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Systematic comparison of jet energy-loss schemes in a realistic hydrodynamic medium
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5Helsinki Institute of Physics, University of Helsinki, P. O. Box 64, FI-00014, Finland

(Received 13 August 2008; published 5 February 2009)

We perform a systematic comparison of three different jet energy-loss approaches. These include the Armesto-
Salgado-Wiedemann scheme based on the approach of Baier-Dokshitzer-Mueller-Peigne-Schiff and Zakharov
(BDMPS-Z/ASW), the higher twist (HT) approach and a scheme based on the Arnold-Moore-Yaffe (AMY)
approach. In this comparison, an identical medium evolution will be utilized for all three approaches: this entails
not only the use of the same realistic three-dimensional relativistic fluid dynamics (RFD) simulation, but also the
use of identical initial parton-distribution functions and final fragmentation functions. We are, thus, in a unique
position to not only isolate fundamental differences between the various approaches but also make rigorous
calculations for different experimental measurements using state of the art components. All three approaches are
reduced to versions containing only one free tunable parameter, this is then related to the well-known transport
parameter q̂. We find that the parameters of all three calculations can be adjusted to provide a good description of
inclusive data on RAA vs transverse momentum. However, we do observe slight differences in their predictions
for the centrality and azimuthal angular dependence of RAA vs pT . We also note that the values of the transport
coefficient q̂ in the three approaches to describe the data differ significantly.
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I. INTRODUCTION

The first seven years of operations at the BNL Relativis-
tic Heavy Ion Collider (RHIC), which entailed performing
collisions of gold nuclei at

√
sNN = 130 and

√
sNN =

200 GeV, have yielded a vast amount of interesting and
sometimes surprising results [1–4]. Many of these have not
yet been fully evaluated or understood by theory. There exists
mounting evidence that RHIC has created a hot and dense state
of deconfined QCD matter with properties similar to those of
an ideal fluid [5]; this state of matter has been termed the
strongly interacting quark-gluon plasma (sQGP).

RHIC has generated a wealth of experimental data on high-
momentum hadron emission, including, but not limited to, the
nuclear modification factor RAA, its modification as a function
of the reaction plane (a measure of the azimuthal anisotropy
of the cross section), and a whole array of high-pT hadron-
hadron correlations. In these observables, one compares the
ratio of certain yields in a heavy-ion collision to those in a
p-p collision, either scaled up by the number of expected
binary collisions, e.g., for the single hadron suppression factor
RAA, or directly, as in the case of triggered distributions of
associated hadrons, e.g., the IAA [6–8]. Experimental data for
most of these observables exist as functions of rapidity and
centrality for a wide range of pT of the produced particle or
particles.

The emission of hadrons with large transverse momentum
is observed to be strongly suppressed in central collisions of
heavy nuclei [9,10]. The origin of this phenomenon, commonly
referred to as jet-quenching, can be understood in the following
way: during the early pre-equilibrium stage of the relativistic
heavy-ion collision, scattering of partons which leads to the

formation of deconfined quark-gluon matter often engenders
large momentum transfers which leads to the formation of
two back-to-back hard partons. These traverse the dense
medium, losing energy, and finally fragment into hadrons,
which are observed by the experiments. Within the framework
of perturbative QCD, the process with the largest energy loss
of a fast parton is gluon radiation induced by collisions with
the quasithermal medium [11–19].

Computations of jet modification have acquired a certain
sophistication in the incorporation of the partonic processes
involved. However, the role of the medium has often been
relegated to the furnishing of an overall density and its variation
with time [20–23]. Notable departures from these simple
treatments include attempts to incorporate radial expansion,
both schematically [24,25] as well as within a fireball evolution
model [26]. The first attempt to incorporate energy loss in
a three-dimensional (3D) relativistic fluid dynamical (RFD)
simulation was carried out by Hirano and Nara [27]. In
that effort, while a full 3D RFD simulation was used, the
energy loss of hard jets was carried out rather schematically.
This approach was also extended to the case of two particle
correlations in Ref. [28]. In a later effort, the authors also
incorporated a simplified version of the Gyulassy-Levai-Vitev
(GLV) energy-loss formalism at leading order in opacity [29].

Besides the simplified version of the GLV formalism used,
the authors attempted to apply the results to the region of
pT � 6 GeV, which is the region where data were available at
the time. In spite of the success of Ref. [29] in explaining the
suppression of single inclusive pions, such a formalism cannot
address the flavor dependence of the elliptic flow in this region
of pT . It has since been established that jet fragmentation in
vacuum is not the primary mechanism of hadronization in the
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range of pT < 6 GeV, and there is a sizable component which
arises from recombination. Current rigorous implementations
of jet modification in dense matter require that the pT of the
detected hadron be above 6 GeV. This requirement allows the
final hadronization to be treated using the standard vacuum
fragmentation functions, and the ability of a given energy-
loss formalism to compare with experimental data is then
dependent solely on the details of the interaction of the parton
with the medium in that formalism. This allows a comparison
to be made between formalisms in which all other components
of the calculation, such as the initial parton distribution,
the final fragmentation function, and the space-time profile
of the medium, are identical. This article presents the first
attempt to perform such a comparison between the remaining
three formalisms: the Armesto-Salgado-Wiedemann scheme
based on the approach of Baier-Dokshitzer-Mueller-Peigne-
Schiff and Zakharov (BDMPS-Z/ASW), the higher twist (HT)
approach and a scheme based on the Arnold-Moore-Yaffe
(AMY) approach.

Besides just a comparison between formalisms, this paper
will also apply the different formalisms in comparison data.
A realistic comparison with data requires a sophisticated
model of the medium. The availability of a 3D hydrody-
namic evolution code [30] allows a much more detailed
study of jet interactions in a longitudinally and transversely
expanding medium. The variation of the gluon density in
such a medium is quite different from that in a simple
Bjorken expansion. This allows a step-by-step approach to
the study of jet-medium interactions. Over the past year,
we have already utilized our evolution model to provide
the time evolution of the medium produced at RHIC for jet
energy-loss calculations performed in the BDMPS-Z/ASW
[31], HT [32], and AMY [33] approaches. In each of the three
projects, the inclusive as well as the azimuthally differential
nuclear suppression factor RAA of pions was studied as a
function of their transverse momentum pT . In addition, the
influence of collective flow, variations in rapidity, and energy
loss in the hadronic phase were addressed for the selected
approaches.

In this manuscript, we shall perform a systematic compar-
ison of jet energy-loss calculations in the BDMPS-Z/ASW,
HT, and AMY approaches. Since we use the same medium
evolution in all three approaches, we are in a position to
isolate differences among the three calculations solely due
to their energy-loss schemes. This will allow us to answer
the question of whether the observed differences between
the different schemes (when compared with data) are due to
differing treatment of the medium evolution and its coupling
to the energy-loss calculation or whether they are rooted in
more fundamental issues related to the energy-loss schemes
themselves, e.g., as a result of the approximations and
assumptions made when deriving the respective schemes.

In Sec. II, we briefly review the 3D hydrodynamic descrip-
tion of the medium. We then discuss in Sec. III the theoretical
setup of different energy-loss schemes and their connection to
the 3D dynamical evolving medium. Numerical results are
presented in comparison with the available RHIC data in
Sec. IV. In Sec. V, we discuss issues related to further
comparisons of our calculations with the data on RAA vs the

reaction plane, and we present concluding discussions and an
outlook for future work in Sec. VI.

II. HYDRODYNAMIC DESCRIPTION OF THE MEDIUM

Relativistic fluid dynamics (RFD) simulations (see, e.g.,
Refs. [34–36]) is ideally suited for the high-density phase of
heavy-ion reactions at RHIC, but break down in the later, dilute
stages of the reaction when the mean free paths of the hadrons
become large and flavor degrees of freedom are important.
The biggest advantage of RFD is that it directly incorporates
an equation of state as input and thus is so far the only
dynamical model in which a phase transition can explicitly
be incorporated. The starting point for a RFD calculation is
the relativistic hydrodynamic equation

∂µT µν = 0, (1)

where T µν is the energy momentum tensor given by

T µν = (ε + p)UµUν − pgµν. (2)

Here ε, p, U , and gµν are energy density, pressure, four-
velocity, and metric tensor, respectively. The relativistic
hydrodynamic equation [Eq. (1)] is solved numerically using
baryon number nB conservation

∂µ(nB(T ,µ)Uµ) = 0 (3)

as a constraint and closing the resulting set of partial differ-
ential equations by specifying an equation of state (EOS):
ε = ε(p). In the ideal fluid approximation (i.e., neglecting off-
equilibrium effects) and once the initial conditions for the cal-
culation have been fixed, the EOS is the only input to the equa-
tions of motion and relates directly to properties of the matter
under consideration. Ideally, either the initial conditions or
the EOS should be determined beforehand by an ab-initio
calculation (e.g., for the EOS via a lattice-gauge calculation),
in which case a fit to the data would allow the determination
of the remaining quantity. Our particular RFD implementation
utilizes a Lagrangian mesh and light-cone coordinates, i.e.,
(τ, x, y, η) where τ = √

t2 − z2 is the proper time and η is
the pseudorapidity. This is done to optimize the model for the
ultrarelativistic regime of heavy collisions at RHIC.

We assume that hydrodynamic expansion starts at τ0 =
0.6 fm. Initial energy density and baryon number density are
parametrized by

ε(x, y, η) = εmaxW (x, y; b)H (η),
(4)

nB(x, y, η) = nBmaxW (x, y; b)H (η),

where b and εmax (nBmax) are the impact parameter and the
maximum value of energy density (baryon number density),
respectively. W (x, y; b) is given by a combination of wounded
nuclear model and binary collision model [37], and H (η) is
given by H (η) = exp[−(|η| − η0)2/2σ 2

η · θ (|η| − η0)]. RFD
has been very successful in describing single soft matter
properties at RHIC, especially collective flow effects and
particle spectra [30,38–40]. All parameters of our hydrody-
namic evolution [30] have been fixed by a fit to the soft
sector (elliptic flow, pseudorapidity distributions, and low-pT

single-particle spectra), therefore providing us with a fully
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determined medium evolution for the hard probes to propagate
through.

III. JET ENERGY-LOSS SCHEMES

The majority of current approaches to the energy loss of
light partons may be divided into four major schemes often
referred to by the names of the original authors:

(i) Higher twist (HT) [41–46]
(ii) Path integral approach to the opacity expansion

(BDMPS-Z/ASW) [14,15,17–19,21,47–50]
(iii) Finite temperature field theory approach (AMY)

[22,51–53]
(iv) Reaction operator approach to the opacity expansion

(GLV) [20,54–57]

All schemes utilize a factorized approach in which the
final cross section to produce a hadron h with transverse
momentum pT (rapidity between y and y + dy) may be
expressed as a convolution of initial nuclear structure functions
[GA

a (xa),GB
b (xb), initial state nuclear effects such as shadowing

and Cronin effect are understood to be included] to produce
partons with momentum fractions xa, xb, a hard partonic
cross section to produce a high transverse momentum parton
c with a transverse momentum p̂, and a medium-modified
fragmentation function for the final hadron [D̃h

c (z)], that is,

d2σh

dyd2pT

= 1

π

∫
dxa

∫
dxbG

A
a (xa)GB

b (xb)

× dσab→cX

dt̂

D̃h
c (z)

z
. (5)

In the vicinity of midrapidity, z = pT /p̂ and t̂ = (p̂ − xaP )2

(P is the average incoming momentum of a nucleon in nucleus
A). The entire effect of energy loss is concentrated in the
calculation of the modification to the fragmentation function.

The four models of energy loss are in a sense four schemes
to estimate this quantity from perturbative QCD calculations.
While the terminology (medium modification) used to describe
the change in the fragmentation function seems to indicate that
the medium has influenced the actual process of the formation
of the final hadrons from the partonic cloud, this is not the
case. All computations simply describe the change in the gluon
radiation spectrum from a hard parton due to the presence of the
medium. The final hadronization of the hard parton is always
assumed to occur in the vacuum after the parton, with degraded
energy, has escaped from the medium. Note that some of the
hard gluons radiated from the hard parton will also encounter
similar “modification” in the medium and may endure vacuum
hadronization after escaping from the medium. Differences
between formalisms also arise in the inclusion of hadrons
from the fragmentation of such subleading gluons: whereas
approaches that compute the change in the distribution of final
partons (such as AMY) or the change in the distribution of
final hadrons (such as HT) implicitly include hadrons from
subleading gluons, formalisms that compute the energy loss
of the leading parton (such as ASW) do not include such
subleading corrections.

E,Q
~q

k ~

~Medium scaleE>>Q,

k ~Q

Hard scattering
q

L

FIG. 1. A schematic picture of the various scales involved in the
modification of jets in dense matter.

To better appreciate the approximation schemes, one may
introduce a set of scales (see Fig. 1): E or p+, the forward
energy of the jet; Q2, the virtuality of the initial jet-parton; µ,
the momentum scale of the medium; and L, its spatial extent.
Most of the differences between the various schemes may
be reduced to the different relations between these various
scales assumed by each scheme as well as by how each
scheme treats or approximates the structure of the medium.
In all schemes, the forward energy of the jet far exceeds the
medium scale, E � µ. The schemes are presented from one
extreme of the approximation set (higher twist approach) to the
opposite extreme (finite temperature approach), similarities in
intermediate steps of the calculation will not be repeated. In the
following, we will focus on the first three listed approaches, for
which we will present results in Sec. IV (note that a calculation
of GLV jet energy loss in a 3D hydrodynamic medium has been
presented elsewhere [29]).

A. Higher Twist Formalism

The origin of the HT approximation scheme lies in the
calculations of medium-enhanced higher twist corrections to
the total cross section in deep inelastic scattering (DIS) off
large nuclei [58]. One resums power corrections to the leading
twist cross sections, which, though suppressed by powers of
the hard scale Q2, are enhanced by the length of the medium.
This technology of identifying and isolating power corrections
is used to compute the n-hadron inclusive cross section.

One assumes the hierarchy of scales E � Q � µ and
applies this to the computation of multiple Feynman diagrams
such as the one in Fig. 2; this diagram represents the process

y1
y2

p p

xp xp

q q

y0

FIG. 2. Typical higher twist contribution used to compute the
modification of the fragmentation function in medium.
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of a hard virtual quark produced in a hard collision, which
radiates a gluon and then scatters off a soft medium gluon with
transverse momentum q⊥ ∼ µ prior to exiting the medium
and fragmenting into hadrons. At a given order, various other
contributions exist that involve scattering of the initial quark
off the soft gluon field prior to radiation as well as scattering of
the radiated gluon itself. All such contributions are combined
coherently to calculate the modification to the fragmentation
function directly.

The hierarchy of scales allows one to use the collinear
approximation to factorize the fragmentation function and its
modification from the hard scattering cross section. Thus, even
though such a modified fragmentation function is derived in
DIS, it may be generalized to the kinematics of a heavy-ion
collision. Diagrams in which the outgoing parton scatters off
the medium gluons, such as those in Fig. 2, produce a medium-
dependent additive contribution to the vacuum fragmentation
function, which may be expressed as

	Di

(
z, µ2

f

) =
∫ µ2

f

0

dk2
⊥

k2
⊥

αs

2π


∫ 1

zh

dx

x

∑
j=q,g

×
{
	Pi→j (x, xB, xL, k2

⊥)Dh
j

(zh

x
, µ2

f

)} 
 .

(6)

In this equation, 	Pi→j represents the medium-modified
splitting function of parton i into j where a momentum fraction
x is left in parton j . The argument xL = k2

⊥/[2P −p+x(1 − x)]
is a momentum fraction defined such that xLP − is the
formation time of the radiated parton,1 where the radiated
gluon or quark carries away a transverse momentum k⊥, P −
is the incoming momentum of a nucleon in the nucleus, and p

is the momentum of the virtual photon. The scale µf refers to
the hard scale of the process. The medium-modified splitting
functions may be expressed as a product of the vacuum
splitting function Pi→j and a medium-dependent factor, that
is,

	P̂i→j = Pi→j (x)
CA2παsT

A
qg(xB, xL)

(k2
⊥ + 〈q2

⊥〉)Ncf A
q (xB)

, (7)

where CA,Nc represent the adjoint Casimir and the number
of colors. The mean transverse momentum of the soft gluons
is represented by the factor 〈q2

⊥〉. The term T A
qg represents the

quark-gluon correlation in the nuclear medium and depends
on the four-point correlator,

〈P |ψ̄(0)γ −F−
σ (y2)F−σ (y1)ψ(y)|P 〉

∼ C〈p1|ψ̄(0)γ −ψ(y)|p1〉〈p2|F−
σ (y2)F−σ (y1)|p2〉, (8)

where F−
σ (y2) and F−σ (y1) represent gluon field operators

at the locations y1, y2 and ψ(y) represents the quark field

1Throughout the HT portion of this work, four-vectors will often
be referred to using the light-cone convention where x± = (x0 ±
x3)/

√
2. For the HT scheme, often x+ = (x0 + x3)/2 and x− = x0 −

x3.

operator. The above correlation function cannot be calculated
from first principles without making assumptions regarding the
structure of the medium. The only assumption made is that the
color correlation length is small. As a result, one may factorize
the four-point function into two separate structure functions,
one for the original parton produced in the hard scattering [this
is a quark in Eq. (8)] and one for the soft gluon off which the
parton scatters in the final state.

While in media with short-distance color correlation lengths
such as the atomic nucleus or a QGP with a large Debye mass,
this factorization may be generally thought to be true, it may
fail at very large jet energies where saturation effects become
important. It should also be pointed out that the factorization
assumption above falls in the same class as the assumption of
independent scattering centers as assumed in the ASW or GLV
scheme. In the application of this formalism to RHIC data, we
have assumed that the jet energies are not high enough for
the onset of saturation effects. Another scenario in which the
above factorization may not hold is if there were long-distance
color correlations in the QGP, which have been assumed to be
absent. If such long-distance correlations were present, then
one would have to resort to the definition of more general
multiparticle operators [such as the first line in Eq. (8)] and
parametrize these in comparison with experimental data.

The entire phenomenology of the medium is incorporated
as a model for the expectation of the second set of operators in
Eq. (8). This may be characterized in terms of the well-known
medium transport coefficient q̂(ζ ), at location ζ , where

q̂(ζ )

= 4π2αsCR

N2
c − 1

∫
dξ+

2π

d2ξ⊥d2k⊥
(2π )2

exp

[
i

q2
⊥

2p+ ξ+ − i �p⊥ · �ξ⊥

]

×〈F−,
σ (ζ + ξ+/2, �ξ⊥/2)Fσ−(ζ − ξ+/2,−�ξ⊥/2)〉. (9)

The Casimir CR depends on the representation of the probe.
The transport coefficient is normalized by fitting to one data
point, and a model such as a Woods-Saxon distribution for
cold matter or 3D hydrodynamic evolution for hot nuclear
matter is invoked for its variation with space-time location.
The expectation 〈 〉 is meant to be taken in the medium
under consideration. Any space-time dependence is essentially
included in the implied expectation.

Closer inspection of Eq. (9) reveals that it is a function of the
jet energy p+. Note that p+ is not integrated out. The actual
dependence on p+ depends on the medium in question. In
the case of confined nuclear media, or a quark-gluon plasma,
the dependence is logarithmic. There is also a logarithmic
dependence on the virtuality of the jet which sets in because
of radiative corrections to the definition in Eq. (9). Also, as
demonstrated in Ref. [59], q̂ may even possess a tensorial
structure if the medium is not isotropic. In the calculations
of the current manuscript, both the dependence on the energy
and virtuality of the jet will be ignored. The medium will be
assumed to be isotropic. The values of q̂ quoted should thus
be considered as approximations to the full functional form.

Unlike the remaining formalisms, the HT approach is set
up to directly calculate the medium-modified fragmentation
function and as a result the final distribution of hadrons. This
modification to the distribution includes both contributions
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coming solely from the medium and those which involve
interference between medium-induced and vacuum radiation.
The determined constant q̂ may be used to calculate the average
energy loss encountered by a jet. Other advantages of this
approach include a functional difference between the quark
and gluon energy-loss kernels, i.e., the difference between the
modification as encountered by a quark jet and a gluon jet is
not merely assumed to be a ratio of Casimirs, but also depends
strongly on the different splitting and fragmentation functions.
This formalism offers by far the most straightforward general-
ization to multiparticle correlations [60] and their modification
in the medium.

A disadvantage of this approach at the current state of
approximation (similar to the GLV and the ASW but different
from the AMY approach) is its neglect of the quark structure
function in the medium: as a result, collisions with the medium
may not change the flavor of the jet parton; however, this may
continue to occur through the splitting kernels. Yet another
disadvantage is the restriction to single scattering followed by
single radiation in the medium, which makes this formalism
more appropriate to thin media. This is partially improved by
converting Eq. (7) to an evolution equation as in Ref. [41]
which describes the virtuality evolution of the probe in the
medium.

As this formalism is originally cast in cold nuclear matter,
the applicability of the formalism only depends on there being
a short-distance color correlation length in the medium. As a
result, it may be used to describe both confined and deconfined
matter with the inclusion of an ansatz for the variation of q̂ with
an intensive property of the medium such as energy density ε,
entropy density s, or the temperature T and baryon chemical
potential µB .

B. Opacity expansion: Quenching weights formalism

The path integral approach for the energy loss of a hard
jet propagating in a colored medium was first introduced
in Ref. [17]. It was later demonstrated to be equivalent
to the well-known Baier-Dokshitzer-Mueller-Peigneé-Schiff
(BDMPS) approach [14,15] in the limit of multiple scatterings
[61]. The current, most widespread variant of this approach
developed by numerous authors [21,62] is often referred to
as the Armesto-Salgado-Wiedemann (ASW) approach. In this
scheme, one incorporates the effect of multiple scattering of
the incoming and outgoing partons in terms of a path integral
over a path-ordered Wilson line [47].

This formalism assumes a model for the medium as an
assembly of Debye screened heavy scattering centers which
are well separated in the sense that the mean free path of
a jet λ � 1/µ the color screening length of the medium
[12]. The opacity of the medium n̄ quantifies the number of
scattering centers seen by a jet as it passes through the medium,
i.e., n̄ = L/λ, where L is the thickness of the medium. A
hard, almost on-shell, parton traversing such a medium will
engender multiple transverse scatterings of order µ 	 p+.
It will, in the process, split into an outgoing parton and a
radiated gluon which will also scatter multiply in the medium.
The propagation of the incoming (outgoing) partons as well

as that of the radiated gluon in this background color field
may be expressed in terms of effective Green’s functions
[G(�r⊥,z; �r ′

⊥, z′) (for quark or gluon)] which obey the obvious
Dyson-Schwinger equation,

G(�r⊥,z;�r ′⊥,z′)

= G0(�r⊥,z; �r ′⊥,z′) − i

∫ z′

z

dζ

∫
d2 �x G0(�r⊥,z; �x,ζ )

×A0(�x,ζ )G(�x,ζ ; �r ′⊥, z′), (10)

where G0 is the free Green’s function and A0 represents the
color potential of the medium. The solution for the above
interacting Green’s function involves a path-ordered Wilson
line which follows the potential from the location [�r⊥(z′), z′]
to [�r⊥(z), z]. Expanding the expression for the radiation cross
section to order A2n

0 corresponds to an expansion up to nth
order in opacity.

Taking the high-energy limit and the soft radiation ap-
proximation (x 	 1), one focuses on isolating the leading
behavior in x that arises from the large number of interference
diagrams at a given order of opacity. As a result of the
approximations made, one recovers the BDMPS condition
that the leading behavior in x is contained solely in gluon
rescattering diagrams. This results in the expression for the
inclusive energy distribution for gluon radiation off an in-
medium produced parton as [63]

ω
dI

dω
= αsCR

(2π )2ω2
2Re

∫ ∞

ζ0

dyl

∫ ∞

yl

dȳl

×
∫

d �u
∫ χxp+

0
d�ke−i�k·�u− 1

2

∫
dζn(ζ )σ (�u)

× ∂2

∂y∂u

∫ �u=�r(ȳ)

�y=0=�r(yl )
Drei

∫
dζ ω

2 (|�̇r|2− n(ζ )σ (�r)
iω

), (11)

where, as always, k⊥ is the transverse momentum of the
radiated gluon with energy ω, and χ is a factor that introduces
the kinematic bound. The vectors �y and �u represent the
transverse locations of the emission of the gluon in the
amplitude and the complex conjugate, whereas yl and ȳl

represent the longitudinal positions. The density of scatterers
in the medium at location ζ is n(ζ ), and the scattering cross
section is σ (r). In this form, the opacity is obtained as∫

n(ζ ) dζ over the extent of the medium. The Casimir CR

depends on the representation of the jet parton.
Exact analytical expressions for the gluon radiation inten-

sity distribution are rather involved and only yield simple
expressions in certain special circumstances. Numerical im-
plementations of this scheme have focused on two separate
regimes. In one case, σ (r) is replaced with a dipole form
q̂r2/n(ζ ) and one solves the harmonic-oscillator-like path in-
tegral. This corresponds to the case of multiple soft scatterings
of the hard probe. In the limit of a static medium with a very
large length, one obtains the simple form for the radiation
distribution

ω
dI

dω
� 2αsCR

π




√
ωc

2ω
for ω < ωc,

1
12

(
ω
ωc

)2
for ω > ωc.

(12)
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Where ωc = ∫
dζζ q̂(ζ ) is called the characteristic frequency

of the radiation. Up to constant factors, this is equal to mean
energy lost in the medium (〈E〉), i.e., ωc � 2〈E〉/(αsCR). In
the other extreme, one expands the exponent as a series in nσ ;
keeping only the leading-order term corresponds to the picture
of gluon radiation associated with a single scattering. In this
case, the gluon emission intensity distribution has been found
to be rather similar, once scaled with the characteristic fre-
quency appropriate for this situation. For dynamical medium
of finite extent, the characteristic frequency and the overall
mean transverse momentum gained by the jet 〈q̂L〉 will have to
be estimated based on an ansatz for the space-time distribution
of the transport parameter q̂.

Because of the soft limit used, i.e., ω → 0, multiple gluon
emissions are required for a substantial amount of energy loss.
Each such emission at a given opacity is assumed independent,
and a probabilistic scheme is set up wherein the jet loses an
energy fraction 	E in n tries with a Poisson distribution [21],

Pn(	E) = e−〈I 〉

n!
�n

i=1

[∫
dωi

dI

dωi

]
δ

(
	E −

n∑
i=1

ωi

)
,

(13)

where 〈I 〉 is the mean number of gluons radiated per coherent
interaction set. Summing over n gives the probability P (	E)
for an incident jet to lose a momentum fraction 	E due to
its passage through the medium. This is then used to model
a medium-modified fragmentation function by shifting the
energy fraction available to produce a hadron (as well as
accounting for the phase space available after energy loss):

D̃(z,Q2) =
∫ 1

0
d	EP (	E)

D
(

z
1−	E

,Q2
)

1 − 	E
. (14)

This modified fragmentation function is then used in a
factorized formalism as in Eq. (5) to calculate the final hadronic
spectrum.

In marked contrast to other approaches, this scheme
presents the advantage of easy interpolation between the cases
of few hard scatterings and multiple soft scatterings and is
thus applicable to both thin and thick media. The inclusion
of the zero opacity term makes this the only formalism, to
date, that includes interference between vacuum radiation and
radiation induced by multiple soft scattering in the medium.
It suffers from the disadvantage of having approximated the
medium in terms of heavy static scattering centers. As a
result, elastic energy loss is vanishing in this scheme. As the
formalism is set up to calculate the energy-loss probability
of the leading hard parton, estimation of the change in the
distribution of final associated (subleading) hadrons or partons
is not straightforward.

Along with the HT formalism, this approach also neglects
any flavor changing scatterings in the medium. Also similar
with HT is the treatment of both confined and deconfined
matter on the same footing: one essentially makes an ansatz
for the variation of q̂ with an intensive variable of the medium,
e.g., ε, s, T , µB .

C. Finite temperature field theory formalism

In this scheme, often referred to as the Arnold-Moore-Yaffe
(AMY) approach the energy loss of hard jets is considered
in an extended medium in equilibrium at asymptotically
high temperature T → ∞. Owing to asymptotic freedom, the
coupling constant g → 0 at such high temperatures, and a
power counting scheme emerges from the ability to identify a
hierarchy of parametrically separated scales T � gT � g2T ,
etc. In this limit, it then becomes possible to construct an
effective field theory of soft modes, i.e., p ∼ gT by summing
contributions from hard loops with p ∼ T , into effective
propagators and vertices [64].

One assumes a hard on-shell parton, with energy several
times that of the temperature, traversing such a medium, and
undergoing soft scatterings with momentum transfers ∼gT

off other hard partons in the medium. Such soft scatterings
induce collinear radiation from the parton, with a transverse
momentum of the order of gT . The formation time for such
collinear radiation ∼1/(g2T ) is of the same order of magnitude
as the mean free time between soft scatterings [51]. As a result,
multiple scatterings of the incoming (outgoing) parton and the
radiated gluon need to be considered to get the leading-order
gluon radiation rate. One essentially calculates the imaginary
parts of infinite-order ladder diagrams such as those shown in
Fig. 3; this is done by means of integral equations [65].

The imaginary parts of such ladder diagrams yield the
1 → 2 decay rates of a hard parton into a radiated gluon and
another parton. These decay rates are then used to evolve hard
quark and gluon distributions from the initial hard collisions,
when they are formed, to the time when they exit the medium,
by means of a set of coupled Fokker-Planck–like equations
for quarks, antiquarks, and gluons [22,33,53], which may be
written schematically as

dPj (p, t)

dt
=

∑
ab

∫
dk

[
Pa(p + k, t)

d�a
jb(p + k, p, t)

dk dt

−Pj (p, t)
d�

j

ab(p, k, t)

dk dt

]
. (15)

In this equation, j = q, q̄, g, and we sum over all relevant
partonic processes for each evolution equation. In contrast to
all other schemes, this approach also includes the absorption
of thermal gluons as well as quark-antiquark pair annihilation
and creation.

The initial jet distributions are taken from a factorized
hard scattering cross section as in Eq. (5). In the limit of
single scattering, these rates may be taken directly from
the corresponding Gunion-Bertsch cross sections [66] for an
on-shell parton to radiate a gluon on soft scattering with
another in-medium parton.

*

FIG. 3. Ladder diagram evaluated in the AMY formalism.
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The final hadron spectrum at high pT is obtained by the
fragmentation of jets in the vacuum after their passing through
the medium. In this approach one calculates the medium-
modified fragmentation function by convoluting the vacuum
fragmentation functions with the hard parton distributions, at
exit, to produce the final hadronic spectrum [53],

D̃h
j (z, �r⊥, φ) =

∑
j ′

∫
dpj ′

z′

z
Dh

j ′(z′)P (pj ′ |pj , �r⊥, φ), (16)

where the sum over j ′ is the sum over all parton species.
The two momentum fractions are z = ph/pj and z′ = ph/pj ′ ,
where pj and pj ′ are the momenta of the hard partons
immediately after the hard scattering and prior to exit from the
medium, and ph is the final hadron momentum. P (pj ′ |pj ,�r⊥,
φ) represents the solution to Eq. (15), which is the probability
of obtaining a given parton j ′ with momentum pj ′ when the
initial condition is a parton j with momentum pj . The above
integral depends implicitly on the path taken by the parton
and the medium profile along that path, which in turn depends
on the location of the origin �r⊥ of the jet, its propagation
angle φ with respect to the reaction plane. Therefore, one must
convolve the above expression over all transverse positions �r⊥
and directions φ.

The use of an effective theory for the description of
the medium and the propagation of the jet makes this
approach considerably more systematic than the two previous
approaches: the properties of both the jet and the medium are
described using the same hierarchy of scales. It remains the
only approach to date that naturally includes partonic feedback
from the medium, i.e., processes where a thermal quark or
gluon may be absorbed by the hard jet.2 In contrast to ASW and
HT, this approach also includes flavor changing interactions
in the medium. Elastic energy loss may also be incorporated
within the same basic formalism [67]. Note that AMY assumes
a thermalized partonic medium and neglects the quenching of
jets in the confined sector. In addition, interference between
medium and vacuum radiations is not yet considered.

The use of hard-thermal-loop (HTL) effective theory to
describe both the jet propagation in the medium and the
properties of the medium itself does suffer from one caveat:
this scheme approximates the bulk structure of the medium as a
weakly coupled plasma of quarks and gluons. The perturbative
estimates of the energy density ε differs from the ε(T ) obtained
from lattice calculations (at 3Tc � T >∼ Tc). The η/s required
to reproduce the observed magnitude of elliptic flow in viscous
fluid dynamical simulations is at least a factor of 2 lower than
perturbative results. The application of such a scheme to the
modification of hard jets involves an aspect of phenomenology
in which the coupling constant is used as a fit parameter.

D. Geometry and discussion of the different schemes

As mentioned previously, all parameters of our hydrody-
namic evolution [30] have been fixed by a fit to the soft

2While an attempt to include such effects in the HT formalism have
been made in Ref. [68], these remain as phenomenological extensions
and have not been included in this manuscript.

sector (elliptic flow, pseudorapidity distributions, and low-pT

single-particle spectra), therefore providing us with a fully
determined medium evolution for the hard probes to propagate
through. The hydrodynamic calculation provides a time-
evolution of the temperature, energy density, flow velocity,
and QGP to hadron gas fraction within all hydrodynamic cells
composing the medium through which the hard probes evolve.
The incorporation of this information within the different jet
energy-loss schemes is described in the following subsections.

The mean impact parameters for the different evolution sets
have been set to b = 2.4, 4.5, 6.3, and 7.5 fm, corresponding to
0–5, 10–15, 15–20, and 20–30% centrality, respectively. These
values were estimated via the number of nucleon-nucleon
binary collisions and the number of participant nucleons in
Ref. [7]. In this work, the focus will lie on the two extreme
centrality bins in the list above: the 0–5% bin and the
20–30% bin. All the RFD calculations utilized here have an
initial thermalization time of τ0 = 0.6 fm/c. Any values of
parameters, such as q̂, that are dependent on the bulk properties
of the medium will be quoted at this time.

All three energy-loss schemes are sensitive to certain bulk
properties of the evolving matter: while in the AMY formalism
this is decidedly the temperature, the relation between q̂ and
the intensive variables of the medium in the HT and ASW
formalisms is unspecified. Traditionally, the q̂ in the ASW
scheme has been related to the the energy density ε via ε3/4,
while the q̂ in the HT scheme has been scaled either with the
temperature T via T 3 or the entropy density s of the local
medium. In the analysis presented in this paper, we maintain
this methodology; however, some surprising results of scaling
the ASW q̂ with T 3 and the HT q̂ with ε3/4 will also be
presented.

The scaling of q̂ with ε3/4, T 3, or s will by construction yield
identical results for a QGP with an ideal gas equation of state:
ε = 3p. However, for a more realistic nonideal EOS as used in
our hydrodynamic calculation, the value of q̂ will be affected
by the choice of scaling variable, in particular if energy loss
persists to temperatures below TC . Figure 4 investigates the
deviations from the ideal gas scaling by plotting the normalized
time evolution of temperature T 3, energy density ε3/4, and
entropy density s. As can be seen, after 2 fm/c the curves
start to deviate from the ideal gas power-law behavior and
start to show differences for times later than τ = 3 fm/c. The
first-order phase transition contained in our equation of state
results in a striking difference between the temperature and
the energy- or entropy-density scaling at the critical tempera-
ture and below. We note that the proper scaling law for q̂ is a
priori not known, even though we see no reason why it should
not be calculable in QCD.

1. Higher twist

In the preceding section, the medium modification of the
final fragmentation function in the HT formalism was shown
to be dependent on the transport coefficient q̂ [see Eq. (9)]. In
the evolving system formed in the collision of two nuclei, this
transport coefficient has both a space and time dependence
[i.e., q̂(x, y, z, τ )]. Phenomenologically, this dependence is
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f

FIG. 4. (Color online) Time evolution of temperature T 3, energy
density ε3/4, and entropy density s as a function of time τ in the
central cell of the hydrodynamic evolution for Au + Au collisions at
RHIC. All curves are normalized to their maximum values at τ =
0.6 fm/c.

taken to scale with some intensive variable of the medium, in
this case, the dimensionally equivalent quantities of T 3 or the
entropy density s, i.e.,

q̂(x, y, z, τ )

= q̂0
γ⊥(x, y, z, τ )T 3(x, y, z, τ )

T 3
0

× [R(x, y, z, τ ) + cHG{1 − R(x, y, z, τ )}], (17)

where T (x, y, z, τ ), γ⊥(x, y, z, τ ), and R(x, y, z, τ ) represent
the temperature, flow transverse to the jet, and the volume
fraction in the plasma phase at the space-time point x, y, z, τ .
It is this information that is extracted from the RFD simulation.
Though the RFD simulations start at τ = 0.6 fm/c, the values
of T and γ⊥ at τ = 0.6 fm/c are extrapolated as constants to
τ = 0, which represents the time of the initial hard scatterings
(the effect of different extrapolation schemes involving linearly
rising or dropping values of q̂ as τ → 0 has been found to be
rather small and will not be studied in this effort). The factors
q̂0,T0 represent the maximum q̂ and temperature achieved
in the simulation; in this particular version of RFD, T0 =
0.405 GeV and q̂0 is a fit parameter adjusted to fit one data
point of the RAA, at one centrality.

The factor cHG may be interpreted in two ways. In essence,
it accounts for the fact that the quenching in the hadronic
phase may not be as effective as that in the partonic phase
at the same temperature. Since the entropy density in a given
phase is proportional to T 3 with the constant of proportionality
demonstrating a weak dependence on temperature, cHG may
be tuned to convert the scaling of q̂ with T 3 into a scaling
with s. This is approximately achieved with a cHG ∼ 0.2, as
can be seen in Fig. 4. Unless specified otherwise, this is the
value used for cHG in all the plots in this paper. Thus cHG is
not a fit parameter and is not tuned to fit any experimental

data point. It has only three possible values: cHG = 0 which
corresponds to no quenching in the hadronic phase, cHG = 1
which corresponds to exact scaling of q̂ with T 3, and cHG =
0.2 which corresponds to approximate scaling of q̂ with s.

Given a choice of cHG and the overall fit parameter q̂0,
we use Eq. (7) to calculate a medium-modified fragmentation
function; then Eq. (5) is used to compute the total cross
section and the nuclear modification factor RAA. The overall
fit parameter q̂0 is tuned to fit one experimental data point, at
one centrality and pT . For the current effort, the fit parameter
is set by requiring that the RAA at pT = 10 GeV in the most
central event (0–5% centrality) is 0.2. With the value of q̂0 and
cHG fixed, the variation of RAA as a function of pT (integrated
over or with respect to the angle with the reaction plane) and
centrality of the collision are predictions.

2. ASW

As in the previous case, we have to formulate the energy-
loss problem for a dynamical medium in which the transport
coefficient q̂ acquires a space and time dependence. As done
in previous calculations within the ASW formalism, we use
a scaling with the local energy density ε3/4 along the path
ξ = (x(τ ), y(τ ), z(τ ), τ ) of a parton as

q̂(ξ ) = 2Kε3/4(ξ ). (18)

This scaling of q̂ is assumed to be valid in both the
partonic and hadronic phases. The precise form of the path ξ is
determined once the hard initial vertex (x0, y0) in the transverse
plane, the outgoing parton rapidity η, and the angle of the
parton with the reaction plane φ are specified. The parameter
K in Eq. (18) accounts for the uncertainty in the selection of αs

and possible nonperturbative effects increasing the quenching
power of the medium (see discussion in Ref. [69]).

Given this space-time dependence of the transport coef-
ficient along a parton trajectory, the energy-loss probability
distribution can be computed from the two line integrals

ωc(r0, φ) =
∫ ∞

0
dξξ q̂(ξ ) and 〈q̂L〉(r0, φ) =

∫ ∞

0
dξ q̂(ξ ).

(19)

Here, ωc is the characteristic gluon frequency, setting the
scale of the energy-loss probability distribution [see expression
(12)], and 〈q̂L〉 is a measure of the path length, weighted by the
local quenching power. Analogous to the overall fit parameter
q̂0 in the HT case, the parameter K is fit to one data point of
the RAA, at one centrality.

For times prior to τ = 0.6 fm/c, i.e., the starting point of the
RFD simulation, we neglect any medium effects, i.e., assume
q̂ = 0. Note that for a purely radiative energy-loss model,
where the average energy loss grows quadratically with path
length in a constant medium, the effect of initial time dynamics
is systematically suppressed, and no strong dependence of the
energy loss on variations of the initial time is observed.

Using a dynamical scaling law [49], ωc and 〈q̂〉 can
then be mapped onto a static equivalent scenario. Using the
relation R = 2ω2

c/〈q̂L〉 as an input, we then determine P (	E)
using the numerical results from Ref. [21] and compute the
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medium-modified fragmentation function from Eq. (14). The
resulting expression (valid for a single path) must then be av-
eraged over the whole geometry with a weight corresponding
to the probability of finding an initial hard vertex at (x0,y0).

3. AMY

The strength of the transition rate in pQCD is controlled
by the strong coupling constant αs(T ), temperature T , and
the flow parameter �β (the velocity of thermal medium) relative
to the jet’s path. The value for the coupling constant used
(along with the assumption of a thermalized partonic medium)
may be related to the transport coefficient q̂ as derived from
computations in HT or ASW by either a direct computation of
the operator product in Eq. (9), or a computation of the mean
transverse momentum squared per unit length as gained by a
jet that propagates through the medium without radiation.

In a 3D expanding medium, the transition rate is first
evaluated in the local frame of the thermal medium, then
boosted into the laboratory frame,

d�(p, k, t)

dk dt

∣∣∣∣
lab

= (1 − �vj · �β)
d�(p0, k0, t0)

dk0 dt0

∣∣∣∣
local

, (20)

where k0 = k(1 − �vj · �β)/
√

1 − β2 and t0 = t
√

1 − β2 are
momentum and the proper time in the local frame. As jets
propagate in the medium, the temperature and the flow
parameters depend on the time and the positions of jets, and the
3D hydrodynamical calculation [30] is utilized to determine
the temperature and flow profiles. The energy-loss mechanism
is applied at time τ0 = 0.6 fm/c, when the medium reaches
thermal equilibrium, and switched off when the medium
reaches the hadronic phase.

IV. APPLICATION TO RHIC DATA

In the preceding sections, a description of the theoretical
setup underlying each of the three schemes as well as the
phenomenological connection between them and the RFD
simulations was expounded upon. In this section, we present
the results of our numerical calculations. The primary quantity
of interest will be the nuclear modification factor RAA defined
as

RAA =
dσAA(bmin,bmax)

dy d2pT∫ bmax

bmin
d2bTAA(b) dσpp(pT ,y)

dy d2pT

,

�
dσAA(〈b〉)

d2b dy d2pT

TAA(〈b〉) dσpp(pT ,y)
dy d2pT

, (21)

where TAA represents the nuclear overlap function, which is
proportional to the number of binary collisions at the mean
impact parameter 〈b〉. The mean impact parameter for a given
range of centrality is essentially set by the RFD simulation
used to calculate the soft observables. The RAA is calculated
both integrated as defined above or as function of the angle
with respect to the reaction plane.

The range of pT of the detected hadron is set high enough
for the applicability of pQCD. In this paper, the lower bound
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FIG. 5. (Color online) Nuclear modification factor RAA in Au-Au
collisions at 0–5% and 20–30% centralities calculated in the ASW,
HT, and AMY approaches compared with data from PHENIX [71].

is set at pT = 6 GeV. This choice is essentially dictated by the
regime where recombination [70] begins to contribute to the
yield. The upper limit is set at pT = 20 GeV, which represents
the highest pT for which experimental data exist. The focus in
this paper will essentially be on two different centralities: one
with 〈b〉 = 2.4 fm which represents the rather central collisions
with a centrality in the range of 0–6%, and a somewhat more
peripheral event with a 〈b〉 = 7.5 fm which corresponds to the
20–30% range of centrality.

Figure 5 shows the nuclear modification factor RAA as a
function of pT in Au-Au collisions at 0–5% (top) and 20–
30% (bottom) centralities calculated in the ASW, HT, and
AMY approaches compared with data from PHENIX [71]. The
parameters for the respective calculations are fixed to one data
point in the 0–5% centrality calculation; the dependence on
pT and centrality of the nuclear collision are then predictions
by the respective energy-loss calculations. As can be seen,
the parameters for all three approaches (initial maximal value
for the transport coefficient q̂0 or coupling constant αs in the
AMY case) can be adjusted such that the approaches are able to
describe the centrality dependence of the nuclear modification
factor reasonably well. For a gluon jet, the values are q̂0 ≈
4.3 GeV2/fm for the HT approach q̂0 ≈ 18.5 GeV2/fm for
the ASW formalism, and αs ≈ 0.33 for the AMY approach
which can be converted into a value of q̂0 ≈ 4.1 GeV2/fm.
While values of q̂0 have been presented up to the first decimal
point, one should note that the error involved is never less than
the experimental error (see Sec. V for further discussion on
this issue). Beyond this, there remain the usual uncertainties
related to using a leading-order hard scattering cross section,
e.g., the choice of the appropriate scale for the structure and
fragmentation functions. Additional sources of error in the
estimations of q̂ arise from the set of approximations used in
each of the formalisms to reduce the functional dependence
on the properties of the medium down to one parameter.

The reader will note a somewhat smaller value of q̂0 quoted
for the HT formalism in Fig. 5. Since the HT approach was
originally developed for DIS on a large nucleus, it has become
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customary to quote the value of q̂0 for a quark which is always
the produced hard parton in DIS (see Refs. [45,46]). Besides
this difference, there remain various caveats associated with
this value of q̂ which have been discussed in Sec. III [in
particular, see the discussion surrounding Eq. (9)].

For the case of the ASW formalism, we have used the
relationship [72]

q̂0 = 2Kε
3/4
0 (22)

to convert the parameter K in the ASW approach to q̂0. In a
previous estimate using this formalism [69], the value of q̂0

was quoted to be somewhat lower. This is simply due to the
earlier time τ0 = 0.6 fm/c at which q̂0 is being quoted in the
current manuscript. In Ref. [69], τ0 was set to 1 fm/c.

In AMY, the relationship between q̂ and the coupling αs

reads

q̂ = CAg2T m2
D

2π
ln

qmax
⊥
mD

, (23)

where qmax
⊥ is the largest transverse momentum relevant for the

collinear emission. One estimate is that (qmax
⊥ )2 ≈ ET , where

E is the energy of the jet, and T the temperature. Evaluating
the above expression for three quark flavors, αs = 0.33, a
temperature of 0.4 GeV, and a jet energy of 20 GeV, one
obtains q̂ = 4.1 GeV2/fm. Even though this formulation is
only logarithmic in the jet energy, it is, however, more
suggestive than precise [73]. Note that the ASW value for q̂0 at
τ = 0.6 fm/c and ε0 = 55 GeV/fm3 lies a factor of 3.6 higher
than the Baier estimate for an ideal QGP, q̂ ≈ 2ε3/4 [72], while
the AMY estimate is in line with that from Baier, and the HT
calculation lies about a factor of 1.6 below that value.

The large difference in q̂0 values between HT, AMY,
and ASW has been pointed out previously. However, our
calculation shows for the first time that this difference is not
due to a different treatment of the medium or initial state. Note
that the numbers quoted here reflect the different medium
scaling laws referred to as being the natural choices for the
respective approaches, namely, temperature scaling for AMY,
energy-density scaling for ASW, and entropy-density scaling
for HT, as discussed in the previous section. If we choose to
perform the jet energy-loss calculation with temperature ∼T 3

scaling for all three approaches, we find values for q̂0 being
10 GeV2/fm for ASW, 2.3 GeV2/fm for HT and 4.1 GeV2/fm
for AMY. Likewise, if we employ energy-density scaling
∼ε3/4, we find q̂0 = 18.5 GeV2/fm for ASW and q̂0 =
4.5 GeV2/fm for HT (the AMY calculation can only be
performed utilizing temperature scaling). Both ASW and
HT consistently show a rise of a factor of 2 in q̂0 when
switching from temperature scaling to energy-density scaling.
The different values for q̂0 in the different schemes with
different choices of scaling with T , s, and ε3/4 are presented
in Table I.

We find that slight differences appear between the ap-
proaches when RAA is studied as a function of azimuthal angle.
This can be seen in Fig. 6, where RAA is plotted as a function of
azimuthal angle at pT = 10 GeV/c and pT = 15 GeV/c for all
three approaches in the 20–30% centrality bin. Figure 7 shows
the same calculation, but with all curves normalized by their
respective azimuthally averaged RAA; we observe that for the

TABLE I. Values of q̂0 defined as the q̂ at τ = τ0 = 0.6 fm/c in
the cell at �r = 0 of the 0–5% centrality event, in the different energy-
loss schemes. Also presented is the variation of q̂0 with different
choices of scaling of q̂(�r ,τ ) with different local intensive properties
of the medium; where T (�r ,τ ) is the temperature, ε(�r ,τ ) the energy
density, and s(�r ,τ ) the entropy density at location (�r ,τ ) in the RFD
simulation. Given the model of the medium in AMY, q̂ may only
be calculated as a function of T [see Eq. (23)], hence the entries
corresponding to ε and s scaling are left blank. Calculations in the
ASW scheme with q̂ scaled with s have not yet been performed, so
the entry for s scaling has been left blank.

q̂(�r , τ ) scales as q̂0 (GeV2/fm)

ASW HT AMY

T (�r , τ ) 10 2.3 4.1
ε3/4(�r , τ ) 18.5 4.5
s(�r , τ ) 4.3

pT bins chosen, the AMY and HT calculations exhibit the same
peak-to-valley ratio and shape, whereas the ASW calculation
shows a more pronounced difference between in-plane and
out-of-plane emission. The azimuthal spread is insensitive to
variation of the transverse momentum, which is manifest in
the comparison between the solid (pT = 10 GeV/c) and the
dashed (pT = 15 GeV/c) lines.

To further quantify the difference between the three
approaches, we calculate the ratio of the out-of-plane RAA over
the in-plane RAA as a function of transverse momentum; this
is shown in Fig. 8. We find that AMY and HT exhibit the same
peak-to-valley ratio throughout the entire range of transverse
momenta, even though the absolute values for RAA differ
by approximately 10%. The ASW calculation systematically
shows a stronger azimuthal dependence than the HT and AMY
calculations, the cause of which will require a more detailed
analysis to determine.

Note, however, that the agreement in the peak-to-valley
ratio for AMY and HT does not translate into these approaches
being identical in terms of the in-plane and out-of-plane RAA
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FIG. 6. (Color online) RAA as a function of azimuthal angle at
pT = 10 and 15 GeV/c for all three approaches in the 20–30%
centrality bin.
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FIG. 7. (Color online) Same as Fig. 6, but normalized by the
azimuthally averaged value of RAA for the respective calculations.

values vs pT : Fig. 9 shows that systematic differences on the
order of 15% exist between all three approaches in the absolute
value of RAA at fixed azimuthal angle as a function of pT .

To investigate the spatial response of the jet energy-loss
schemes to the medium, we define the following quantity,

P (x, y) = TAB(x, y)RAA(x, y)∫
dx dy TAB(x, y)RAA(x, y)

, (24)

where the local position-dependent nuclear suppression factor
RAA(x, y) is weighted with the nuclear overlap probability
function TAB(x, y). Figure 10 shows P (x, y = 0) as a function
of x for a quenched jet moving in the positive x direction
through the center of the medium (y = 0).

Integrating the quantity P (x, y) over y yields the escape
probability of a hadron with a transverse momentum between
6 and 8 GeV/c originating from a quenched jet moving in the
positive x direction in the transverse plane as a function of of
its production vertex along the x axis:

P (x) =
∫

dyP (x, y). (25)
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FIG. 8. (Color online) Ratio RAA for out-of-plane vs in-plane
emission as a function of pT at b = 7.5 fm impact parameter for all
three approaches.
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FIG. 9. (Color online) RAA for out-of-plane vs in-plane emission
as a function of pT at b = 7.5 fm impact parameter for all three
approaches.

The result is shown in Fig. 11. It is remarkable how well
the three different approaches agree with each other in this
quantity. Since the same hard scattering probability was used
as input in all three cases, the agreement in P (x) really shows
that all three approaches yield the same suppression factor as
a function of production vertex of the hard probe; i.e., they
probe the density of the medium in the same way.

V. NORMALIZATION AND FURTHER COMPARISON
WITH DATA

As we have seen in the previous section, there do exist
noticeable differences in the RAA as a function of the azimuthal
angle between the three approaches. A comparison with
experimental data for this particular observable would thus
constitute an important experimental input and possibly serve
as a discriminator. Recently, data for RAA vs the reaction
plane have become available in the pT = 5–8 GeV region [74].
Unfortunately this pT range, which in terms of the data will
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FIG. 10. (Color online) Survival probability P (x, y) of a hadron
with 6–8 or 12–14 GeV/c transverse momentum moving along the
positive x axis through the center of the medium (y = 0) in the
transverse plane as a function of x.
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FIG. 11. (Color online) Escape probability of a hadron with
6–8 GeV/c transverse momentum moving along the positive x axis
in the transverse plane as a function of x.

be dominated by the lower pT boundary, still sits in the
region in which particle production is significantly influenced
by parton recombination as the hadronization mechanism
[70,75]. Since we regard pT = 6 GeV as the lower limit of
the applicability of jet-quenching calculations, a comparison
may not be completely out of place, but it would carry large
uncertainties with it.

However, the data from run-2 of the PHENIX Collaboration
[74], which was used to deduce the RAA vs the reaction
plane, demonstrate an integrated RAA of 0.41 ± 0.03(stat)
±0.06(sys) in the 20–30% centrality events, in noticeable
contrast to the value of 0.35 ± ∼0.04(stat) ±∼0.03(sys) as
seen in Fig. 5 from the run-4 data set. While the two data sets
agree within systematic errors, the discrepancy between the
two is too large for a meaningful comparison of our calculation,
which was fit to the run-4 data set.

An estimate of the variation of the fit parameters required
to encompass both data sets leads to differences of the order
of 20–40% in q̂. Plotted in Fig. 12 are the predictions for
the RAA vs reaction plane for the standard values of the fit
parameters obtained from the comparison with the run-4 data
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FIG. 12. (Color online) RAA vs reaction plane in the 20–30%
centrality event at pT = 6 GeV for different choices of the single fit
parameters q̂, K , αs .

set in Fig. 5. Also plotted are readjusted plots for the RAA vs the
reaction plane, where the single fit parameters in each of the
models was tuned such that the integrated RAA in the 20–30%
centrality bin achieved a value of 0.41. The new values of the
fit parameters (included in the figure) are q̂ = 1.6 GeV2/fm
for the HT, K = 2.4 for the ASW, and αs = 0.27 for the AMY
calculations. One should note that a simple renormalization
of our RAA vs φ curves to the data would not be appropriate,
since the value of q̂ affects the magnitude of the azimuthal
spread.

A detailed and meaningful theory-experiment comparison,
encompassing different data sets as well as their respective
statistical and systematic errors in a proper fashion, will
require a sophisticated statistical analysis beyond the scope
and aim of the work presented here. Such an analysis has
been demonstrated for one particular theory calculation of
inclusive RAA vs pT compared to one experimental data set
in Ref. [76]. The feasibility of extending such an analysis to
multiple data sets, observables, and theory calculations has yet
to be determined.

VI. SUMMARY AND CONCLUSION

In summary, we have calculated the modification of
hard jets in a 3D hydrodynamic medium in three different
approaches, which were constrained to use the same initial
structure functions, the same final vacuum fragmentation func-
tions, the same nuclear geometry, and identical 3D evolution
of the produced dense matter. In this first unified attempt
to understand jet modification in dense matter, the focus
was restricted to single inclusive observables. The nuclear
modification factor [Eq. (21)] was computed as a function of
the transverse momentum and centrality of collision, as well as
the angle with respect to the reaction plane. This was followed
by a more detailed, though purely theoretical, analysis of jet
origin distribution for the RAA as a function of the reaction
plane, as well as the RAA for jet origins restricted to lie on a
narrow belt on the reaction plane.

In the comparisons above, both the HT and the ASW
schemes were simplified to the point that all predictions
depended on only one tunable parameter: this is the 〈FF 〉
correlator in the HT approach and the K parameter in the
ASW approach. In the most rigorous formulation of AMY,
there exist no free parameters except for the temperature; this,
however, has already been specified by the RFD simulation. In
the phenomenological application of the AMY approach used
here, the strong coupling constant is treated as a parameter; it
has, thus, been disassociated from the temperature.

These single free parameters from all three approaches were
tuned to fit one data point, usually chosen as the integrated
RAA at 8 GeV in the 0–5% centrality events. The data used
for this comparison as shown in Fig. 5 were taken from the
PHENIX run-4 data set [71]. Our comparison shows that under
identical conditions (i.e., same medium evolution, same choice
of parton distribution functions, scale, etc.), all three jet energy-
loss schemes yield very similar results. This finding is very
encouraging, since it indicates that the technical aspects of
the formalisms are well under control. However, we need to
point out that there still exists a puzzle regarding the extracted
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value for the transport coefficient q̂0, which spans a factor
of 4 from a value of 2.3 GeV2/fm for the HT approach on
the lower end, to 4.1 GeV2/fm for AMY and 10 GeV2/fm
for ASW on the high end, when using the same temperature
scaling law for all three approaches. While the discrepancy
among these approaches is not new, our work has been able
to decisively rule out differences in the medium evolution or
initial setup as a cause for the differing values of q̂. We are
led to conclude that these remaining differences are due to the
different approximations applied, the different energy scales
involved, and the different assumptions on the structure of the
QCD matter inherent in these different approaches.

There exist multiple future directions for the systematic
and unified approach to jet modification in dense matter
presented here. Due to the assumption of a thermalized plasma,
elastic energy loss may be straightforwardly included in AMY.
Including elastic energy loss, however, represents a significant
extension to the HT and ASW approaches, which has only
recently been undertaken and thus this topic has not been
included in the comparisons presented here. The current
effort was restricted to single inclusive observables; hence,
the simplest extension will be to apply a similar analysis to
both single and multiparticle observables in tandem. Such
comparisons will undoubtedly lead to stronger constraints on
the formalism and hence deeper insights into the nature of the
theory of jet modification used. Another direction is to use a

somewhat different initial condition and equation of state for
the medium evolution. A natural extension in this direction
is to the study of jet modification in viscous fluid dynamical
simulations. Viscous simulations necessarily seem to require
an initial state with greater spatial anisotropy. We believe
that it is in this direction that measurements and theoretical
calculations of the RAA vs the reaction plane will have most
relevance, as a means to discriminate between different initial
state profiles. The approximations that have resulted in the
reduction of formalisms such as the HT and the ASW to a
dependence on only one parameter will eventually have to be
relaxed. The different parameters in these schemes represent
actual physical properties of the produced matter which may
indeed be measurable given a detailed and extensive set of
experimental measurements.
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