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Three-cluster model for the α-accompanied fission of californium nuclei
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A three-cluster model is proposed to explain the particle-accompanied binary fission of radioactive nuclei. The
model is developed as an extension of the preformed cluster model of Gupta and collaborators. The advantage
of this model is that, for a fixed third fragment, we can calculate the fragmentation potential minimized in
charge coordinate. For our study we chose the various neutron-deficient to neutron-rich californium nuclei,
whose analysis reveals that the closed-shell effect of any one of the fragments in ternary fragmentation presents
itself as the most favorable configuration to be observed. As one goes from a neutron-deficient to a neutron-rich
californium isotope, the role of the neutron closed shell associated with any one of the preferred fragments
changes to that of the proton closed shell, and for very neutron rich isotopes of californium the presence of a
double closed shell nucleus enhances the decay probability. The quadrupole deformation of the light fragment
(A2) associated with the preferred configuration in the symmetric mass region also has a transition from positive
to negative deformation as one goes from neutron-deficient to neutron-rich californium isotopes. The calculated
relative yields of different fragmentation channels are compared with the available experimental yields for 252Cf.
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I. INTRODUCTION

Californium (Cf) nuclei offer interesting possibilities for
both theoretical and experimental investigations of various
spontaneous decay modes. Spontaneous binary and ternary
fission reactions of 252Cf have been recently studied quite
extensively [1–14], with 4He, 10Be, and 14C nuclei observed
as ternary fission particles. Ramayya et al. [12] measured
the yield (on the order of 4 × 10−4 per 100 fission events)
to the first excited state of 10Be in the 96Sr-146Ba split of
252Cf. Recently, Kopatch et al. [13] observed 5He, 7He,
and 8Li∗ (in its excited state of 2.26 MeV) isotopes as
short-lived, intermediate, light charged particles (LCPs) in
the ternary fission of 252Cf. In another experiment, isotopes
of He, Be, B, and C LCPs emitted with kinetic energy of
more than 9, 21, 26, and 32 MeV, respectively, from ternary
fission of 252Cf were observed by Ter-Akopian et al. [14].
Using the improved triple-γ coincidence and α plus double-γ
coincidence data of 252Cf Goodin et al. [15] analyzed the
bimodal fission of 252Cf wherein the binary channels Xe-Ru
and Ba-Mo, as well as the Ba-α-Zr, Mo-α-Xe, and Te-α-Ru
ternary channels, were observed. Earlier, Lestone had shown
[16,17] that ternary fission temperatures can be extracted by
using the statistical theory of particle evaporation from hot
compound nuclei, getting T = 1.24 ± 0.10 MeV from the
yields of hydrogen, helium, lithium, and beryllium isotopes
ejected perpendicular to the direction of the main frag-
ments from 233,235U(nth, f ),239,241 Pu(nth, f ), and 250,252Cf
spontaneous fission, in near agreement with the experimental
T = 1.13 ± 0.24 MeV from the yields of polar α particles
from 233,235U(nth, f ). Very recently, Pyatkov et al. [18] have
reported from three independent experiments a new island of
high yields of 252Cf(sf ) collinear cluster tripartition (CCT) in
the fragment mass space. The true ternary spontaneous decay
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channel observed and reported as CCT from these experiments
has masses close to the magic 132Sn, 70Ni, and 48Ca isotopes
with a probability of not less than 4×10−3 with respect to
binary fission, which is larger than the known ternary fission
accompanied by LCPs. Apart from binary and ternary fissions
of 252Cf, for the (binary) cluster decay of 252Cf, only the
experimental attempt of Ortlepp et al. [19] resulted in an upper
limit on the branching ratio B [=T1/2(α)/T1/2(cluster)] � 10−8

for 46Ar or 48Ca clusters. For the 249Cf isotope, more recently,
Ardisson et al. [20] first attempted an indirect experiment to
interpret the existence of an unassigned γ line (of 1554.2 keV
in energy) in the spontaneous fission spectrum, following the
α decay of 249Cf, as a possible signature of 50Ca emission
from 249Cf and deduced a branching ratio B = 4.9 × 10−9 [or
T1/2(50Ca) = 2.2 × 1018 s], which in a later direct experiment
[21] is pushed downward (or upward) to B � 1.5 × 10−12 [or
T1/2(50Ca) � 7.4 × 1021 s]. Theoretically, it has been predicted
by one of us [22] that 249,252Cf parents present themselves as
novel cases of emitting a doubly magic cluster 48Ca or its
neighboring nuclei 46Ar and 50Ca. If observed, the importance
of the shell effects of the lighter (cluster) product, in addition
to that of the already observed heavier (daughter) product,
will be shown for the first time. The calculations [22] show
that 46Ar or 48Ca are in fact the most probable decay products
of 249,252Cf parents, but the estimated decay half-life times
are far more than the available upper limits. In other words,
the calculations suggest that, with the presently available
experimental methods, it will be difficult, if not impossible,
to observe heavy-ion emission from either of these parents. It
may, however, be mentioned that the inclusion of the effects of
deformation and neck formation between the decay products
could lead to a favorable situation. Another interesting result of
these calculations is that, next to α decay, the lighter clusters
10Be and 14C are also preformed most favorably as binary
decay products, but then, owing to the penetrability factor,
their decay half-life times are predicted to be very large for
the present-day experimental facilities. Since these clusters
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are already observed as ternary fission products, a cascade or
sequential decay of the corresponding binary decay daughter
products could not be ruled out. Alternatively, it is possible
that these lighter clusters are first preformed as binary decay
products and then penetrate a three-body barrier.

From the published theoretical investigations [5–7] of the
ternary fission of 252Cf, it is seen that the closed-shell effect
of any one of the two heavier fragments may also play an
important role in ternary fission. However, in these theoretical
studies, the probable ternary configuration is generally chosen
by some intelligent guess or from the Q-value systematics.
The most probable configuration, for the various particle-
accompanied fission studies, reveals that, of the two heavy
fragments, at least one of the fragments associates itself with
the closed shell and in some cases even the doubly closed-shell
nucleus, such as 132Sn (Z = 50, N = 82), is seen. Obviously,
it would be of interest to see the role of closed shell(s) of
any one of the heavy fragments in the complete isotopic
chain of the Cf nucleus. From the experimental observation of
4He-accompanied fission of 252Cf, it is seen that the fragment
combination 145Ba + 103Zr is found to have the largest yield,
when compared with other observed fragment combinations.
This means that the role of the spherical closed shell alone
is not enough, and, perhaps, the role of the deformed closed
shell should also be taken into account since Zr is a deformed
closed-shell nucleus. In the present study, however, we do not
include the deformation effects of the fragments.

The obvious difficulty involved in the theoretical studies of
ternary fission is the complete minimization of the potential
energy for the mass asymmetry (defined later) involved in
this process. In the case of binary fission of a nucleus having
mass number A the mass asymmetry involved has only A/2
combinations, which further can be minimized with respect to
the charge asymmetry. In the present work, we have attempted
to study the complete mass asymmetry involved, at least
for the α-accompanied ternary fission of neutron-deficient to
neutron-rich Cf nuclei. Apparently, such a theoretical study
of the Cf nucleus is warranted both for the guidance of future
experiments and for investigating the novel closed-shell effects
involved in this process. In other words, in this paper, we are
interested to study the isotopic effect of the parent nucleus
Cf with N = 140 to 158 for (A3 = 4)-accompanied ternary
fission.

II. THE THREE-CLUSTER MODEL

The three-cluster model (TCM) developed here is an
extension of the preformed cluster model (PCM) of Gupta and
collaborators for ground-state decays in cluster radioactivity
(CR) and related phenomena [23–27]. Thus, like PCM, TCM
is also based on the dynamical or quantum mechanical
fragmentation theory of cold fusion phenomenon in heavy-ion
reactions and fission dynamics, including the prediction of
CR [28–31]. This theory is worked out in terms of

(i) the collective coordinate of mass (and charge)
asymmetry

η = (A1 − A2)/(A1 + A2) [ηZ = (Z1 − Z2)/(Z1 + Z2)],

where 1 and 2 stand, respectively, for heavy and light
fragments, and the third fragment in TCM is denoted
by 3 and is fixed (and hence only the mass asymmetry
between 1 and 2 is considered), and

(ii) relative separation R (defined later), which in TCM
characterizes, respectively, (a) the nucleon division (or
nucleon exchange) between the outgoing fragments
and (b) the sharing of the available Q value to the
kinetic energies Ei of the three fragments (i.e., Q =
E1 + E2 + E3), with the Q value for three decay
products defined as

Q = M −
3∑

i=1

mi, (1)

where M is the mass excess of the decaying nucleus and
mi is the mass excesses of the product nuclei, expressed
in MeV.

By using a decoupled approximation to R and η motions,
in TCM, the decay constant is defined as

λ = P0PνP3, (2)

where P0, the preformation probability, refers to η motion and
P , the penetrability, to R motion. One of the assumptions
of the TCM is that the preformation probability of the third
fragment P3 = 1 (here, the third fragment is an α particle).
The preformation probability P0 of fragment 2 (equivalently,
of fragment 1) can also be calculated by solving the stationary
Schrödinger equation in the η coordinate, at a fixed R, for
the use of (ternary) fragmentation potential between the three
nuclei, defined as

Vtot =
3∑

i=1

3∑
j>i

(Bii + Vij ). (3)

Here Bii are the binding energies of the three fragments in
energy units, taken from Refs. [32,33], and

Vij = VCij + VNij , (4)

with VCij = ZiZje
2/Rs

ij , the Coulomb interaction between
the three nuclei, and VNij , the short-range Yukawa plus expo-
nential nuclear attractive potential among the three fragments,

VNij = −4

(
a

r0

)2 √
a2ia2j [gigj (4 + ξ ) − gjfi − gifj ]

× exp (−ξ )

ξ
, (5)

where ξ = Rs
ij /a, and the functions g and f are

gk = ζ cosh ζ − sinh ζ (6)

and

fk = ζ 2 sinh ζ, (7)

where ζ = Rk/a with the radius of the nucleus being
Rk = r0A

1/3
k . Here a = 0.68 is the diffusivity parameter and

the asymmetry parameter is a2k = as(1 − ωI 2) with as =
21.13 MeV, ω = 2.3, and I = N−Z

A
. The relative separation is

Rs
ij = Rij + sij , (8)
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FIG. 1. A schematic touching configuration of three nuclei, with
the parameters as labeled. The touching configuration is defined by the
surface separation s12 = s13 = s23 = 0. The solid arrows define the
radii of the fragments and the dotted arrow defines the center-to-center
distance between the fragments.

with Rij = r0(A1/3
i + A

1/3
j ), where r0 = 1.44 fm, the distance

between the centers of any two nuclei. For the surface
separation sij ,

s = s12 = s13 = s23 = 0 (9)

corresponds to the touching configuration of the three frag-
ments as shown in Fig. 1.

P0 is the solution of the stationary Schrödinger equation in
η, at a fixed R = Rs

ij = R12 + s12 for the potential defined in
Eq. (3) corresponding to the touching configuration (s = 0),
as shown in Fig. 1,[

− h̄2

2
√

Bηη

∂

∂η

1√
Bηη

∂

∂η
+ VR(η)

]
ψν(η) = Eνψν(η), (10)

with ν = 0, 1, 2, 3, . . . referring to ground-state (ν = 0) and
excited-state solutions. The solution is

P0(Ai) =| ψR[η(Ai)] |2 √
Bηη

2

A
, (11)

where i = 1 or 2. The mass parameters Bηη(η), representing
the kinetic energy part in Eq. (10), are the smooth classical
hydrodynamical masses [34]. In the decoupled approximation
an equivalent Schrödinger equation for R motion can be used
to find the probability |ψη(R) |2. However, instead of solving
the Schrödinger equation in R, the penetration probability is
solved by using the WKB approximation as discussed in the
following. It is to be mentioned here that, in this present work,
the role of preformation probability is not studied. Rather,
the relative yields for all the charge-minimized fragmentation
channels are calculated as the ratio between the penetration
probability of a given fragment over the sum of penetration
probabilities of all possible fragmentation as

Y (Ai, Zi) = P (Ai, Zi)∑
P (Ai, Zi)

. (12)

The penetrability (i.e., the probability for which the ternary
fragments to cross the three-body potential barrier) is the WKB
integral,

P = exp

[
−2

h̄

∫ s2

s1

{2µ[V (s) − Q]}1/2ds

]
, (13)
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FIG. 2. The scattering potential as a function of the surface
separation s(= s12 = s13 = s23) of all three fragments. The decay
path and the Q value are also labeled.

solved analytically [24], with s1 = 0, the touching configura-
tion, as the first turning point and s2 as the second turning point
(see Fig. 2) satisfying

V (s2) = Q. (14)

It is to be mentioned here that this action integral depends only
on the variable s. The potential is calculated by varying the
value of s uniformly among all three fragments as defined in
Eq. (9). Fitting to the experimental data can be done if one
considers a different variation of the separation distance s12

between fragments 1 and 2 as

s = k ∗ s12 = s23 = s13. (15)

This parameter k assimilates the effects of deformation by
lowering the barrier (i.e., as the value of k decreases the barrier
will also decrease). An exact fitting to the experimental data
can also be done by fine-tuning this parameter individually
for each channel. The reduced mass of the three fragments is
defined as

µ123 =
(

µ12A3

µ12 + A3

)
m, (16)

where m is the nucleon mass and

µ12 = A1A2

A1 + A2
, (17)

with R0 = r0A
1/3 as the radius of the spherical compound

nucleus.

III. RESULTS AND DISCUSSION

First, the ternary fragmentation potential, as defined in
Eq. (3), is calculated for 252Cf as the representative parent
nucleus with third-particle mass fixed as A3 = 4. For the
mass-four nucleus, one has three possible charge numbers,
corresponding to 4H, 4He, and 4Li, leaving the remaining
system as 248Bk, 248Cm, and 248Am, respectively, whose binary
fragmentation (A1 + A2), minimized in charge asymmetry
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FIG. 3. The ternary fragmentation potential for 252Cf nuclei for
different A3 = 4 combinations.

coordinate ηZ , is considered. The resulting ternary fragmen-
tation potentials for the three possible fixed A3 = 4 nuclei are
presented in Fig. 3. It is interesting to see from this figure that
the ternary fragmentation potential corresponding to A3 = 4He
lies lowest of all the three potentials. This means that the

ternary fission of 252Cf is most favored with the third particle
as 4He, shown here for the first time. In other words, in our
calculations, the third particle is not chosen simply as 4He;
rather it is obtained in the energy minimization with respect
to the charge of the A3 fragment. The same result (i.e., 4He
as the third particle) is obtained for all the remaining parent
nuclei, whose resulting ternary fragmentation potentials are
presented in Fig. 4. The interesting result of this figure is that
the deepest minima (marked for each parent nucleus) refer
to the neutron closed shell N = 82 (for 138Ba, 136Xe, and
134Te nuclei) for neutron-deficient parents 238–248Cf (upper
panel) but to the proton closed shell Z = 50 (for 130,132Sn
nuclei) for neutron-rich parents 250–256Cf (lower panel). For
248–256Cf parents the regions of cold fragmentation exist in the
three-body fragmentation potential. Among them the third one
has the strong minimum corresponding to spherical Sn nuclei,
similar to that of the cold binary fissions.

The important result is that, as we go from neutron-
deficient to neutron-rich Cf isotope, the neutron closed shell
associated with the heavier fragment (A1, Z1) of the preferred
configuration in the cold valley changes to the proton closed
shell associated with the heavier fragment of the preferred
configuration and this becomes even doubly closed shell for
very neutron rich 252–256Cf isotopes. It is to be mentioned
here that in all the most probable configurations lying in the
cold valley at symmetric mass region (as labeled in Fig. 4),
the heavier fragment (A1, Z1) quadrupole deformation (β2)
is zero. But at the same time the associated light fragment
(A2, Z2) has considerable quadrupole deformation, as shown
in Fig. 5. The deformation values are taken from Ref. [33].
It is interesting to see in this figure that for the neutron-
deficient 238–246Cf isotopes, the deformation of the light
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associated with the most probable configuration in the symmetric
mass region for 238–256Cf nuclei.

fragment (A2, Z2) has positive quadrupole deformation, which
changes to negative quadrupole deformation for the neutron-
rich 248–256Cf isotopes. The transition of neutron closed shell
to proton closed shell associated with the heavier fragment
(A1, Z1) and a similar transition in the quadrupole deformation
of the associated light fragment (A2, Z2) are seen as one goes
from neutron-deficient to neutron-rich Cf. The deformation in
the potential comes only through the binding energies.

In Fig. 6, we have plotted the results of our calculated
relative yield [as defined in Eq. (12)] of the α-accompanied

ternary fragmentation for all the considered isotopes of Cf
nuclei. In this figure the y-axis scale in all the panels is the
same and also the relative yields are shown as a function of
fragment mass numbers A2 and A1 by taking their values
between 75 to 175. For A2 < 75 and A1 > 175 the relative
yields are nearly zero. A two-humped structure in the mass
distribution is seen in all cases. For neutron-deficient Cf
isotopes, a wider distribution is seen; this becomes distinct
and narrower for neutron-rich Cf isotopes. Also, the magnitude
of the relative yield corresponding to the preferred fragments
as labeled increases with increasing neutron number of the
parents. The minimum obtained in the fragmentation potential
(as labeled in Fig. 4, near the symmetric mass region) is the
same as for the most probable fragments in the relative yield
calculations as well except for the cases of 240Cf and 248Cf.
For 240Cf the minimum in the potential corresponds to the
configuration of 138Ba + 98Zr whereas the relative yield is
maximum for the configuration of 136Xe + 100Mo because the
Q value corresponding to the 136Xe + 100Mo configuration is
228.75 MeV and the Q value corresponding to 138Ba + 98Zr is
225.56 MeV. Because of the higher Q value the fragment
combination 136Xe + 100Mo has the highest yield for the
parent 240Cf. Similarly, for 248Cf the minimum in the potential
corresponds to the configuration 134Te + 110Ru but the relative
yield is numerically maximum for 130Sn + 114Pd and the value
of the relative yield for the configuration corresponding to
134Te + 110Ru differs with 130Sn + 114Pd only in the second
decimals. The close values of these two may be because
the Q values differ slightly as 228.64 and 227.52 MeV for
130Sn + 114Pd and 134Te + 110Ru, respectively.

In Fig. 7 we present a comparison of our calculated
results corresponding to various separation distances between
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FIG. 6. The calculated relative yields for 238–256Cf nuclei. The minimized third fragment (A3) in all cases is 4He. The most probable
configurations A1 and A2 are labeled. The scale of the y axis is the same in all panels.
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fragments 1 and 2 as defined in Eq. (15) for different values
of k. The solid squares connected by lines correspond to the
experimental data. The solid circles correspond to the case of
k = 1. As the k value decreases (and hence the separation
distance between fragments 1 and 2 increases) the strong
oscillatory structure present in the calculations corresponding
to k = 1 vanishes and becomes nearly a constant value for
the lowest k value considered (k = 0.2). The calculated yields
increase with the decrease in the value of the parameter k.
In Fig. 8, for better comparison, our calculated yields for
two different values of the parameter k (normalized to the
total experimental yield) are compared with the measured
percentage yields for the 252Cf nucleus. In this figure, the
hatched histograms are the measured yields and the black
ones are the calculated relative normalized yields for k = 1
(corresponding to uniform separation of the three fragments)
and the checked histograms correspond to k = 0.2. Obviously,
it is seen in this figure clearly that the lowering of the barrier by
the introduction of the parameter k increases the yield, which
is in good agreement with that of the experimental data. This
parameter can further be fine-tuned to get an exact fitting for
each channel though this is not attempted here. In all cases the
third particle is 4He. The lighter fission fragments (A2, Z2) are
labeled above the corresponding histograms. The calculated
relative yields are for the charge minimized fragmentation
channels. In other words, these channels are revealing them-
selves during the minimization of the fragmentation potential,
except for A2 = 101. For A2 = 101, in our calculations, the
minimized configuration corresponds to the element Y with
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FIG. 8. Same as Fig. 7, but presented here as histograms for better
comparison for the values of k = 1 and 0.2.

charge number Z2 = 39. From the experimental data of these
yields taken from Ref. [4], for mass numbers A2 = 100 and
101, the relative percentage yields were measured for two
charges (Sr and Zr with Z2 = 38 and 40). Since, in the present
model, we never exclude any possible fragmentations, we have
presented the results for 100Zr, 101Sr, and 101Zr. Though the
actual minimum obtained for the mass number A2 = 100 is
100Sr, we have presented the result of 100Zr as well. Similarly,
though the actual minimum obtained for the mass number
A2 = 101 is 101Y in our calculations, we have presented our
results of 101Sr and 101Zr as well in this figure.

The two different charge dispersions corresponding to these
two mass numbers A2 = 100 and 101 can be explained by our
calculations as presented in Fig. 9. This figure presents the
charge dispersion potential V (ηz) and Q values for A2 = 100
and 101 as a function of different fragment charge number
Z2. It is very clearly seen from this figure that, for the
fragmentation potential of A2 = 100, the potential energy
values corresponding to Sr and Zr are equally competing,
though numerically Sr has a potential energy value lower than
that of Zr. But, at the same time, Zr becomes a possible charge
combination for this mass number because of its higher Q

value as presented in this figure. Similarly, for the odd mass
number A2 = 101, the fragmentation potential V (ηz) shows
indistinguishable minima between Y and Zr, but numerically
Y has the minimum value, but again Zr becomes a possible
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FIG. 9. The fragmentation potentials and the Q values for the
fragment mass numbers A2 = 100 and 101 as a function of charge
numbers Z2.

candidate because of its higher Q value as presented in this
figure.

In all the cases compared in Fig. 8, our calculated results
corresponding to the parameter k = 1 are underestimating the
experimental yields, except for the last three channels. This
has been overcome by the introduction of the parameter k. For
the lowest k value considered in our calculations our results are

in good agreement with the measured yields. The parameter
k may be playing the role of deformation. It is known that
the inclusion of deformation in the interaction potential will
considerably lower the barrier. Hence its implication in the
results needs to be studied and may favor a better agreement
between the calculated values and the experimental values.

IV. SUMMARY

A three-cluster model is developed for explaining ternary
fission of heavy radioactive nuclei. The model is applied to
study neutron-deficient to neutron-rich Cf nuclei. The charge
minimization of the third fragment is shown here for the
first time. Moreover, the most favorable combination is also
being revealed as a result of studying the complete mass
asymmetry of the system by minimizing the potential energy
rather than by making a mere guess. The importance of the
closed shell and the deformation associated with the most
favorable configuration are emphasized. For the most favorable
ternary configurations the role of the neutron closed shell plays
a crucial role in neutron-deficient parent nuclei and a transition
from neutron closed shell to proton closed shell takes place
as the neutron number of the parent nuclei increases. For
very neutron rich nuclei it is seen that the role of a doubly
magic closed shell seems to become important. Our calculated
relative percentage yields are in reasonable agreement with the
experimental values.
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