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One-body energy dissipation in fusion reactions from mean-field theory
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Information on dissipation in the entrance channel of heavy-ion collisions is extracted by the macroscopic
reduction procedure of time-dependent Hartree-Fock theory. The method gives access to a fully microscopic
description of the friction coefficient associated with the transfer of energy from the relative motion toward
intrinsic degrees of freedom. The reduced friction coefficient exhibits a universal behavior, i.e., almost independent
of systems investigated, whose order of magnitude is comparable with the calculations based on linear response
theory. Similarly to nucleus-nucleus potential, especially close to the Coulomb barrier, there are sizable dynamical
effects on the magnitude and form factor of the friction coefficient.
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I. INTRODUCTION

The discovery of deep inelastic collisions in the 1970s, in
which a large amount of kinetic energy and angular momentum
is dissipated from the relative motion to intrinsic excitations
of colliding nuclei, brought us the concept of friction in
nuclear physics [1]. After this discovery, Gross and Kalinowski
developed the surface friction model (SFM) [2] that takes into
account this dissipative effect by introducing friction forces
in a Newtonian equation. More generally, dissipative aspects
in self-bound systems such as nuclei have important roles in
many physical phenomena such as fission, fusion reactions,
and giant resonances.

In most actual models that include dissipation and that
are used to describe nuclear reactions at energies around the
Coulomb barrier, the dissipation mechanism is assumed to
be a one-body type, where energy dissipation is caused by
collision of nucleons with the mean-field wall and by nucleon
exchange between the two partners of the reaction. These
effects are known as the wall-and-window formula [3,4] and
are essentially based on classical consideration. The orders of
magnitude of parameters related to dissipation are generally
adjusted to reproduce experiments. However, large uncertainty
on those parameters exists [5]. Therefore, the description of
energy dissipation from quantum microscopic models is highly
desirable.

It is known that the time-dependent Hartree-Fock (TDHF)
model [6,7] includes a one-body dissipation mechanism from
the microscopic point of view, because of the treatment of
the self-consistent mean field. It is worth mentioning that the
so-called fusion window problem due to underestimation of
energy dissipation in old TDHF calculations has been solved
by including spin-orbit interactions and time-odd terms in
the energy density functional [8–10] as well as by break-
ing symmetries. Now three-dimensional TDHF calculations
including full Skyrme effective interaction, which are used
in recent static Hartree-Fock calculations, are expected to
provide a better description of dissipative aspects [10–13].
Up to now, there have only been a few studies dedicated
to extracting friction coefficients associated with one-body
energy dissipation from the microscopic mean-field approach

[6,14]. The aim of this article is to investigate the energy
dissipation mechanism in detail from a microscopic point of
view by using state of the art TDHF theory.

In Refs. [15] and [16], a method of extracting the nucleus-
nucleus potential and friction coefficient from TDHF has
been proposed. This method, called Dissipative Dynamics
TDHF (DD-TDHF), assumes that mean-field evolution can be
properly reduced to one-dimensional dissipative dynamics for
relative distance R between nuclei. In Ref. [16], the nucleus-
nucleus potential for symmetric and asymmetric reactions has
been systematically extracted from the DD-TDHF. In this
work, we focus on the friction coefficient, which also comes
as an output of the macroscopic reduction procedure.

The article is organized as follows. In Sec. II, we briefly
explain the DD-TDHF method. In Sec. III, we illustrate
the main properties of the extracted friction coefficients for
different systems. In Sec. IV, we discuss a method to estimate
the intrinsic excitation of colliding nuclei and compare the
result to the dissipated energy. A summary is given in Sec. V.

II. DESCRIPTION OF THE DD-TDHF METHOD

The DD-TDHF method, originally proposed in Refs. [6]
and [15], relies on the hypothesis that complex microscopic
mean-field evolution of head-on collisions can be accurately
reduced into a simple one-dimensional macroscopic evolution
given by

dR

dt
= P

µ(R)
, (1)

dP

dt
= −dV

dR
− d

dR

(
P 2

2µ

)
− γ (R)Ṙ. (2)

R and P denote here the relative distance and relative mo-
mentum between two nuclei, respectively, and are computed
from mean-field theory according to the procedure described
in Refs. [15] and [16]. In the second equation, V (R) and γ (R)
denote the nucleus-nucleus potential and friction coefficient,
respectively, while term −dR(P 2/2µ) arises from possible
relative distance dependence of the reduced mass µ(R).
The nucleus-nucleus potential for symmetric and asymmetric
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FIG. 1. Barrier height extracted from DD-TDHF minus exper-
imental barrier height as a function of extracted barrier height for
reactions indicated in the figure. VB is deduced from high c.m. energy
(solid line) and from low c.m. energy TDHF (dashed line) reactions,
respectively (Values of different barrier heights can be found in
Table I of Ref. [16]).

reactions deduced from the DD-TDHF method has been
systematically investigated in Ref. [16]. Technical details of
the method are extensively discussed in this reference and
we recall here the main conclusions of the potential study:
(i) We have shown in Ref. [16] that the second term in the
right-hand side of Eq. (2), i.e., term involving R-derivative of
reduced mass, has a minor role in the extracted nucleus-nucleus
potential and can be neglected. This is also true here for relative
distance larger than the barrier position, denoted by RB . In
the following, we mainly focus on R � RB , where the effect
of the reduced mass R dependence on friction coefficient is
negligible. (ii) The DD-TDHF method gives results similar to
those of the density-constrained TDHF (DC-TDHF) method
at similar c.m. energy [17]. (iii) As the beam energy increases,
the extracted potential tends toward the frozen density (FD)
approximation, which is also expected because that density has
no time to reorganize as the nuclei collide. (iv) As c.m. energy
approaches the Coulomb barrier, dynamical effects induce a
reduction of the barrier height, which is in agreement with
the fusion threshold deduced from TDHF in Ref. [18] and is
in close agreement with the experimental barrier height, see
Fig. 1. In this figure, the solid line corresponds to the potential
height extracted using high c.m. energy TDHF trajectories
(Ec.m. � VB), whereas the dashed line stands for barriers
obtained when c.m. energy used in the DD-TDHF approaches
the Coulomb barrier (Ec.m. ∼ VB). Dynamical reduction of
the barrier height is clearly seen for all reactions. Because
of this reduction, the estimated barrier height at low energy
becomes much closer to barriers extracted from experiments.
In summary, investigations of Ref. [16] have shown that
the simple macroscopic reduction method of DD-TDHF can
provide a useful tool to infer nucleus-nucleus potentials from
microscopic mean-field theory. Employing the same method,
we can extract information about the one-body dissipation
mechanism, which is the topic of this article.

For TDHF calculations, we use the three-dimensional
TDHF code developed by P. Bonche and coworkers with the
SLy4d Skyrme effective force [11]. The mesh sizes in space
and time are 0.8 fm and 0.45 fm/c, respectively. As TDHF

initial conditions, we solve static HF equations [19,20] with
the same effective force and the same mesh size as in TDHF.
The initial distances between two nuclei are set between 16 and
22.4 fm. We assume that colliding nuclei follow the Rutherford
trajectory before they reach the initial distance for TDHF
calculations.

III. FRICTION COEFFICIENTS FROM MEAN-FIELD
DYNAMICS

A. Friction coefficient at c.m. energy well above
the Coulomb barrier

In addition to the nucleus-nucleus potential, one-
dimensional macroscopic reduction gives also access to the
friction coefficient γ (R). We first focus on friction coefficients
extracted from TDHF calculations when c.m. energy is
well above the Coulomb barrier, i.e., for which extracted
potentials identify with FD potentials [16]. Possible c.m.
energy dependence of dissipation is discussed later.

Figure 2 presents an important result of this work. The
reduced friction coefficients, defined as β(R) = γ (R)/µ(R),
are extracted from a fully microscopic theory without any
free parameter adjustment or adiabatic/diabatic assumption.
Reduced friction coefficients are systematically shown for
the mass symmetric reactions (upper panel) 40Ca + 40Ca and
48Ca + 48Ca and mass asymmetric reactions (lower panel)
16O + 40,48Ca, 16O + 208Pb, 40Ca + 48Ca, and 40Ca + 90Zr as
a function of relative distance. As the colliding nuclei ap-
proach each other, reduced friction coefficient monotonically
increases and is almost independent of colliding system.
Therefore, a universal behavior of the friction coefficient is
observed in collisions at c.m. energies well above the Coulomb
barrier.
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FIG. 2. (Color online) Reduced friction coefficient β(R) =
γ (R)/µ(R) as a function of R divided by the Coulomb barrier radius
RB for mass symmetric (upper panel) and mass asymmetric (lower
panel) reactions.

024609-2



ONE-BODY ENERGY DISSIPATION IN FUSION . . . PHYSICAL REVIEW C 79, 024609 (2009)

B. Energy dependence of friction coefficient

As c.m. energy approaches the Coulomb barrier, dynamical
effects such as deformation and neck formation can take
place. These aspects are automatically included in dynamical
mean-field calculations and have been shown to systematically
reduce the barrier compared to the high energy limit. Similarly
to potential energy landscape, we do expect dissipation to
be modified as the beam energy decreases. Figure 3 shows
the extracted friction coefficient obtained using different c.m.
energies between 55 and 100 MeV for the 40Ca + 40Ca
reaction. We note that the Coulomb barrier energy of this
reaction extracted at c.m. energy Ec.m. = 55 MeV is about
53 MeV. Similarly to potential landscape, which tends to
the FD case as the beam energy increases, we observe that
the magnitude of friction coefficient does not change as the
c.m. energy increases between Ec.m. = 90 and 100 MeV. The
associated dissipation corresponds to limited situations when
density has no time to reorganize in the entrance channel.

On the other hand, for Ec.m. = 55 and 57 MeV, which are
close to the Coulomb barrier, the friction coefficient exhibits
sizable energy dependence. The lower the energy is the larger
the magnitude of friction. The radial dependence of the friction
coefficient is very different from that at high energies. At
low energies, the friction coefficient shows a peak near the
Coulomb barrier and decreases to smaller values inside the
Coulomb barrier, which is located around R = RB ≈ 10 fm.

The enhanced dissipation around the Coulomb barrier
energies is partly due to early neck formation accompanied by
an increase of nucleon exchange. This is illustrated in Fig. 4,
where the number of nucleons transferred from one nucleus
to the other is shown as a function of R for the 40Ca + 40Ca
reaction at the same energies as in Fig. 3. For such a symmetric
reaction, the separation plane is located at x = 0. The number
of nucleons initially in the projectile (taken by convention at
initial time at x < 0) having passed through the separation
plane, i.e., transferred to the target, is estimated by

NP
trans[R(t)] =

∫
d3x ρP (r, t) θ (x), (3)

where ρP (resp. ρT ) are defined through

ρP/T (r, t) =
∑

i∈P/T

|φi(r, t)|2, (4)
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FIG. 3. (Color online) Reduced friction coefficient as a function
of R/RB for the 40Ca + 40Ca reaction at different c.m. energies.
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FIG. 4. (Color online) Number of nucleons transferred from
projectile to target NP

trans[R(t)] as a function of R for the 40Ca + 40Ca
reaction at c.m. energies the same as those in Fig. 3.

with φi(r, t) being the single-particle wave function initially in
the projectile (resp. target) and propagated through the mean
field. θ (x) is the step function equal to zero for negative x

and 1 for positive x. We can equivalently define the number
of nucleons transferred from target to projectile, denoted by
NT

trans. For symmetric reactions, NP
trans is equal to NT

trans at all
times. For R � RB , the enhancement of dissipation observed
in Fig. 3 is strongly correlated to the increase of particle
exchange. Such a strong correlation is indeed expected from
the window dissipation mechanism [4], in which the magnitude
of the friction coefficient is proportional to the window area,
and hence the number of nucleons exchanged through the
window. From the strong similarity between Figs. 3 and 4,
one can conclude that the main source of dissipation at large
distance (R � RB) is due to nucleon exchange.

Enhancement of dissipation at low c.m. energy is system-
atically observed as seen in Fig. 5, where the reduced friction
coefficient β(R) is plotted as a function of relative distance. It
also appears that enhancement of dissipation before the barrier
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FIG. 5. (Color online) Reduced friction coefficient β(R) =
γ (R)/µ(R) as a function of R divided by Coulomb barrier radius
RB for mass symmetric (upper panel) and mass asymmetric (lower
panel) reactions. In each case, the c.m. energy used to extract the
friction coefficient corresponds to the Coulomb barrier energy.
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R � RB is nearly independent of the systems investigated. For
instance near barrier R/RB = 1, the magnitude of friction at
high energy is about β(R) ≡ 0.8 × 1021 s−1, while at near
barrier energies, its magnitude is about four times larger,
β(R) ≡ 3 × 1021 s−1, for all systems investigated.

For all the systems investigated, calculations show that the
magnitude of friction coefficient rapidly decreases for decreas-
ing relative distances R < RB . We believe that this unphysical
behavior is due to simple macroscopic reduction procedure,
which breaks down at low energies, when colliding nuclei
begin to overlap strongly. In this case, complex dynamical
effects such as the onset of nuclear deformation [16] and
non-Markovian effects become important in the dissipation
mechanism, which are not incorporated in the simple reduction
procedure presented here.

C. Comparison with other models

There is large uncertainty between microscopic and phe-
nomenological descriptions of nuclear dissipation [5]. There-
fore it is of great interest to provide an accurate description
of nuclear dissipation. The macroscopic reduction presented
in this work provides a useful insight toward that goal. In
this section, we compare our results with those of the macro-
scopic surface friction model (SFM) [2] and the microscopic
calculations of Adamian et al. [21]. The SFM was introduced
in a classical description of relative motion in deep inelastic
heavy-ion collisions in Ref. [2]. The radial friction force
was parametrized as γ (R) = Kr (dVN/dR)α , where VN is the
nuclear part of the nucleus-nucleus potential and Kr and α are
parameters. These parameters were fitted as Kr = 4 × 10−23

s/MeV and α = 2. Microscopic calculations of Ref. [21] are
based on the linear response theory of nuclear dissipation
[22]. These calculations take into account time evolution of
single-particle occupation factors during collision through a
consistent treatment of the collective and intrinsic degrees of
freedom.

In Fig. 6, high energy (solid line) and low energy (dot-
dashed line) DD-TDHF results are compared both with the
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FIG. 6. Comparison between the reduced friction coefficient
deduced with the DD-TDHF method for the 40Ca + 40Ca reaction
at Ec.m. = 90 MeV (solid line) and the one computed by Adamian
et al. [21] for the 64Zn + 196Pt reaction at Elab = 440 MeV (solid
circles). The results of SFM [2] for the 40Ca + 40Ca reaction are also
presented by solid triangles.

SFM case (solid triangles) and an example of linear response
theory results obtained in Ref. [21] (solid circles). It is observed
that at R ≈ RB the SFM strongly overestimates the magnitude
of the friction coefficient compared to the other microscopic
models, while our result agrees at high c.m. energy with the
microscopic calculations of Ref. [21] (solid circles).

IV. DISSIPATED ENERGY, NUCLEON EXCHANGE, AND
EXCITATION ENERGY IN NUCLEI

In this section, we discuss the link between internal
excitation energy of colliding nuclei and dissipated energy
from the macroscopic degrees of freedom. In addition, we give
further evidence for the fact that particle transfer is the main
source of dissipation before two nuclei reach the Coulomb
barrier.

A. Total energy dissipation

From energy conservation, we can give a simple estimate
of dissipated energy Ediss in the entrance channel as

Ediss = Ec.m. − P 2

2µ
− V DD(R), (5)

where the second term is nothing but the relative kinetic
energy while V DD denotes the potential extracted from the DD-
TDHF method. Figure 7 illustrates the magnitude of different
quantities as a function of relative distance for the 40Ca +
40Ca reaction at Ec.m. = 100 MeV. According to Eq. (2),
we can calculate dissipated energy from the friction coefficient
γ using the Rayleigh formula

Ediss(R(t)) =
∫ t

0
dt ′ γ (R(t ′)) [Ṙ(t ′)]2, (6)

where Ṙ denotes the relative velocity deduced from mean-field
evolution. We have checked that the above equation gives
results identical to those of Eq. (5).

The dissipated energy provides a measure for the transfer
of energy from relative motion to internal degrees of freedom
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FIG. 7. Evolution of potential V DD extracted from the DD-TDHF
as a function of R (solid line) for the 40Ca + 40Ca reaction at
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between the two curves is nothing but dissipated energy in the
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during the collision. Denoting by E∗ the internal excitation
energy and assuming that all dissipated energy is converted
into internal excitation energy, we do expect E∗ = Ediss. In the
following, we apply a method to estimate directly the internal
excitation energy of the projectile and target during the early
stages of collision and show that a good agreement is obtained
with the amount of dissipated energy.

B. Estimate of internal excitation energy

1. Single nucleus case

For a single isolated nucleus, in the mean-field approach,
the excitation energy can be estimated using

E∗ = Eex
MF − E0

MF, (7)

where E0
MF and Eex

MF denote ground state and excited state
mean-field energy, respectively. For small excitations, we can
approximately calculate the excitation energy according to

E∗ �
∑

i

(
ε0
i − ετ

F

) × (
ni − n0

i

)
. (8)

In this expression, ε0
i denotes single-particle energies, ετ

F , with
τ = n, p stands for the neutron or proton Fermi energy, while
ni and n0

i are the occupation factors in the excited and the
ground state, respectively.

2. Dinucleus case

In the case of two colliding nuclei, we are mainly interested
in the entrance channel (R � RB) where the two nuclei
slightly overlap. In this dinuclear configuration, we define
the collective variables by drawing the separation plane as
illustrated in Fig. 8. In the entrance channel, colliding nuclei
are weakly excited. To calculate the excitation energy of each
partner using the lowest order perturbation expression (8), we
need the occupation factors of single-particle states. We can
determine the occupation factors by constructing the overlap
matrix of time-dependent single-particle states in the right side
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FIG. 8. Schematic illustration of the 40Ca + 40Ca reaction in the
entrance channel at relative distance R = 9.8 fm. The different curves
correspond to iso-contours of total nuclear density while the vertical
line denotes the separation plane.

of the separation plane [23],

〈i|j 〉R =
∫

d3r φ∗
i (r, t) φj (r, t) θ (x − x0), (9)

where the separation plane is at x = x0. In this expression,
φi(r, t) denote single-particle states originating from either
the target or the projectile. The overlap matrix in the left side
〈i|j 〉L is defined similarly. Occupation factors nα associated
with the left and right sides on the separation plane are
obtained by diagonalizing the corresponding overlap matrix.
At large relative distance, the occupation factors can be
grouped into two classes. We first consider the left subsystem
that initially contains the projectile. States with eigenvalues
of 〈i|j 〉L close to one will correspond to single-particle states
originating from the projectile side (left side), while those
with eigenvalues close to 0 correspond to single-particle
states originating from the target (right side) and that are
penetrated to the left. Because in the entrance channel changes
of occupation factors are small, instead of carrying out
diagonalization, we can use first-order perturbation theory
to determine occupation factors. In first-order perturbation
theory, eigenvalues of the overlap matrices 〈i|j 〉L are given
by nα ≈ 〈i|i〉L ≡ ni , where |i〉 denotes a complete basis of
the projectile including initially unoccupied states. As an
example, Fig. 9 shows the evolution of occupation factors ni

for six neutron single-particle states initially corresponding to
1s1/2, p3/2,±3/2, p1/2, d5/2,±5/2, 2s1/2, and d3/2,±3/2 states (with
the notation 	j,jz

) as a function of R for the 40Ca + 40Ca
reaction at Ec.m. = 100 MeV. Occupation factors decrease
monotonically as R decreases but remains still close to one
around the Coulomb barrier RB ≈ 9.8 fm.

To have a simple estimate of the excitation energy, we
further assume that occupation factors ni = 〈i|i〉L have the
same shape as the Fermi-Dirac distribution. Then, only the
tail of the distribution contributes to the excitation energy;
consequently, the excitation energy of the left subsystem can
approximately be calculated according to

E∗
L(t) ≈ 2

AP∑
i=1

(
ε0
i − ετ

F

)(〈i|i〉L − n0
i

)
, (10)
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FIG. 9. (Color online) Occupation factors ni = 〈i|i〉L for neutron
single-particle states as a function of R for the 40Ca + 40Ca reaction
at Ec.m. = 100 MeV.
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where summation runs over the states that are initially occupied
in the projectile. Similar expression can be found for the
excitation E∗

R of the right subsystem. In Fig. 10, the total
excitation energy E∗ = E∗

R + E∗
L (solid line) is compared with

the dissipated energy Ediss given by Eq. (6) (dashed line) for
the 40Ca + 40Ca reaction at Ec.m. = 100 MeV. The agreement
between the two quantities is quite good all the way up to the
barrier distance R > RB . Near equality of the excitation energy
and the dissipated energy provides a consistency check for the
friction coefficient extracted from the TDHF simulations.

V. SUMMARY

Using a macroscopic reduction procedure of the mean-field
theory proposed in Refs. [6,15,16], we extract the friction
coefficient associated with one-body energy dissipation in the
entrance channel of heavy-ion fusion reactions. The magnitude
and form factor of the reduced friction coefficient have a
universal property for various reactions that are investigated.
Nucleus-nucleus potentials obtained with the same method
exhibit energy dependence. In a similar manner, magnitude and
form factor of the extracted friction coefficient depend on the

beam energy as well. It is observed that the rate of dissipation
increases as the beam energy approaches the Coulomb barrier.
The enhancement of the dissipation rate at low energy is
a consequence of early neck formation and increasing rate
of particle exchange between projectile-like and target-like
nuclei. The order of magnitude of dissipation deduced from
TDHF is in agreement with microscopic calculations of the
friction coefficient based on the linear response theory. We
estimate the excitation energy in the entrance channel by other
methods. Very close agreement found between the calculated
excitation energy and the dissipated energy determined from
the friction coefficient provides further support for the validity
of the extracting procedure for dissipation that we employed.

We should note that the mean-field dynamics provide a good
approximation for describing nuclear collisions at bombarding
energies per nucleon smaller than the average nucleon binding
energy. Consequently, at low energies, nuclear dissipation is
dominated by the one-body dissipation mechanism (nucleon
exchange plus excitation of surface modes) based on the
mean-field dynamics. This is clearly illustrated by the fact
that friction coefficients extracted with the DD-TDHF method
are compatible with those used in other models in which dissi-
pative effects have been adjusted to describe experiments. At
higher bombarding energies, two-body dissipation mechanism
due to nucleon-nucleon collisions, which is neglected in the
mean-field dynamics, becomes more important. However, thus
far, we are not aware of any experimental signature in nuclear
fusion studies that clearly identifies the fraction of dissipation
mechanism due to the mean-field dynamics and the fraction
due to the two-body dissipation mechanism in the entrance
channel of heavy-ion reactions.
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