and can be interpreted as a time-averaged
quantity.

Whereas in the original DWEF formalism only a ro-
tationally symmetric transverse density ρ(b) was needed
(corresponding to central collisions), here we are interested
in azimuthal anisotropy and so we need to consider a more
general form. Specifically we take the modified Woods-Saxon
profile from Ref. [20]

ρ(b) =
(

exp
[
(−1)RWS

aWS

] + 1
)2

(
exp

[(
b
√

cos2 φ

R2
x

+ sin2 φ

R2
y

− 1
)

RWS
aWS

] + 1
)2

, (7)

with RWS =
√

1
2 (R2

x + R2
y). Thus lines of constant density

in the transverse plane form ellipses with semimajor to
semiminor axis ratio Ry

Rx
.

Last, we must specify the fluid velocity u, for which we
again defer to Ref. [20]. It is parametrized using a transverse
fluid rapidity ηt (b),

uµ(x) = (cosh η cosh ηt , sinh ηt cos φb,

sinh ηt sin φb, sinh η cosh ηt ). (8)

The transverse direction is taken to be perpendicular to lines
of constant density. It can be shown that the angle of such a
fluid velocity, φb, obeys [20]

φb(φ) = tan−1

(
R2

x

R2
y

tan φ

)
. (9)

The transverse fluid rapidity ηt (b) is first taken to have
the same elliptic symmetry as the density, increasing linearly

with the “radial” coordinate b̃ ≡
√

(b cos(φ))2

R2
x

+ (b sin(φ))2

R2
y

. Then

added to this is a term proportional to cos(2φ) representing the
amount of elliptic flow built up before freezeout:

ηt (b) = ηf b

√
cos2 φ

R2
x

+ sin2 φ

R2
y

(1 + a2 cos(2φ)). (10)

The momentum in these coordinates takes the form

pµ = (M⊥ cosh Y,p⊥ cos φp,p⊥ sin φp,M⊥ sinh Y ). (11)

We choose to focus on data at midrapidity, Y = 0, and so

p · u = M⊥ cosh η cosh ηt − p⊥ sinh ηt cos(φb − φp). (12)

In all, then, the parameters involved in this model are
�η,�τ, τ0, µπ , T ,w0, w2, Rx, Ry, aWS, ηf , and a2. We are
interested in the effect of an optical potential like the one
found to give the best fit in Ref. [16] and so we will keep all of
these parameters fixed to those best-fit values and only adjust
Ry

Rx
and a2 to give reasonable results for noncentral collisions.
It should be noted that the formalism developed is not

strictly correct when the optical potential is complex. (See
the discussion in Ref. [17].) We therefore also investigate the
best fit values of Ref. [17] for a vanishing imaginary part of
the optical potential.

III. CALCULATING v2

This section outlines how the calculations are carried
out. A set of coupled differential equations must be solved
numerically to obtain the wave functions ψ (−)

p , and then a
five-dimensional integral must be performed (two of which
can be done analytically with suitable approximations.)

A. The wave functions ψ (−)
p (x)

ψ (−)
p satisfies Eq. (5). Because U (b) is independent of t and

z, we can write

ψ (−)
p (x) ≡ e−iωpt eipzzψ (−)

p (b), (13)

and Eq. (5) becomes(∇2
⊥ − U (b) + p2

⊥
)
ψ (−)

p (b) = 0 (14)

or(
∂2

∂b2
+ 1

b

∂

∂b
+ 1

b2

∂2

∂φ2
− U (b) + p2

⊥

)
ψ (−)

p (b) = 0. (15)
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Decomposing ψ (−)
p and U (b) into angular moments,

ψ (−)
p (b) =

∞∑
m=−∞

fm(p,b)(−i)meim (φ−φp) (16)

and

U (b) ≡
∑

n

Un(b)einφ, (17)

results in

∑
m

[(
∂2

∂b2
+ 1

b

∂

∂b
− m2

b2
+ p2

⊥

)
fm −

∑
n

Unfm−n ineinφp

]

× eimφe−imφp = 0. (18)

So the term in brackets vanishes identically for each m,
and we must solve a set of coupled differential equations. In
practice, every fm above a certain mmax is set to zero, and a
finite set of coupled equations is solved numerically.

The boundary conditions are the same as those for the
cylindrically symmetric case—far outside the medium one
should have a canonically normalized plane wave plus an
outgoing wave, i.e.,

fm(b 	 RWS) = Jm(pb) + TmH (1)
m (pb), (19)

with Jm and H (1)
m Bessel functions and Hankel functions of the

first kind, respectively.
Details of this calculation can be found in Appendix A.

The program used to calculate the wave functions was tested
in part by comparison to a semianalytic solution described in
Appendix B.

B. Integration

Once the wave functions are found, a five-dimensional
integral must be performed:

v2 =
∫

dφp cos(2 φp)
∫

d4x S(p,x)∫
dφp

∫
d4x S(p,x)

. (20)

The τ integral can be done analytically:∫
τdτe

−(τ−τ0)2

2�τ2 =
√

2πτ0�τ. (21)

The η integral can also be done analytically with the following
approximations (as in Ref. [16]),

e
−η2

2�η2 ≈ e
1

�η2 e
− cosh η

�η2 (22)

1

e(p·u−µπ )/T − 1
≈

jmax∑
j=1

e(−p·u+µπ )j/T , (23)

where the Bose-Einstein distribution is approximated by a sum
over Boltzmann distributions truncated at some jmax, and so∫

dη cosh η e
− cosh η( 1

�η2 + M⊥j

T
cosh ηt )

= 2K1

(
1

�η2
+ j

T
M⊥ cosh ηt

)
. (24)

Finally, then, for the numerator we have∫
dφp cos(2φp)

∫
d4x S(p,x)

= 2 τ0M⊥
(2π )3

e
1

�η2
∑
m,n,j

in−me
µπ j

T

×
∫

d2b ρ(b)fm(p,b) f ∗
n (p, b)ei(m−n)φ

×K1

(
1

�η2
+ j

T
M⊥ cosh ηt

) ∫
dφp cos(2φp)

× e−i(m−n)φp e
j

T
p⊥ sinh(ηt ) cos(φb−φp), (25)

and similarly for the denominator. The final three integrals are
done numerically.

More details of this part of the calculation can be found in
Appendix A.

IV. RESULTS

As previously mentioned, we would like to determine the
effect of adding final state interactions to hydrodynamic fits.
To gain insight into this, we consider an emission function
with parameter values taken from Refs. [16] and [17], which
give the best description of the single-particle data in general,
and also with the imaginary part of the optical potential held
at zero (see Table I; also note that in both fits the chemical
potential was fixed at the pion mass).

We must make alterations to this central collision model
to approximate a more peripheral collision. The results for a
central collision do not unambiguously imply what a peripheral
collision will look like without appealing to a particular
model for the dynamics of the system. We therefore choose
reasonable parameters to approximately represent a collision
with impact parameter ∼7 fm and then see how the resulting
v2 depends on the strength of the optical potential. In principle
one could vary all the parameters and do a separate fit of all the
relevant experimental data (multiplicity, HBT radii, v2, etc.) for
each of various collision centralities. However, the computing
time to do so would be prohibitive, and here we are most
interested in investigating only the effect of the interactions,
so we proceed as follows.

TABLE I. Best fit parameter sets. The top line (Fit 1) is a general fit [16] while the bottom line (Fit 2) is from a fit where Im(w2) is held at
0.0001 [17].

T (MeV) ηf �τ (fm/c) RWS (fm) aWS (fm) w0 (fm−2) w2 τ0 (fm/c) �η µπ (MeV)

Fit 1 156.58 1.310 2.0731 11.867 1.277 0.0693 0.856 + i0.116 9.04 1.047 139.57
Fit 2 121 1.05 0 11.7 1.11 0.495 0.762 + i0.0001 9.20 70.7 139.57

024902-3



MATTHEW LUZUM AND GERALD A. MILLER PHYSICAL REVIEW C 79, 024902 (2009)

-0.02

 0

 0.02

 0.04

 0.06

 0.08

 0  100  200  300  400  500  600

p (MeV)

(b)

v2
Fit 1

Fit 1, U = 0
Fit 2

Fit 2, U = 0
-0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 50  100  150  200  250  300  350  400

p (MeV)

(a)

v2

Fit 1
Fit 1, U = 0

Fit 2
Fit 2, U = 0

FIG. 1. (Color online) Calculated v2 as a function of momentum with a2 = 0 (a) and a2 = 0.11, 0.10 (Fit 1, 2) (b). Points with error bars
are experimental data for pions at 20–30% centrality from the STAR Collaboration [21].

First, as in Ref. [16], we scale down RWS, aWS, and τ0 by the
number of participants to the 1/3 power, with Npart taken from
the Glauber model (with the same parameters used in Ref. [6])
for an impact parameter of 0 and 7 fm (Npart = 377.5 and
171.544). Specifically RWS → 0.7688RWS. Then we adjust
the ratio Ry

Rx
such that the spatial eccentricity,

ε ≡ 〈y2〉 − 〈x2〉
〈y2〉 + 〈x2〉 = R2

y − R2
x

R2
y + R2

x

, (26)

has a value of 0.035. This is a reasonable value corresponding
to the spatial eccentricity at freezeout of hydrodynamic fits of
peripheral collisions with impact parameter ∼7 fm. Note that
the brackets in Eq. (26) indicate a spatial average with weight
given by Eq. (7), while the spatial eccentricity in hydrodynamic
simulations are typically given with respect to, e.g., energy
density. We nevertheless keep the eccentricity from Eq. (26)
fixed at this value with an understanding that it is only a rough
but still realistic guide to the shape.

Last, we must specify how much elliptic fluid flow is
built up in earlier stages of the collision, represented by the
value a2 [recall Eq. (10)]. First we set a2 = 0 and see what
v2 is generated by interactions with the optical potential in
the absence of significant elliptic fluid flow [Fig. 1(a)]. The
calculated elliptic flow coefficient v2 is plotted as a function of
momentum, along with the relevant experimental data. (Note
that p in our calculation is the momentum of an asymptotically
free pion detected far outside the medium, not the momentum
of a particle as it is emitted inside the medium, and can
therefore be compared directly to experiment.) Although we
are only able to calculate up to a limited momentum, it is clear
that final state interactions alone do not generate an appreciable
value for v2 for either the general best-fit parameters (Fit 1) or
those with a vanishing imaginary part of the optical potential
(Fit 2).

Next we increase a2 such that the experimental value for
v2 is roughly obtained [Fig. 1(b)]. A value of a2 = 0.11 was
required for the parameters from Fit 1, while a2 = 0.10 was
sufficient to bring the emission function from Fit 2 into the
physical regime. One can see that the optical potential has a
small but non-negligible effect—it decreases v2 on the order
of 10–25% of its zero-interaction value with a slightly smaller
effect as momentum increases.

V. CONCLUSION

Final state interactions in the DWEF model were found to
have a small, though not entirely insignificant, effect on the
elliptic flow coefficient v2. This is in addition to the indirect
effect of adding final state interactions. For example, adding
an optical potential changes other observables such as the
multiplicity, which would alter parameters in a hydrodynamic
fit such as freezeout temperature, which would then in turn
have an effect on the calculated value of v2.

The precise size of these effects in general can only be
determined with a better understanding of the model fits (e.g.,
Fit 1 versus Fit 2) in addition to a more detailed analysis—a
full parameter search using all the relevant experimental data,
or perhaps even by adding final state interactions directly into
hydrodynamic simulations (i.e., a hydrodynamic afterburner in
the vein of, e.g., Refs. [1,22–25]). It is reasonable, however, to
conclude that final state interactions can affect the calculated
value of v2 by as much as ∼20% (in agreement with other
investigations of final state interactions, e.g., Ref. [1]) and so
must be properly taken into account to have confidence in the
quantitative predictions of hydrodynamic simulations at that
level of precision.
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APPENDIX A: DETAILS OF THE NUMERICAL
IMPLEMENTATION

A program was written in C++, making use of the GNU
Scientific Library (GSL) Version 1.9, to do the calculation of
v2, as detailed here. The integral over the azimuthal angle of the
pion momentum φp is done as a sum using a simple trapezoid
rule. This is because for each different value of φp, a new
set of differential equations must be solved. This also allows
for the numerator and denominator of Eq. (20) to be solved
simultaneously, with just a factor of cos(2φp) multiplied to the
numerator when adding terms to the sum.
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For each term in the sum, then, first the wave functions ψ (−)
p

are obtained. They obey a set of coupled differential equations
of the form(

∂2

∂b2
+ 1

b

∂

∂b
− m2

b2
+ p2

⊥

)
fm −

∑
n

Unfm−n ineinφp = 0

(A1)

for all integers m. This set is truncated, because large m

moments (fm for m > p⊥RWS) contribute little to the wave
function. Therefore, all fm for m greater than some mmax are
set to zero, leaving a finite (2mmax + 1) number of coupled
ordinary differential equations. These are solved by calling
a GSL solver. Using an embedded Runge-Kutta-Fehlberg
method seemed to give the best performance. For these
solutions, Eq. (7) is integrated numerically to find the moments
Un. This is done with the GSL adaptive integration routine for
oscillatory functions.

To match to the proper boundary conditions, one must
find (2mmax + 1) linearly independent solutions to this set of
equations and take the correct linear combination of these
solutions that matches the desired boundary conditions. The
straightforward choice for these linearly independent solutions
is to sequentially solve for the case where only one of the
partial waves is nonzero near the origin. For example, for the
nth solution let

fm

(
b = bmin  1

p

)
= δm,n

f ′
m(bmin) = m

b
δm,n (A2)

and then solve the set of differential equations up to some
arbitrarily large bmax far outside the potential. We can then
match each partial wave in this nth solution to the form

fm,n(bmax) = Am,nJm(pb) + Bm,nH
(1)
m (pb). (A3)

The final wave function is then given by the linear
combination of these solutions that matches the form of
Eq. (19) at bmax:

fm(b) =
∑

n

Cnfm,n(b). (A4)

This part of the program was tested with the trivial
case of zero optical potential, in addition to comparison
to a separately written program that calculates only the
cylindrically symmetric case as well as to the results of the
semianalytical test case described in Appendix B.

Once these wave functions are obtained and stored in
memory, the integral over b and φ in Eq. (25) can be performed
in addition to the sum over Boltzmann factors. The integrations
are done with two GSL adaptive integration routines, one
embedded in the other. The sum is done inside the argument
of the integrals.

APPENDIX B: SEMIANALYTIC TEST CASE

To test the numerics, the case of a pion moving through
an elliptically shaped step-function potential was solved
(semi-) analytically making use of elliptic coordinates. This
can be compared to the case of aWS → 0 (see Sec. II).

We want to solve Eq. (5) with U (b), an elliptically shaped
step function—a finite potential inside an ellipse in the
transverse plane, with zero potential outside.

It is useful to change to elliptic (cylindrical) coordinates, de-
noted u and v. Think of u as a “radial” coordinate that runs from
0 to ∞ and v as an “angular” coordinate that runs from 0 to 2π :

x = a cosh(u) cos(v)
(B1)

y = a sinh(u) sin(v).

Note the major and minor axes of the resulting confocal
ellipses are reversed from the shape of the density used in the
main calculation (which is larger in the y direction). This is
to maintain consistency with the conventional definition of
elliptic coordinates. At the end one can simply take φp →
(φp + π ) to match the usual convention in RHIC articles.

Consider the case

U (b) = U (u) = U0�(u0 − u). (B2)

The sharp boundary at u = u0 is an ellipse with major and
minor axes:

Rx = a cosh(u0)
(B3)

Ry = a sinh(u0).

In this coordinate system the Laplacian is

∇2
⊥ = 1

a2(sinh2(u) + sin2(v))

(
∂2

∂u2
+ ∂2

∂v2

)
(B4)

and so Eq. (5) becomes[
1

a2(sinh2(u) + sin2(v))

(
∂2

∂u2
+ ∂2

∂v2

)
− U (u) + p2

]
×ψp(b) = 0 (B5)

or equivalently[
∂2

∂u2
+ 2q(u) cosh(2u) + ∂2

∂v2
− 2q(u) cos(2v)

]
×ψp(b) = 0, (B6)

with

q(u) = a2

4
(p2 − U (u)). (B7)

On the inside of the potential and on the outside separately,
q(u) does not depend on u and these cases can be solved with
separation of variables and the solutions patched together at
u = u0. Let

qin = a2

4
(p2 − U0)

(B8)

qout = a2

4
p2.

Start by expanding ψp(b) in terms of so-called elliptic sines
and cosines of the “angular” variable v. They are solutions of
“Mathieu’s equation” [26]:(

− ∂2

∂v2
+ 2q cos(2v)

)
C(α,q,v) = αC(α,q,v). (B9)
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The general solutions are called “Mathieu functions,” usually
denoted C(α,q,v) for solutions even in the coordinate v and
S(α,q,v) for odd. Demanding periodicity of the variable v

allows only certain discreet eigenvalues α (denoted here as
αn for the even functions and βn for the odd functions). This
(complete) set of periodic solutions is commonly called elliptic
sines and elliptic cosines:

C(αn,q,v) ≡ cen(v,q)
(B10)

S(βn,q,v) ≡ sen(v,q).

The general solution of Eq. (B6) can be written in terms of
these elliptic sines and cosines:

ψp(b) ≡
∞∑

n=0

[fcn
(u)cen(v,q) + fsn

(u)sen(v,q)]. (B11)

Plugging this in to Eq. (B6) gives[
∂2

∂u2
+ 2q cosh(2u) − αn

]
fcn

(u) = 0 (B12)

[
∂2

∂u2
+ 2q cosh(2u) − βn

]
fsn

(u) = 0. (B13)

This is called the modified Mathieu equation, which can
be obtained from Eq. (B9) by replacing v → (i u). Note that
the eigenvalues are different for the functions corresponding
to cen and sen (fcn

and fsn
above, respectively). The general

solution is then the same as for the original Mathieu equation,
analytically continued with v → (i u), though typically they
are organized by boundary conditions analogous to Bessel
and Neumann functions [denoted Jen(u,q), Nen(u,q), etc.
[27]:

fcn
(u) = Ccn

J en(u,q) + Scn
Nen(u,q) (B14)

fsn
(u) = Csn

Jon(u,q) + Ssn
Non(u,q). (B15)

Note that there are many different sets of so-called Mathieu
functions, each being a complete orthogonal basis. Replacing
qin with qout results in a different basis, and there are separate
sets of modified Mathieu functions corresponding to the
eigenvalues of the elliptic sines and elliptic cosines (αn and βn).

By requiring continuity at the u = 0 line segment one finds
that the general solution inside the potential is

ψ in
p (u,v) =

∑
n

[
Cein

n J en(u,qin)cen(v,qin)

+Coin
n Jon(u,qin)sen(v,qin)

]
, (B16)

with undetermined coefficients Cein
n , Coin

n .
Outside, we write the solution as the sum of a plane wave

and an outgoing wave [28]

ψout
p (u,v)

=
∑

n

[ (
1

pn

Jen(u,qout) + Ceout
n He(1)

n (u,qout)

)

× cen(v,qout)cen(φp,qout)

+
(

1

sn

Jon(u,qout) + Coout
n Ho(1)

n (u,qout)

)

× sen(v,qout)sen(φp,qout)

]
, (B17)

where the H ’s are analogous to Hankel functions,

He(1)
n (u,q) ≡ Jen(u,q) + iNen(u,q) (B18)

Ho(1)
n (u,q) ≡ Jon(u,q) + iNon(u,q), (B19)

and the plane wave coefficients pn and sn are

1

pn

= 1

π

∫ 2π

0
dveip·xcen(v,qout) (B20)

1

sn

= 1

π

∫ 2π

0
dveip·xsen(v,qout). (B21)

The coefficients Ceout
n and Coout

n , along with the analogous
“inside” coefficients are determined by matching boundary
conditions.

To match at the u = u0 boundary, project the “inside”
angular functions [e.g., cen(v,qin)] in terms of the “outside”
ones [e.g., cen(v,qout)].

cej (v,qin) =
∞∑

n=0

Bc
jncen(v,qout) (B22)

sej (v,qin) =
∞∑

n=0

Bs
jnsen(v,qout), (B23)

with

Bc
jn = 1

π

∫ 2π

0
dvcej (v,qin)cen(v,qout) (B24)

Bs
jn = 1

π

∫ 2π

0
dvsej (v,qin)sen(v,qout). (B25)

Then the “inside” wave functions are

ψ in
p =

∑
j,n

[
Cein

j J ej (u,qin)Bc
jncen(v,qout)

+Coin
j J oj (u, qin)Bs

jnsen(v,qout)
]
. (B26)

The coefficients (Cein
n , Coin

n , Ceout
n , Coout

n ) can then be deter-
mined by demanding that ψ and its gradient be continuous at
u = u0, which gives the following relations:

∑
j

Cein
j J ej (u0,qin)Bc

jn

= 1

pn

Jen(u0,qout)cen(φp,qout)

+Ceout
n He(1)(u0,qout)cen(φp,qout) (B27)∑

j

Coin
j J oj (u0,qin)Bs

jn

= 1

sn

Jon(u0,qout)sen(φp,qout)

+Coout
n Ho(1)(u0,qout)sen(φp,qout) (B28)
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∑
j

Cein
j J e′

j (u0,qin)Bc
jn

= 1

pn

Je′
n(u0,qout)cen(φp,qout)

+Ceout
n He′(1)(u0,qout)cen(φp,qout) (B29)∑

j

Coin
j J o′

j (u0,qin)Bs
jn

= 1

sn

Jo′
n(u0,qout)sen(φp,qout)

+Coout
n Ho′(1)(u0,qout)sen(φp,qout). (B30)

The plane wave coefficients (pn, sn) as well as the co-
efficients from the projection (Bc

jn, B
s
jn) must be solved

numerically. In addition, to compare to the fm in the main
calculation, the resulting wave functions are integrated to
project out the usual angular moments. Hence the description
as a “semianalytical” test case. In fact, this implementa-
tion (done in Mathematica) saves no time over the origi-
nal numerical version, but it does provide an independent
check.
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