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Four-body calculation of 6He breakup with the Coulomb-corrected eikonal method
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The elastic breakup of a three-body projectile on a target is studied within the eikonal approximation with full
account of final-state interactions. Bound and scattering states are calculated in hyperspherical coordinates on a
Lagrange mesh. A correction is introduced to avoid the divergence of breakup cross sections due to the Coulomb
interaction. The eikonal approximation allows the direct calculation of various cross sections, and in particular
multidifferential cross sections can be obtained. The model is applied to the breakup of 6He on 208Pb. The 6He halo
nucleus is described within a three-body α+n+n model involving effective αn and nn interactions. The eikonal
phase is obtained from optical potentials between α and n, and the target. Around 0.8 MeV, the total breakup cross
sections exhibit a narrow 2+ resonant peak superimposed over a broad bump corresponding to a 1− resonance.
These results suffer from a disagreement with experimental data at 240 MeV/nucleon, where cross sections
are much smaller at low energies. The obtained E1 strength distribution resembles other theoretical results and
reopens a long-standing problem about the existence of a 1− low-energy resonance in the 6He continuum.
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I. INTRODUCTION

Breakup reactions are one of the main tools for studying
exotic nuclei and, in particular, halo nuclei [1–3]. Halo nuclei
present a large spatial extension and can be viewed as made
up of a normal nucleus, the core, and one or two weakly
bound nucleons located on the average at large distances,
the halo. The short lifetime and fragility of these systems
require specific methods of study. Breakup reactions of an
exotic projectile on a well-known target allow in principle a
reconstruction of the properties of the internal wave function
of the projectile. Contrary to early expectations, however, the
reconstruction procedure is not simple and must rely on an
accurate description of the collision mechanism, first-order
perturbation treatments being often not valid or not accurate
enough.

Several accurate methods have been developed for the
description of breakup reactions (see Ref. [4] for a review):
eikonal model [5,6], continuum-discretized coupled channels
(CDCC) approximation [7,8], numerical resolution of a three-
dimensional time-dependent Schrödinger equation [9–13], and
more recently dynamical eikonal approximation [14,15]. They
differ by their domain of validity and by their complexity. All
these methods have been applied to the breakup of various
one-nucleon halo nuclei such as 11Be or 8B. However, they
have not been applied yet to the breakup of two-neutron halo
nuclei, such as 6He, treated as three-body systems (some
calculations assume a two-body core+dineutron structure).
Encouraging preliminary steps have been performed with
CDCC, but published results are to date restricted to the
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study of the effect of the inclusion of breakup channels
on elastic scattering [16–18]. For three-body projectiles,
the time-dependent Schrödinger equation and the dynamical
eikonal approximation, which is based on the resolution of
the same equation but takes interference effects between
different trajectories into account, are presently numerically
too heavy. On the contrary, the relative simplicity of the eikonal
approximation does allow the four-body study of the breakup
of a three-body projectile at intermediate or high energies. This
approximation takes account of the interaction at all orders,
but it suffered until recently from a serious drawback in the
presence of a Coulomb interaction: a divergence due to a wrong
asymptotic behavior of the breakup probability at large impact
parameters. The divergence was usually eliminated by a cutoff
which introduced some arbitrariness in the model.

The adiabatic or sudden approximation made in the usual
eikonal model, which consists of neglecting excitations of
the projectile, is responsible for that divergence. It indeed
assumes a very brief collision time, which is incompatible
with the infinite range of the Coulomb interaction. The fact
that the adiabatic assumption is responsible for the failure
of the eikonal approximation is proved by comparison with
the nondivergent dynamical eikonal approximation where this
approximation is not performed. A correction to that problem
has been proposed by Margueron, Bonaccorso, and Brink [19]
and developed by Abu-Ibrahim and Suzuki [20]. The basic
idea of this Coulomb-corrected eikonal model is to replace
the diverging Coulomb eikonal phase at first order by the
corresponding first order of the perturbation theory [21]. The
latter, being obtained without adiabatic approximation, does
not diverge.

This improved eikonal approximation, the Coulomb-
corrected eikonal approximation (CCE), has recently been
tested in a comparison with the dynamical eikonal approx-
imation (DEA) for the breakup of 11Be on 208Pb and 12C
[22]. The agreement was found to be very good except in
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some observables when the nuclear interaction dominates and
dynamical effects are important. The CCE can be considered as
a fair, much simpler, approximation of the DEA. The aim of the
present paper is to extend eikonal calculations to the breakup
of two-neutron halo nuclei and to present a first application
with 6He.

The breakup of 6He on lead is interesting, because the
α core has a simple structure and experimental data exist
[23–25]. In an α+n+n model, it has been considered by
several authors within a nondynamical description [26–30].
Those models are based on a calculation of the E1 strength
distribution. This distribution is multiplied by an equivalent
photon number to derive the cross sections. Electric dipole
strength distributions are calculated with three-body models
in Refs. [26–28]. In Ref. [26], the adiabatic expansion in
hyperspherical coordinates is employed. In Ref. [27], the three-
body wave function is expanded in hyperspherical harmonics.
In both cases, continuum wave functions taking account of
final-state interactions are employed. In Ref. [28], the complex
rotation method is used to discretize the continuum. Other
models of this breakup use either plane waves [29] as final
states or a continuum discretized in a box [30].

Dynamical effects are partly included within the distorted-
wave impulse approximation in Refs. [31–33]. In that method,
the final-state wave function is approximated by the product
of a projectile continuum wave function and a distorted wave
describing the relative motion of the projectile and the target.
Different types of cross sections and the role of correlations
are studied in these works.

In the present paper, the Coulomb-corrected eikonal ap-
proximation is developed for the three-body breakup of
a projectile at intermediate energies within a four-body
model. The internal structure of the three-body projectile is
described in hyperspherical coordinates, with an expansion
in hyperspherical harmonics. This calculation is significantly
simplified by the use of the Lagrange-mesh method [34],
which was developed for three-body bound states in Ref. [35]
and for three-body scattering states in Ref. [36]. The Lagrange-
mesh method has the advantage of being accurate with a
small number of mesh points. The eikonal model takes
approximately into account both nuclear and Coulomb effects,
at all orders. Final-state interactions are fully included. The
formalism is applied to the elastic breakup of the 6He halo
nucleus for which the effective interactions of the α core
with the target are well known. The model does not require
any optical potential between the 6He projectile and the
target. Various breakup cross sections are calculated. Elastic
scattering is also studied as a simpler particular case. A
different four-body eikonal approach to elastic scattering can
be found in Refs. [37,38]. The eikonal model has been shown
in Ref. [39] to describe the elastic scattering of halo nuclei in
a way as satisfactory as with CDCC [16].

In Sec. II, the derivation of the bound and continuum states
of a three-body system composed of a core and two neutrons is
described. Scattering states with given final momenta between
the projectile constituents are constructed. The expression of
the E1 strength distribution is established. In Sec. III, the
breakup and elastic transition matrix elements are derived
within the CCE. The expressions of various cross sections are

given. Results are presented and compared with experiment
and with other theoretical works in Sec. IV. Concluding
remarks are made in Sec. V.

II. BOUND AND CONTINUUM STATES OF A
THREE-BODY PROJECTILE

A. Bound and scattering partial waves in
hyperspherical coordinates

Let us consider a system of three particles, the core with
coordinate rc, charge Zce, and mass Ac in units of the neutron
mass mn and two neutrons with coordinates r1 and r2. The
total mass is A = Ac + 2. We start from the Jacobi coordinates
r21 = r2 − r1 of neutron 2 with respect to neutron 1 and
rc(12) = rc − 1

2 (r1 + r2) of the core with respect to the center
of mass of the neutrons. After removal of the center-of-mass
motion, the three-body Hamiltonian of this system can be
written as

H0 = − h̄2

2mn

(�x + �y) + Vc1 + Vc2 + V12, (1)

where scaled Jacobi coordinates are defined as x = 1√
2

r21 and

y =
√

2Ac

A
rc(12) (see Fig. 1), and Vij is an effective potential

between particles i and j (i, j = c, 1, 2) [35]. To investigate
the breakup cross sections for this system, we need wave
functions of such a projectile at both positive and negative
energies.

The hyperspherical-harmonics method is an efficient tool
for dealing with three-body systems. This formalism is well
known (see Refs. [3,35] for details). In the notation of
Refs. [35,40], the hyperradius ρ and hyperangle α are defined
as ρ2 = x2 + y2 and α = arctan(y/x). The hyperangle α and
the orientations �x and �y of x and y provide a set of five
angles �5ρ . The volume element is dx d y = ρ5 dρ d�5ρ with
d�5ρ = sin2 α cos2 α dα d�x d�y .

c

2

1

T

b

Z

√
2x√

A
2Ac

y

R

FIG. 1. Scaled internal Jacobi coordinates x and y of the
projectile, and transverse and longitudinal components b and Z of
the projectile-target coordinate R.
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A partial wave function �JMπ is a solution of the
Schrödinger equation associated with the three-body Hamil-
tonian (1) at energy E. It can be expanded as

�JMπ
(
ρ,�5ρ

) = ρ−5/2
∑
γK

χJπ
γK (ρ)YJM

γK

(
�5ρ

)
, (2)

where K is the hypermomentum quantum number, index
γ stands for (lx ,ly ,L,S), and YJM

γK (�5ρ) are hyperspherical
harmonics [35]. The hyperradial wave functions χJπ

γK (ρ) are
unknown. The parity π = (−1)K of the three-body relative
motion restricts the sum over K to even or odd values.
Rigorously, the summation over γK should contain an infinite
number of terms. In practice, this expansion is limited by a
maximum K value, denoted as Kmax. All lx and ly values
compatible with Kmax (i.e., lx + ly � Kmax) are included. For
weakly bound and scattering states, it is well known that
the convergence is rather slow and that large Kmax values
must be used. The functions χJπ

γK (ρ) are derived from a set
of coupled differential equations [35,36]. For bound states,
approximate solutions can be obtained with an expansion on a
square integrable finite basis. However, using the same basis
for scattering states raises problems, since they do not vanish
at infinity. Their asymptotic form requires a proper treatment.
This is made possible within the R-matrix theory [41].

The R-matrix method allows us to match a variational
function over a finite interval with the correct asymptotic
solutions of the Schrödinger equation. It is based on a division
of the configuration space into two regions: an internal region,
with hyperradius a, where the solution of the system of coupled
equations is given by some variational expansion, and an
external region where asymptotic expressions can be used.
In the external region, it is assumed that only the Coulomb and
centrifugal potentials do not vanish so that the exact solutions
are known. For three-body systems, an intermediate region
where the potential is not fully negligible is also useful to
avoid using a very large internal region [36].

In the following, we assume that the channel radius a

is large enough so that the matrix elements necessary in
the reaction calculation are well approximated by integrals
over the internal region only. In other words, because of the
exponential decrease of the bound state entering the transition
matrix elements, only the internal part of the scattering state
is needed for the reaction. Of course, the derivation of the
scattering state requires that it be considered over the full
configuration space. With this assumption (valid for a values
to be adapted to each practical calculation), both bound and
scattering hyperradial wave functions are approximated over
the internal region by the expansion

χJπ
γK (ρ) =

N∑
i=1

cJπ
γKiui(ρ), (3)

where the N orthonormal functions ui(ρ) represent a square-
integrable variational basis over [0, a] and cJπ

γKi are the
corresponding coefficients.

For the basis functions ui(ρ), we use the Lagrange-mesh
method which is quite efficient for describing two-body bound
and scattering states [34,42,43]. This method was extended

to three-body bound states in Ref. [35] and to three-body
scattering states in Ref. [36]. The N basis functions ui(ρ) are
defined in Eq. (26) of Ref. [44] and in Eq. (42) of Ref. [36].
The mesh points axi ∈ [0, a] are obtained from the zeros of a
shifted Legendre polynomial given by PN (2xi − 1) = 0. The
basis functions vanish at the origin and satisfy the Lagrange
conditions ui(axj ) = (aλi)−1/2δij , i.e., they vanish at all mesh
points but one. The main advantage of the Lagrange-mesh
technique is to strongly simplify the calculation of matrix
elements without loss of accuracy if the Gauss approximation
consistent with the mesh is used [35]. Integration over ρ then
provides a diagonal potential matrix with matrix elements
obtained by a single evaluation of the potential at each mesh
point. We refer the reader to Ref. [36] for details.

In a reaction, it is convenient to have similar expansions
for the bound and scattering states. The same mesh must
thus be used for all states. To this end, the shifted Lagrange-
Legendre mesh necessary for describing scattering states with
the R-matrix method replaces the Lagrange-Laguerre mesh
employed for bound states in Ref. [35]. Hence integrations
over the hyperradial coordinate reduce to weighted sums over
the mesh points [see Eq. (38) below].

For bound states (E < 0), the external wave function
decreases exponentially and becomes negligible beyond the
internal region. The normalization imposes∑

γK

N∑
i=1

(
cJπ
γKi

)2 = 1, (4)

since the coefficients are then real.
The normalization of the scattering states (E > 0) is

fixed by choosing their asymptotic form. Several choices are
possible and would lead to apparently different expressions
for matrix elements. In any case, the asymptotic behavior of
a given partial wave depends on the collision matrix. For real
interactions, the collision matrix UJπ of each partial wave Jπ

is unitary and symmetric. For three-body scattering, it differs
from two-body collision matrices in an important aspect. Its
dimension is not given by the number of open channels but is
infinite, since the particles can share the angular momentum
in an infinite number of ways. In practical calculations, its
dimension depends on the number of hypermomenta included
in the calculation, i.e., on the truncation value Kmax. The
entrance channel (labeled below with subscript ω) thus also
contains the same number of components.

The asymptotic form of the scattering states with the
normalization chosen here is given by

χJπ
γK(γωKω)(ρ) →

ρ→∞ iKω+1(2π/k)5/2
[
H−

K+2(kρ)δγ γω
δKKω

−UJπ
γK,γωKω

H+
K+2(kρ)

]
, (5)

where k =
√

2mnE/h̄2 is the wave number [27,36,45].
The ingoing and outgoing functions read H±

K (x) =
±i(πx/2)1/2[JK (x) ± iYK (x), ] where JK (x) and YK (x) are
Bessel functions of first and second kind, respectively [46].
The indices γωKω denote the partial entrance channel for
this solution. The asymptotic behavior (5) fixes in Eq. (3)
the normalization of the coefficients cJπ

γK(γωKω)i for scattering
states with a given entrance channel.
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B. Ingoing and outgoing scattering states

To calculate breakup cross sections, one needs to define
outgoing scattering states, i.e., scattering states corresponding
to fixed values of the final relative momenta of the three
particles. Such states are constructed by time-reversing ingoing
scattering states corresponding to fixed values of the initial
relative momenta. Before defining them, we first need to
consider three-body plane waves.

A six-dimensional plane wave can be expanded as [40]

(2π )−3 exp[i(kx · x + ky · y)]

= (kρ)−2
∑

lx lyLMLK

iKJK+2(kρ)YLML∗
lx lyK

(�5k)YLML

lx lyK
(�5ρ),

(6)

where k =
√
k2
x + k2

y and �5k = (�kx
,�ky

,αk) represents five
angles corresponding to the directions of kx and ky and to
αk = arctan(ky/kx). For a spin state χSν , the plane wave with
spin is represented as

(2π )−3 exp[i(kx · x + ky · y)]χSν

= (2π )−1/2(kρ)−5/2
∑

γKML

iK+1YLML∗
lx lyK

(�5k)

×
∑

J

(LSMLν|JM)YJM
γK (�5ρ)[H−

K+2(kρ) − H+
K+2(kρ)],

(7)

where ingoing and outgoing waves are explicitly displayed.
With the asymptotic behavior (5) of the hyperradial partial

waves, stationary scattering states are given by [47]

�
(+)
kx kySν = (2π )−3ρ−5/2

∑
JM

∑
l′x l′yL′K ′

(L′S ′M ′
Lν|JM)YL′M ′

L∗
l′x l′yK ′ (�5k)

×
∑
γK

YJM
γK (�5ρ)χJπ

γK(γ ′K ′)(ρ). (8)

Their incoming wave is given by the incoming wave in Eq. (7)
with the same normalization factor fixed by〈

�
(+)
kx kySν

∣∣�(+)
k′

x ,k
′
yS

′ν ′
〉 = δ(kx − k′

x)δ(ky − k′
y)δSS ′δνν ′ . (9)

Here and in the following, the Dirac bracket notation represents
a six-dimensional integral over the scaled Jacobi coordinates
or, equivalently, over the hyperspherical coordinates.

The time-reversed ingoing stationary scattering state

�
(−)
kx kySν = (−1)S+νK�

(+)
−kx ,−kyS−ν, (10)

where K is the time-reversal operator, is given after rearrange-
ment by

�
(−)
kx k ySν = (2π )−3ρ−5/2

∑
JM

∑
l′x l′yL′K ′

(L′S ′M ′
Lν|JM)YL′M ′

L∗
l′x l′yK ′ (�5k)

×
∑
γK

(−1)KYJM
γK (�5ρ)χJπ∗

γK(γ ′K ′)(ρ). (11)

From now on, for simplicity, we write YLML

lx lyK
(�5k) as

YLML

γK (�5k) even though no spin appears in this case.

C. Dipole strength distribution

The E1 strength distribution for transitions from the ground
state to the continuum is a property of the projectile that can be
extracted from breakup experiments under some simplifying
assumptions which will be discussed in Sec. IV. In the
hyperspherical coordinate system, the effective E1 operator
reads

ME1
µ = eZc

(
2

AcA

)1/2

yY
µ

1 (�y). (12)

The E1 transition strength from the ground state at negative
energy E0 with quantum numbers J0M0π0 to the continuum
is defined as

dB(E1)

dE
= 1

2J0 + 1

∑
SνM0µ

∫
dkxdk yδ

[
E − h̄2

2mn

(
k2
x + k2

y

)]
× ∣∣〈�(−)

kx k ySν

∣∣M(E1)
µ

∣∣�J0M0π0
〉∣∣2

, (13)

where E is the excitation energy with respect to the three-
particle threshold. With the present definitions, its explicit
expression is given by

dB(E1)

dE
= (2π )−5 2Z2

c e
2

AcA

(
2mn

h̄2

)3

E2
∑

γωKωJ

2J + 1

2J0 + 1

×
∣∣∣∣∣∣
∑
γK

(−1)K
∑
γ0K0

C
J0J1
γ0γ 01

×
∫ π/2

0
sin3 α cos2 α φ

γ

K (α)φγ0
K0

(α) dα

×
∫ ∞

0
χJπ

γK(γωKω)(ρ)ρχ
J0π0
γ0K0

(ρ) dρ

∣∣∣∣∣∣
2

, (14)

where χ
J0π0
γ0K0

corresponds to the ground state and C
J0J1
γ0γ 01 is

a particular case of a general coefficient defined below in
Eq. (36). Function φ

γ

K (α) is given by Eq. (9) of Ref. [35].

III. EIKONAL APPROXIMATION FOR A FOUR-BODY
SYSTEM

A. Principle

We consider a collision between a three-body projectile and
a structureless target with mass AT mn and charge ZT e. The
breakup reaction is described by the four-body Schrödinger
equation(

− h̄2

2µPT

�R + H0 + VPT (R, x, y)

)
�(R, x, y)

= ET �(R, x, y), (15)

where R is the relative coordinate between the center of mass
of the projectile and the target, µPT is the projectile-target
reduced mass, H0 is given by Eq. (1), and ET is the total energy
of the four-body system. The effective potential between
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projectile and target is defined as (see Fig. 1)

VPT (R, x, y) = VcT

(
R +

√
2

AAc

y

)

+V1T

(
R −

√
Ac

2A
y − 1√

2
x

)

+V2T

(
R −

√
Ac

2A
y + 1√

2
x

)
. (16)

In this expression, each interaction ViT between a constituent
of the projectile and the target is simulated by a complex optical
potential (including a point-sphere Coulomb interaction for
VcT ). The projectile is assumed to be initially in its ground
state.

In the eikonal approximation, the wave function is factor-
ized as

�(R, x, y) = eiKZ�̂(R, x, y), (17)

where Z is the longitudinal component of R, i.e., the
component along the direction of the initial wave vector K
of the projectile-target relative motion (see Fig. 1). We denote
the transverse component of R as b and use R and (b, Z) as
equivalent notation. The initial wave number K is related to
the total energy by

ET = h̄2K2

2µPT

+ E0. (18)

The Schrödinger equation becomes(
− h̄2

2µPT

�R−ih̄v
∂

∂Z
+H0 + VPT (R, x, y)−E0

)
�̂(R, x, y)

= 0, (19)

where v = h̄K/µPT is the initial relative velocity. At high
energy, one can assume that |�R�̂| � K|∂�̂/∂Z| and neglect
the first term. Moreover, the adiabatic approximation consists
in replacing H0 by E0, i.e., in assuming that the collision
time is short enough so that the excitation energy of the
projectile can be neglected when compared with the incident
energy. The adiabatic approximation is not used in the
dynamical eikonal approximation [14,15], but this approach
would presently require excessive computation times with
a three-body projectile. Then one obtains the approximate
eikonal wave function

�̂eik.(R, x, y) = exp

[
− i

h̄v

∫ Z

−∞
VPT (b, Z′, x, y)dZ′

]
×�J0M0π0 (x, y) (20)

such that wave function (17) satisfies the initial condition at
Z → −∞, i.e., an incoming Coulomb distorted wave times
the ground-state wave function of the projectile (see Ref. [22]).
With this wave function, the different scattering properties can
be calculated.

B. Transition matrix elements

To obtain cross sections, one must calculate transition
matrix elements for the breakup of a two-neutron halo nucleus
in its ground state into three fragments. Let kc, k1, k2 be
the wave vectors of these fragments in the projectile frame.
The relative motions are defined by the relative wave vector
of the neutrons

k21 = 1√
2

kx = 1

2
(k2 − k1) (21)

and the relative wave vector of the core with respect to the
center of mass of the neutrons

kc(12) =
√

2Ac

A
ky = 2

A
kc − Ac

A
(k1 + k2). (22)

Here we use the physical wave vectors k21 and kc(12) in place
of kx and ky , which are convenient only for calculations in
hyperspherical coordinates.

When expressed in coordinates x and y, the transition
matrix elements read

Tf i =
(

A

Ac

)3/4 〈
ei K ′ ·R�

(−)
kx k ySν(x, y)|VPT |�(R, x, y)

〉
(23)

for four-body breakup. The factor (A/Ac)3/4 arises from the
fact that the integration is performed in coordinates x and y
and that the bound-state wave function that we use is normed
in this coordinate system [see Eqs. (2)–(4)].

At the eikonal approximation, the exact scattering wave
function � in Eq. (23) is replaced by its approximation �eik.

given by Eqs. (17) and (20). The transition matrix element can
then be written as

Tf i = ih̄v

∫
db e−iq·bSSν(kx, k y, b). (24)

The transferred wave vector is defined as

q = K ′ − K , (25)

where K ′ = (K ′,�) with � = (θ, ϕ) is the final relative wave
vector of the projectile and target, or equivalently by

q = kc + k1 + k2. (26)

In the eikonal approximation, vector q is assumed to be
orthogonal to the initial wave vector K . This approximation
also implies that K is large. The final wave number K ′ of the
projectile center of mass verifies

ET = h̄2K ′2

2µPT

+ E, (27)

with the projectile final excitation energy E. The eikonal
breakup amplitudes read

SSν(kx, k y, b) =
(

A

Ac

)3/4 〈
�

(−)
kx k ySν

∣∣eiχ(b)
∣∣�J0M0π0

〉
. (28)

In this expression, the final scattering state is given by
Eq. (11) and the initial bound state by Eq. (2). In both cases,
the hyperradial functions are expanded according to Eq. (3).
The eikonal phase shift χ is obtained as

χ = χcT + χ1T + χ2T . (29)
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It depends on the transverse part b of R as well as on the
transverse parts bx and by of the scaled Jacobi coordinates x
and y. After a translation of variable Z, the different terms
read

χcT

(
b +

√
2

AAc

by

)

= − 1

h̄v

∫ +∞

−∞
VcT

(
b +

√
2

AAc

by, Z
′
)

dZ′, (30)

and for j = 1, 2,

χjT

(
b −

√
Ac

2A
by ∓ 1√

2
bx

)

= − 1

h̄v

∫ +∞

−∞
VjT

(
b −

√
Ac

2A
by ∓ 1√

2
bx, Z

′
)

dZ′. (31)

Because of the rotational invariance of the interactions, χ is an
even function with respect to the total parity of the four-body
system.

Expressions (30) and (31) depend on the orientation of b,
which appears as a parameter in Eq. (28). To avoid calculating
several expressions differing only by the polar angle ϕb, one
may write [15]

χ (b) = e−iϕbJtot,zχ (bx̂) eiϕbJtot,z , (32)

where J tot is the total angular momentum of the four-body
system. A single calculation per b value is then enough. We
choose to perform it with b oriented along the x axis (ϕb =
0). The eikonal phase factor can be expanded in multipolar
components as

exp[iχ (bx̂, bx, by)]

=
∑

λxλyλµ

[Yλx
(�x) ⊗ Yλy

(�y)]λµF
λµ
λxλy

(α, ρ). (33)

The complex functions F
λµ
λxλy

also depend on b. The three
indices λ, λx , and λy satisfy the triangle rule. Different
properties are proved in Appendix A. The index λx only takes
even values because particles 1 and 2 are identical. Hence,
with respect to the internal parity operator of the projectile,
the parity of the different multipolar components is (−1)λy .
For positive (negative) parity, µ is even (odd). If λ is odd,
µ = 0 does not exist. The monopole component is purely even,
and the dipole component is purely odd. Parity mixing starts
at λ = 2. Functions F

λµ
λxλy

with negative µ values are related
to the corresponding functions with positive µ values by a
phase factor. Practical aspects of this expansion are discussed
in Appendix A.

Introducing the different expansions in the amplitude (28),
one obtains

SSν(kx, k y, b) =
(

A

Ac

)3/4 ∑
JM

ei(M0−M)ϕb

×
∑
γωKω

(LωSM −νν|JM)YLωM−ν
γωKω

(�5k)

×
∑
λµ

(J0λM0µ|JM)SJ0Jλµ

γωKω
(E, b), (34)

where partial eikonal breakup amplitudes are defined as

S
J0Jλµ

γωKω
(E, b) = (2π )−3

∑
γK

(−1)K
∑
γ0K0

×
∑
λxλy

C
J0Jλ
γ0γ λxλy

I
J0Jλµ

γ0K0γKλxλy (γωKω)(E, b). (35)

The rotation operators in Eq. (32) give rise to the phase factor
in Eq. (34). The angular momentum coupling coefficients are
given by

C
J0Jλ
γ0γ λxλy

= 〈lx lyLSJ ||[Yλx
⊗ Yλy

]λ||lx0 ly0L0S0J0〉

= 1

4π
(−1)lx+ly+L+S+J0+λδSS0 l̂x l̂y l̂x0 l̂y0 λ̂x λ̂y λ̂L̂L̂0Ĵ0

×
(

lx λx lx0

0 0 0

)(
ly λy ly0

0 0 0

)

×
{

J J0 λ

L0 L S

}
lx0 ly0 L0

λx λy λ

lx ly L

 , (36)

with Ĵ = √
2J + 1. The remaining double integral over the

hyperangle and the hyperradius reads

I
J0Jλµ

γ0K0γKλxλy (γωKω)(E, b)

=
∫ π/2

0
sin2 α cos2 α φ

γ

K (α)φγ0
K0

(α) dα

×
∫ ∞

0
χJπ

γK(γωKω)(ρ)Fλµ
λxλy

(α, ρ)χJ0π0
γ0K0

(ρ) dρ. (37)

Notice that the complex function χJπ
γK(γωKω) is not conjugated.

With Eq. (3) and the Lagrange conditions, the integral over
the hyperradial coordinate is simply obtained at the Gauss
approximation as

∫ ∞

0
χJπ

γK(γωKω)(ρ)Fλµ
λxλy

(α, ρ)χJ0π0
γ0K0

(ρ)dρ

≈
N∑

i=1

cJπ
γK(γωKω)ic

J0π0
γ0K0i

F
λµ
λxλy

(α, axi). (38)
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The transition matrix element (24) can thus be written as

Tf i = 2πih̄v

(
A

Ac

)3/4 ∑
JMλµ

i−|µ|e−iµϕ(J0λM0µ|JM)

×
∑
γωKω

(LωSM −νν|JM)YLωM−ν
γωKω

(�5k)

×
∫ ∞

0
J|µ|(qb)SJ0Jλµ

γωKω
(E, b)b db (39)

after integration over ϕb. The integer index |µ| = |M − M0|
of the Bessel function J|µ| is due to the phase factor ei(M0−M)ϕb

in Eq. (34).

C. Coulomb-corrected eikonal approximation

The eikonal phase χ can be separated into its Coulomb and
nuclear contributions

χ = χN + χC + χC
PT . (40)

In this expression, χC
PT is the global elastic Coulomb phase

shift between projectile and target. The Coulomb phase
shift χC due to the tidal Coulomb effects in the projec-
tile is calculated with the bare Coulomb interaction, and
the remaining phase shift χN contains effects of the nuclear
forces as well as of differences between Coulomb forces taking
the finite size of the target into account and the bare Coulomb
force. At the eikonal approximation, the integral defining χC

PT

diverges and must be calculated with a cutoff [5,6]. Up to an
additional cutoff-dependent term that plays no role in the cross
sections, it can be written as

χC
PT = 2η ln(Kb), (41)

where η = ZcZT e2/h̄v is the Sommerfeld parameter. The
phase (41) only depends on b.

Because of the long range of the Coulomb force, the
Coulomb phase χC behaves as 1/b at large distances [22].
In the calculation of the breakup cross sections, an integration
over b db of the 1/b2 asymptotic behavior of the squared transi-
tion matrix elements diverges logarithmically. This divergence
occurs in the first-order term iχC of the expansion of the
eikonal Coulomb amplitude exp(iχC). A plausible correction
is therefore to replace in Eq. (28) the factor involving χC of
the eikonal phase by the expression [19,20]

eiχC → eiχC − iχC + iχFO. (42)

where χFO is the result of first-order perturbation theory, which
decreases exponentially at large b. This approximation has
been tested and validated for a two-body projectile in Ref. [22].
Explicitly, the tidal Coulomb factor now reads

eiχC − iχC + iχFO = eiQb̂·by − i[1 − ξK1(ξ )]Qb̂ · by

− ξK0(ξ )Qzy, (43)

where Kn is a modified Bessel function, zy is the longitudinal
component of y,

ξ = (E − E0)b

h̄v
, (44)

and

Q = 2η

b

√
2

AcA
. (45)

D. Cross sections

From the transition matrix elements of Eq. (39), various
cross sections can be derived. The differential cross section
with respect to the eight independent variables reads in the
center-of-mass frame

dσ

d�dk21 dkc(12)
= 1

2J0 + 1

1

4π2

(
µPT

h̄2

)2
K ′

K

∑
SνM0

|Tf i |2. (46)

The wave numbers k21 and kc(12) can be expressed from k and
αk . The total internal energy of the projectile is given by

E = h̄2

2mn

k2 = h̄2

2mn

(
k2
x + k2

y

)
. (47)

Partial integrations lead to various cross sections. The
volume element in momentum space becomes

dk21 dkc(12) =
(

Ac

A

)3/2

dkx dky =
(

Ac

A

)3/2

k5dk d�5k,

(48)

where �5k represents the angular parts of k21 and kc(12), and
αk . An integration of cross section (46) over the directions �,
�x , �y of K ′, k21, kc(12) leads to

dσ

dE21dEc(12)

= π

2(2J0 + 1)

(
2mn

h̄2

)2 (
A

Ac

)1/2

k21kc(12)

×
∑

γωJλµ

2J + 1

2λ + 1

∫ ∞

0

∣∣∣∣∣∣
∑
Kω

φ
γω

Kω
(αk)SJ0Jλµ

γωKω

∣∣∣∣∣∣
2

b db, (49)

where φ
γω

Kω
depends here on αk , E21 = h̄2k2

21/mn, and Ec(12) =
Ah̄2k2

c(12)/4Acmn. The index γω now represents (lxω, lyω, S,
Lω) everywhere. The energies E21 and Ec(12) correspond to an
α + dineutron structure. Cross sections emphasizing a 5He + n

structure can be calculated with the same partial amplitudes
S

J0Jλµ

γωKω
appearing in Eq. (49) [25] (see Appendix B).

Integration of Eq. (46) over �5k provides

dσ

d�dE
= 1

2(2J0 + 1)

(
2mn

h̄2

)3

E2KK ′ ∑
γωKωJλµ

2J + 1

2λ + 1

×
∣∣∣∣∫ ∞

0
J|µ|(qb)SJ0Jλµ

γωKω
b db

∣∣∣∣2

, (50)

with q ≈ 2K sin(θ/2), since K ′ ≈ K . Finally, integrating
Eq. (50) over � leads to

dσ

dE
=

∑
Jπ

dσ Jπ

dE
, (51)
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where the partial cross sections are given by

dσJπ

dE
= π

2J0 + 1

(
2mn

h̄2

)3

E2
∑

γωKωλµ

2J + 1

2λ + 1

×
∫ ∞

0

∣∣SJ0Jλµ

γωKω

∣∣2
b db, (52)

with Kω values restricted by (−1)Kω = π .

E. Elastic scattering

Elastic scattering can be studied within the same model.
Notice that it only requires core-target and neutron-target
optical potentials. There is no need for an additional projectile-
target potential. The calculation is much simpler than for
breakup as it only involves the ground-state wave function.

The scattering amplitudes are given at the eikonal approxi-
mation by

fM ′
0M0 (�) = iK

2π

∫
dbe−iq·b[δM ′

0M0 − S
J0

M ′
0M0

(b)
]
, (53)

where the eikonal elastic amplitudes read

S
J0

M ′
0M0

(b) = 〈�J0M
′
0π0 |eiχ(b)|�J0M0π0〉. (54)

With Eqs. (2), (32), and (33), these amplitudes can be expanded
as

S
J0

M ′
0M0

(b) = e−i(M ′
0−M0)ϕb

∑
λµ

(J0λM0µ|J0M
′
0)

×
∑
γK

∑
γ0K0

∑
λxλy

C
J0J0λ
γ0γ λxλy

I
(0)J0J0λµ

γ0K0γKλxλy
(55)

as a function of the coefficients (36) and of double integrals
over the hyperangle and the hyperradius,

I
(0)J0J0λµ

γ0K0γKλxλy
(b) =

∫ π/2

0
sin2 α cos2 αφ

γ

K (α)φγ0
K0

(α) dα

×
∫ ∞

0
χ

J0π0
γK (ρ)Fλµ

λxλy
(α, ρ)χJ0π0

γ0K0
(ρ) dρ.

(56)

The multipole components F
λµ
λxλy

defined in Eq. (33) have here
a positive parity (λy and µ even).

The treatment of the Coulomb interaction requires some
care. As usual, it is convenient to separate the projectile-target
Coulomb amplitude to have a faster convergence. The elastic
cross section can be written as

dσ

d�
= 1

2J0 + 1

∑
M ′

0M0

|fC(�)δM ′
0M0 + f̃M ′

0M0 (�)|2, (57)

where fC is the quantal Coulomb scattering amplitude, and
the additional scattering amplitudes f̃M ′

0M0 are given by

f̃M ′
0M0 (�) = iK

∫ ∞

0
J|µ|(qb)

[
eiχC

PT (b)δM ′
0M0

− i−|µ|e−iµϕS
J0

M ′
0M0

(bx̂)
]
b db, (58)

with µ = M ′
0 − M0.

IV. BREAKUP OF THE 6He HALO NUCLEUS

A. Conditions of the 6He calculation

The 6He halo nucleus is described with an α particle as
the core. The total intrinsic spin S of the three-body system
is thus equal to the total spin of the two halo neutrons. The
most complicated ingredient in the calculation is the α+n+n

final wave function in the continuum. The conditions of the
calculation are thus chosen in such a way that the final state is
well described. We closely follow the calculation in Ref. [36].
Another important condition is that the binding energy of 6He
be close enough to the experimental value −0.973 MeV [48]
in order to have a reasonable extension for the halo.

The α+n+n description (Ac = 4) requires αn and nn

effective forces. We select the αn potential of Kanada
et al. [49], which contains central and spin-orbit terms. This
potential is deep; i.e., it contains a forbidden state in the
s1/2 wave which must be eliminated. Except when otherwise
mentioned, we perform this elimination with a supersymmetric
transformation [50] of the s-wave component, leaving the
phase shift unchanged. For the nn potential, we choose the
central part of the Minnesota interaction with u = 1 [51],
which reproduces the deuteron binding energy and the nn

scattering length.
The Lagrange-mesh calculation is performed with the

shifted Legendre mesh axi defined by PN (2xi − 1) = 0 and
the corresponding Gauss quadrature [36,44]. Its definition is
fixed by two parameters, the channel radius a and the number
of hyperradial mesh points N . Most calculations are performed
with a = 30 fm and N = 30. This choice has been found
optimal from comparisons with (a,N ) = (25, 25) for which
cross sections agree within a few percents, and (30, 35) and
(40, 35) for which they agree within much better than 1%.

For the 0+ ground-state wave function of 6He, we use all
partial waves with K � Kmax = 20, i.e., 36 spin 0 and 30 spin 1
components. As is well known, the bare αn and nn interactions
do not allow the reproduction of the experimental 6He
binding energy −0.973 MeV within this three-body model. In
Ref. [36], the energy −0.962 MeV is obtained by multiplying
the αn interaction by a factor of 1.051. This technique, how-
ever, has the drawback of submitting the neutrons to a stronger
attraction, which may affect the breakup. Other ways of
reproducing this binding energy are employed in the literature.
In Ref. [27], an attractive three-body hyperscalar potential,
i.e., a central potential depending only on the hyperradius
ρ, is added to the different two-body interactions. We have
also performed some calculations with this approach. Notice
that the hyperscalar potential has no physical relation with
realistic three-body interactions. In Ref. [52], the attractive
part of the nn Minnesota interaction is increased in the 1S0

partial wave to fit the 6He binding energy. With this technique,
only the final-state interaction between the neutrons is slightly
affected. We have adopted this approach in the following
unless otherwise mentioned. The strength of the longest range
Gaussian is increased by a factor of 1.13 giving an energy
of −0.986 MeV. The multiplicative factor differs from the
factor 1.07 in Ref. [52], because the forbidden state is here
eliminated by a supersymmetric transformation whereas it
is eliminated in that reference with a pseudopotential [53].
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Some calculations with a pseudopotential elimination for
the 6He bound state are described below. Let us recall that
the pseudopotential elimination cannot be easily applied to
continuum states because of the nonlocality of the operator
projecting out forbidden states.

In the three-body final scattering state calculated under
the same conditions, the three dominant natural-parity partial
waves are considered: Jπ = 0+, 1−, and 2+. The number of
components grows very fast with J . Hence, we had to adapt
Kmax (which is even in positive parity and odd in negative
parity) to the J value. The values are Kmax = 20 for 0+, 19 for
1−, and 14 for 2+. The number of components is 66 for 0+, 155
for 1−, and 133 for 2+. These numbers correspond to a single
entrance channel γωKω, i.e., to a single line in the scattering
matrix. However, all possible entrance channels appear in the
expressions (49)–(52) of the cross sections. The full number
of calculated components is thus given by the square of these
values. The corresponding scattering matrices provide many
eigenphases. Those with a physical interest are displayed in
Fig. 4 of Ref. [36].

B. Conditions of the four-body breakup calculation

The breakup process involves optical potentials between
core and target and between neutron and target. We choose the
α + 208Pb potential 1 of Bonin et al. [54] at 288 MeV for the
breakup at 70 MeV/nucleon or 699 MeV for the breakup at
240 MeV/nucleon, and the central part of the n + 208Pb
potential of Koning and Delaroche [55] calculated at 70 or
240 MeV.

Different accuracy tests have been performed. The mul-
tipole components of the eikonal phase are obtained by a
numerical integration. We have checked that the values quoted
in Appendix A provide an accuracy of about 0.1%. These
multipole components depend on four indices: λ, µ, λx , λy .
The values of λ are fixed by the final angular momentum J ,
since J

π0
0 = 0+ for 6He. However, for a given λ, several values

of λx and λy are possible. For J = 0–2, we have found that an
excellent accuracy is obtained with λx and λy values that do
not exceed 2. Higher values contribute to less than 0.1%.

In Eq. (37), the integration over α is performed with a
Gauss-Jacobi quadrature, i.e., with equally spaced mesh points
[56]. A high accuracy is obtained with Nα = 20 points. The
integration over b in the various cross sections is performed
with 50 equidistant mesh points separated by 2 fm, up to
100 fm. The accuracy is better than 0.1%. When a Bessel
function is present in the integrand [Eq. (50)], additional
mesh points corresponding to a smaller step are obtained by
interpolation of the eikonal scattering amplitudes S

J0Jλµ

γωKω
.

The main parameters controlling the accuracy of the
calculation concern the expansion of the final 6He scattering
state, i.e., Kmax, and the number of partial waves relevant for
the breakup on lead. In the following sections, we discuss the
role of these parameters. But let us first discuss the dipole
strength, for which Jπ is fixed as 1−.

Except for the choice of the various interactions, which is
made on physical grounds, the present model does not contain
any adjustable parameter.

C. Electric dipole strength distribution

If nondipole and nuclear transitions are negligible in the
breakup process, the cross sections become proportional to
the dipole strength. With this assumption, the dipole strength
can be extracted from the breakup cross section with [6]

dσ

dE
= 32π2

9

(
ZT e

h̄v

)2

ξminK0(ξmin)K1(ξmin)
dB(E1)

dE
, (59)

where ξmin depends on a cutoff impact parameter bmin [see
Eq. (44)]. Data for the E1 strength distribution have been
deduced from an 6He breakup experiment on lead at
240 MeV/nucleon [23]. At these high energies, E1 transitions
are expected to be dominant. The accuracy of this approxima-
tion is discussed in Sec. IV E.

We have calculated the E1 strength distribution directly
with Eq. (14). The sums over K0 and K must be truncated
at some value. For the bound state, the choice is K0 � 20 as
discussed above. For the scattering state, we choose K � Kmax.
The evolution with respect to Kmax is studied in Fig. 2. One
observes that the convergence is slow and not fully reached.
This is to be expected since the resonance-like structure of the
1− phase shift presents the same behavior as for 0+ in Fig. 3
of Ref. [36]. The peak near 1 MeV slowly moves toward lower
energies but is almost at the same location for Kmax = 17 and
19. The present figure is very similar to Fig. 3 of Ref. [27].
The convergence, however, is good enough for a comparison
with experimental data involving rather large error bars.

The agreement with the data is good beyond 2 MeV, but
they do not exhibit any peak at low energies. The presence of
a 1− resonance is not confirmed. We consider the theoretical
bump as due to a resonance, because it corresponds to an
increase of the 1− eigenphase shift similar to that obtained at
about the same energy in the 2+ eigenphase shift (see Fig. 4 of
Ref. [36]). Except for the slope of the phase-shift rise, there
is no qualitative difference between the behaviors of the
eigenphases in these two different partial waves. The three-
body model thus suggests the existence of two resonances,
the accepted 2+ resonance and a broader 1− resonance with a
width of about 1 MeV, at low energies in the 6He continuum.

To test the sensitivity to the way the ground-state energy
is fitted, the results of various calculations of the E1 strength
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19
17
15
13
11
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FIG. 2. Convergence of E1 strength distribution of 6He with
respect to the maximum hypermomentum Kmax in the final α+n+n

scattering state: comparison of calculations with Kmax = 11 to 19.
Data from Ref. [23].
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FIG. 3. Comparison of E1 strength distributions of 6He calcu-
lated for Kmax = 19 with the modified Minnesota interaction (upper
solid line), the scaled αn interaction (dash-dotted line), and the
three-body hyperscalar potential (dashed line). The lower solid line
displays the result with a final plane wave. Data from Ref. [23].

distribution of 6He are displayed in Fig. 3. The calculation with
the modified nn Minnesota interaction is represented by the
upper solid line. It corresponds to the Kmax = 19 calculation
of Fig. 2. The dash-dotted line represents the result of a
calculation with the αn interaction scaled as in Ref. [36].
The resonance peak is a little shifted, and the cross section
presents a dip near 1.5 MeV. This dip may be an effect of
the stronger core-neutron interaction. A calculation in which
the energy is fitted through a three-body hyperscalar potential
similar to the one used in Ref. [27] is displayed as a dashed
line. In the resonance region, it is very similar to the previous
one (dash-dotted line), but the dip is less marked.

We also display in Fig. 3 the E1 strength calculated with a
plane wave replacing the final scattering state (lower solid
line). The convergence with Kmax is much faster for such
calculations. The curve increases smoothly up to 4 MeV. Below
3.5 MeV, the cross section is much smaller than with scattering
wave functions and also smaller than experiment. The data
thus indicate the occurrence of some effects of final-state
interactions even if they do not confirm the existence of a
three-body 1− resonance.

To evaluate the importance of the technique of elimination
of the forbidden state, we perform a calculation where the
ground-state wave function is calculated with the pseudopo-
tential method [53]. The results are displayed as a dotted line
in Fig. 4. One observes that the resonance peak is smaller
in that case but remains incompatible with the GSI data.
This reduction confirms the results obtained in Ref. [45]. The
physical difference between the two techniques of elimination
is that supersymmetry eliminates nodes in the wave functions
and adds a repulsive core, whereas the pseudopotential moves
forbidden states to very high energies but keeps the node
structure. Since nodes occur at rather small distances, the
difference in the peak height is due to the most internal part of
the wave function. From Ref. [45], we can expect some further
reduction within a consistent treatment of the scattering state.

The modification of the Minnesota potential performed to
fit the 6He binding energy is not necessary for the scattering
state. Hence we also display in Fig. 4 the results of calculations
performed with the unchanged Minnesota interaction in the
final scattering state. Notice that the initial and final states
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FIG. 4. Comparison of E1 strength distributions of 6He calcu-
lated for Kmax = 19 with the modified Minnesota interaction (upper
solid line, left) and with the unmodified Minnesota interaction for
the scattering state (upper solid line, right). Same calculations with
a ground-state wave function calculated with the pseudopotential
method (dotted lines). Data from Ref. [23].

are then obtained with slightly different forces. With this
interaction, the resonance is shifted to about 1.2 MeV and
broadened. Using the projection technique for the ground
state (dotted line) reduces here also the cross section which
resembles the one displayed in Fig. 3 of Ref. [27].

The present theoretical behavior is qualitatively common
to most previous calculations of the same E1 strength taking
account of the distortion of the final wave function [26,27].
They also display a peak at low energies, our results being
close to those of Ref. [26]. This peak does not appear in some
models with a simplified treatment of the continuum. The
analytical model of Ref. [29] is based on a final plane wave
and on the asymptotic form of the ground-state wave function.
The model of Ref. [30] makes use of a discretized continuum.
Within models taking final-state interactions into account, an
exception can be found in the series of papers [31,32]. Their
results do not show any resonance and agree well with the data.
The physical origin of this significant difference with respect
to earlier works by the same group [27] is not discussed in
Refs. [31,32]. A small bump around 4 MeV in their E1 strength
distribution may indicate that the 1− resonance still exists but
has been pushed to higher energies by the hyperscalar potential
and is hence much broadened.

Some three-body models of 6He do not obtain any
1− resonance [28,57] in spite of a dedicated search. Nev-
ertheless, the E1 strength in Ref. [28] exhibits a broad
peak very similar to those obtained in the present results
without attributing it to a resonance. Although the theoretical
situation is not fully clarified, a number of calculations
taking full account of final-state interactions predict a broad
low-lying 1− resonance in contradiction with the data of
Ref. [23].

The absence of a peak at low energies in the data of Ref. [23]
is not contradicted by the experimental results of Ref. [24], but
a broad maximum occurs near 2 MeV which can point to a
resonant origin. It is at a higher energy than in our results with
the unmodified Minnesota interaction in Fig. 4. The situation is
reminiscent of the controversy about 11Li breakup. There also
the existence of a low-energy peak was uncertain and some
contradictions appeared between existing experiments until
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the situation was clarified in Ref. [58] and attributed to a lack of
sensitivity of previous experiments to the low-energy strength.
It would be important to have an experimental confirmation of
the existence or nonexistence of a peak at low energies for the
6He breakup.

One should also not forget that the “experimental” E1
strength is obtained from cross sections with a number of
assumptions. The validity of this approximation can be tested
within the present model. This is done in the next sections.

D. Breakup of 6He at 70 MeV/nucleon

In this section, we consider the breakup of 6He on 208Pb
at an energy typical of experiments conducted at RIKEN
(the Institute of Physical and Chemical Research, Japan).
The convergence of the sum in Eq. (51) can be studied by
considering separately the cross sections of several partial
waves calculated with Eq. (52). Contrary to E1 strengths,
cross sections are directly measurable. The determination of
E1 strengths from experiment, such as those displayed in the
previous section, rely on different model assumptions. It is
assumed that the 1− partial cross section is dominant and that
other contributions are either negligible or can be estimated
by some model. It also requires some model assumptions
for eliminating nuclear effects. Our aim is to determine the
importance of the role of partial waves other than 1− and to
evaluate the role of nuclear forces, first at 70 MeV/nucleon.

The partial and total breakup cross sections are displayed
in Fig. 5. The total cross section exhibits a narrow peak at
0.82 MeV superimposed on a broad structure reaching its
maximum at about the same energy. The broad maximum
is also visible on the Jπ = 1− partial cross section. It
corresponds to the broad peak in the dipole strength (see
Figs. 3 and 4) and to the resonance in the Jπ = 1− phase
shift appearing in Fig. 4 of Ref. [36].

The narrow peak occurs in the Jπ = 2+ component and
corresponds to a well-known resonance at 0.82 MeV. The
conditions of the theoretical calculation are slightly modified
for Jπ = 2+ in order to obtain the correct experimental
location of the peak; i.e., we use here a factor of 1.09 in
the modified Minnesota interaction. The theoretical width
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FIG. 5. Eikonal calculation of total and 0+, 1−, 2+ partial cross
sections of 6He breakup on 208Pb at 70 MeV/nucleon (solid lines).
The dotted lines correspond to final plane waves.

is smaller than the experimental value 0.113 MeV. This
resonance should be visible in a breakup experiment on lead if
the resolution does not broaden the narrow peak too much and
does not make it undetectable. It should be easier to observe
in an experiment on a light target [59,60].

As expected, the 1− contribution dominates, but the 0+ and
2+ contributions are not negligible. Together they range from
about 10% at low energies (off resonance) to about 35% at
5 MeV. Below 1 MeV, the 0+ contribution is much larger than
the 2+ contribution, but they have the same magnitude around
2 MeV, and the 2+ contribution becomes twice as large as the
0+ one at 5 MeV. Cross sections leading to unnatural parity
states (not shown) are smaller by several orders of magnitude.

Results of calculations with plane waves neglecting final-
state interactions are represented as dotted lines. For Jπ = 1−,
the plane-wave cross section is always smaller than the one
involving final-state interactions; whereas for 2+, it becomes
similar around 4 MeV. This shows that final-state effects are
important, even off resonance.

In Fig. 6, the eikonal partial cross section to the 1− final
state (lower solid line) is compared with approximation (59)
based on the E1 strength for two values of the cutoff parameter
bmin. For bmin = 12 fm (dashed line), both approximations
agree very well at all energies. The total cross section is also
represented in Fig. 6 (upper solid curve). Quite logically, it is
underestimated.

With the smaller cutoff radius bmin = 10 fm (dotted line),
the 1− cross section is overestimated everywhere, but the total
cross section is better approximated. If the eikonal total cross
section were used to extract the E1 strength (off 2+ resonance),
the E1 strength would be overestimated for the optimal choice
bmin = 12 fm but would fortuitously be better for bmin = 10 fm.
The extraction of the E1 strength from data at 70 MeV/nucleon
is thus sensitive to two uncertainties, the choice of cutoff radius
bmin and the way of correcting for other partial waves than 1−.

Double-differential cross sections dσ/dE21 dEc(12)

[Eq. (49)] provide information about correlations. Such cross
sections are displayed for Jπ = 1− in the upper part of
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FIG. 6. Comparison of the eikonal calculation of the 1− partial
cross section (lower solid line) with approximation (59) based on
the E1 strength [Eq. (13)] (bmin = 10 fm, dotted line; bmin = 12 fm,
dashed line) for 6He breakup on 208Pb at 70 MeV/nucleon, and with a
calculation involving a final plane wave (dash-dotted line). The upper
solid line represents the total cross section.
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FIG. 7. (a) 1− component of the double-differential cross sections
dσ/dE21 dEc(12) in b/MeV2 as a function of partial energies E21

and Ec(12) [Eq. (49)] for 6He breakup on 208Pb at 70 MeV/nucleon.
(b) Same for dσ/dE1cdE2(c1).

Fig. 7. One observes a pronounced maximum around
Ec(12) = 0.5 MeV and E21 = 0.2 MeV which corresponds
to the broad 1− resonance that we obtain. This could be
interpreted as a slightly dominant α-dineutron character at
about 0.5 MeV in the relative motion of the core and the
dineutron. This figure is rather similar to Fig. 3 (lower left) of
Ref. [33], where a broad 1− peak is also visible. Since this
resonance remains controversial, we do not show the total
cross section.

The energies E21 and Ec(12) occur naturally in the Jacobi
coordinate system that we have been using. This can be called
the dineutron or T system. Another, completely equivalent,
coordinate system involving the relative coordinates between
one neutron and the core and between the second neutron
and their center of mass would lead to identical results,
though in a more complicated way because of the identity
of the neutrons. It is called the 5He or Y system. It leads
to partial energies E1c and E2(c1). Double-differential cross
sections dσ/dE1c dE2(c1) can, however, be obtained directly
from results in the first coordinate system [25] with the help of
Raynal-Revai coefficients [40]. This procedure is summarized
in Appendix B. The resulting cross sections are displayed in the
lower panel of Fig. 7. The resonance now appears as a peak
with E1c ≈ E2(c1) ≈ 0.4 MeV. This corresponds to a rather
compact structure with both neutrons behaving in a similar
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J = 0
total
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d
σ
/d

θd
E

(b
/M

eV
ra

d
)

6543210
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FIG. 8. Double-differential cross sections dσ/dθ dE =
2π sin θ dσ/d�dE (solid lines) as a function of the scattering angle
for 6He breakup on 208Pb at 70 MeV/nucleon. Decomposition in
partial waves: 0+ (dashed lines), 1− (dash-dotted lines), 2+ (dotted
lines).

way. If the 1− resonance exists, measurements of these types
of cross sections would help clarify its structure. If it does
not exist, they may help understand the origin of the wrong
theoretical prediction.

Another type of double-differential cross sections is inter-
esting, i.e., dσ/d�dE [Eq. (50)] as a function of the scattering
angle θ . They are presented in Fig. 8 with their decomposition
in partial waves for three energies. They display rather weak
oscillations. At 1 MeV, near the maximum of the 1− resonance
but off the 2+ resonance, the Jπ = 1− component strongly
dominates with some contribution of 0+ near 5◦. At 2 MeV,
off the 1− resonance, the other components remain small but
are the main origin of the oscillations of the total cross section.
From 2 to 4 MeV, one observes an increasing role of the 2+
partial wave.

E. Breakup of 6He at 240 MeV/nucleon

In this section, we consider the breakup of 6He on 208Pb
at the higher energy of the GSI experiments [23,25]. The
calculated total and partial cross sections dσ/dE are displayed
in Fig. 9, which is qualitatively very similar to Fig. 5.
The 1− partial wave dominates somewhat more than at
70 MeV/nucleon, but the 0+ and 2+ contributions are far from
negligible. The 2+ resonance is still clearly visible in the total
cross section. The 0+ contribution amounts to about 10% of
the total beyond 2 MeV. The 2+ contribution increases from
about 10% to more than 20% between 2 and 5 MeV.
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FIG. 9. Eikonal calculation of the total and 0+, 1−, 2+ partial
cross sections of 6He breakup on 208Pb at 240 MeV/nucleon.

The total eikonal cross section (solid line) and the 1−
partial cross section (dashed line) at 240 MeV/nucleon
are compared with the experimental data of Ref. [23] in
Fig. 10. At low energies, the theoretical bump corresponding
to the 1− resonance is not visible in the data. As expected,
the disagreement is similar to the one observed in Fig. 3.
This means that the problem is not related to the use of the
eikonal approximation. When the ground-state wave function
is calculated with the projection technique for the αn potential
(dotted line) in place of the supersymmetric αn potential
(dashed line), the 1− partial cross section becomes smaller
and thus closer to experiment at energies below 2 MeV, but the
disagreement still occurs.

A possible 1− bump should be reinforced by the 2+
resonance peak (broadened by the experimental resolution).
The small bump around 0.8 MeV in the data agrees with the
location of the 2+ resonance but seems to be too weak to
agree with its expected properties. Between 2 and 3 MeV, the
agreement between theory and experiment becomes quite good
(let us recall that there is no free parameter). Beyond 3 MeV,
the theory is lower than the data, but this could be attributed
to the fact that the experiment does not separate elastic from
inelastic breakup.

We make no attempt to compare our results with the angular
differential cross section dσ/dθ from Ref. [25], because it
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FIG. 10. Comparison between the total eikonal cross section
(solid line) and 1− partial cross sections (supersymmetry, dashed line;
projection, dotted line) of 6He breakup on 208Pb at 240 MeV/nucleon
with the experimental data of Ref. [23].
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FIG. 11. Ratio to the Rutherford cross section of the elastic cross
section of 6He on 208Pb at 70 and 240 MeV/nucleon.

would require an integration over the energy E that would be
made meaningless by the 1− resonance problem.

F. Elastic scattering

Elastic scattering can be calculated under the same condi-
tions. The corresponding results at 70 and 240 MeV/nucleon
are presented in Fig. 11. Since only αn and nn interactions
are involved, the calculation takes full account of the halo
structure of the 6He nucleus. Moreover, there is no need for
fitting parameters in an 6He-lead potential. On the contrary,
inverting the theoretical results would allow deriving such a
potential. However, this effort would only be interesting after
the theoretical results have been confirmed by experimental
data on this elastic scattering.

V. CONCLUSION

In this work, we present a reaction model framework for
the study of the elastic breakup of a three-body projectile on
some target. The projectile ground and continuum (resonant
and nonresonant) states are calculated in hyperspherical
coordinates according to the techniques of Refs. [35,36].
The model thus takes full account of final-state interactions.
It makes use of the eikonal approximation corrected for
Coulomb effects [19,20,22]. This approximation avoids a
well-known divergence problem of the Coulomb interaction.
The calculation is simplified by the use of the Lagrange-mesh
method with which a fair convergence is obtained with a rather
small number of hyperradial mesh points. The main limitation
on accuracy comes from the truncation with respect to the
hypermomentum quantum number K . The model should be
valid for light and heavy targets. It can also be used for elastic
scattering.

Previous studies involving final-state interactions were
either indirect [26–28], i.e., based on first-order perturbation
theory and on dipole strengths, or made use of a simpler
treatment of the dynamics [31–33]. The advantage of the
present eikonal approach is that Coulomb and nuclear effects
appear at all orders and that the projectile-target motion is
driven by the core-target and neutron-target optical potentials.
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As a first application, we consider the elastic breakup of 6He
on lead at two energies typical of RIKEN and GSI experiments
for which the eikonal approximation is valid. The three-body
α+n+n model of 6He involves αn and nn effective forces, not
only for the initial bound state but also for the final scattering
states. This aspect is important because the results differ much
from those based on a final plane wave. In addition to the
behavior of the dominant 1− component, the behaviors of the
0+ and 2+ partial cross sections have been determined and can
serve as an indicator of the magnitude of inaccuracies in the
first-order approach and in the extraction of the E1 strength
from data.

Since data exist at 240 MeV, a comparison of theory and
experiment is possible at that energy. The result reopens a
long-standing problem. The theoretical cross sections at 70 and
240 MeV display around 0.8 MeV a narrow peak superimposed
on a broader bump. These structures are due to a well known
2+ resonance and to a broad 1− resonance, respectively. We
consider both of them as resonances, since they appear in a
qualitatively similar way as fast increases of the corresponding
eigenphase shifts. The GSI data [23] do not show the low-
energy bump predicted by the present and several other models
describing the effects of final-state interactions. The Michigan
State University data [24] are compatible with the existence
of a resonance, but its location is significantly higher than
suggested by the present theory.

The disagreement is in no way related to the reaction model
used, i.e., the eikonal approximation. It is also not related to
the optical potentials between α or n and the target. In fact, it
indicates a lack of accord of the theoretical description of the
6He continuum with the existing data. If the disagreement is
due to theory, it must concern either the interactions between
the 6He constituents (which looks rather unlikely) or a problem
with the very description of continuum states which would
also appear in Refs. [26,27], i.e., in calculations independent
from the present one. In any case, the variation of the shape
of the broad resonance with the choice of potential and
with the type of forbidden-state elimination deserves further
investigation.

The existence or nonexistence of a 1− resonance in the
continuum of 6He is an important physical issue which should
be clarified by further experiments. If new experimental data
confirm that this resonance does not exist, the description
of final continuum states in the existing models will be
challenged.

We plan to apply the same model to the breakup of the 11Li
and 14Be halo nuclei for which data also exist [58,60]. The
comparison with experiment may help clarify the origin of the
present disagreement.
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APPENDIX A: MULTIPOLAR COMPONENTS OF
EIKONAL PHASE

The multipolar components of the eikonal phase are given
by

F
λµ
λxλy

=
∑
µxµy

(λxλyµxµy |λµ)F
µxµy

λxλy
, (A1)

with

F
µxµy

λxλy

=
∫

d�x

∫
d�yY

µx∗
λx

(�x)Y
µy∗
λy

(�y) exp[iχ (bx̂, bx, by)].

(A2)

We choose vector b in the x direction (ϕb = 0).
The eikonal shift function χ is invariant under the following

symmetry operations:

θx → π − θx, (A3)

θy → π − θy, (A4)

ϕx → 2π − ϕx and ϕy → 2π − ϕy, (A5)

ϕx → π + ϕx. (A6)

Properties (A3) and (A4) arise from the fact that χ does not
depend on the z components of x and y. Property (A5) is due
to the symmetry of the potentials with respect to the xz plane.
Property (A6) is a consequence of the identity of neutrons 1
and 2.

From these properties, one deduces that the F
µxµy

λxλy
vanish

for λx odd, µx odd, and λy + µy odd. These functions have
the symmetry property

F
−µx−µy

λxλy
= (−1)µx+µy F

µxµy

λxλy
. (A7)

With these symmetry properties, the integration domain in the
four-dimensional integral (A2) can be reduced by a factor of
16. For λx , µx , and λy + µy even, the simplified integrals
explicitly read

F
µxµy

λxλy
= 16

∫ π/2

0
sin θx dθx

∫ π/2

0
sin θy dθy

∫ π

0
dϕx

∫ π

0
dϕy

×Y
µx

λx
(θx, 0)Y

µy

λy
(θy, 0) cos(µxϕx + µyϕy)

× exp[iχ (bx̂, bx, by)]. (A8)

The F
λµ
λxλy

vanish for λx odd and for λy + µ odd. They have
the symmetry property

F
λ−µ
λxλy

= (−1)λx+λy+λ−µF
λµ
λxλy

. (A9)

Hence components with µ = 0 vanish if λ is odd.
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Unfortunately, these properties do not all apply to χFO,
which requires a separate treatment. Contrary to the invariance
(A4), it satisfies

χFO →
θy→π−θy

−χFO (A10)

[see the last term in Eq. (43)]. Hence, the components of
eiχN

χFO in the corrected eikonal phase eiχ vanish for λx odd
and for λy + µ even.

The integration in Eq. (A8) is performed with Gauss
quadratures: a Gauss-Legendre quadrature with Nθ points
for θx and θy and a Gauss-Fourier quadrature (i.e., constant
spacing and equal weights) with Nϕ points for ϕx and ϕy .
Typical values are Nθ = 12 and Nϕ = 16. The integration over
Z′ of the nuclear part in Eqs. (30) and (31) is performed for
Z′ > 0 with NZ = 60 equidistant mesh points with a constant
step of 0.5 fm.

APPENDIX B: CHANGE OF OBSERVED WAVE VECTORS

The wave vectors k21 and kc(12) correspond to an α

+ dineutron structure (or T structure). One can equiva-
lently consider the wave vectors corresponding to a 5He
+ n structure (or Y structure), i.e., the neutron-core wave
vector

k1c = 1

Ac + 1
(Ack1 − kc), (B1)

and the wave vector for the relative motion of the second
neutron with respect to the 5He center of mass

k2(c1) = Ac + 1

A
k2 − 1

A
(kc + k1). (B2)

Since the Jacobian of the transformation is equal to unity, the
cross sections are related by

dσ

d�dk1c dk2(c1)
= dσ

d�dk21 dkc(12)
. (B3)

However, they must be expressed as a function of the new
wave vectors k1c and k2(c1). We briefly summarize the simple
procedure described in Ref. [25].

In Eqs. (46) and (39), the dependence on the wave vectors is
fully included in the hyperspherical harmonics YLωM−ν

γωKω
(�5k).

These T harmonics can be transformed into Y harmonics with
the help of the Raynal-Revai coefficients [40],

YLωM
lxω lyω Kω

(�T
5k) =

∑
lx ly

〈lx ly |lxω
lyω

〉KωLω
YLωM

lx lyKω

(
�Y

5k

)
. (B4)

Hence the expressions of the transition matrix element (39)
and of all cross sections of Sec. III D remain valid for k1c and
k2(c1) provided that the eikonal amplitudes are understood as
the Y amplitudes defined by

S
J0Jλµ

γωKω
(Y) =

∑
lx ly

〈lxω
lyω

|lx ly〉KωLω
S

J0Jλµ

γKω
(T), (B5)

with γ = (lx, ly, Lω, S).

[1] I. Tanihata, J. Phys. G 22, 157 (1996).
[2] P. G. Hansen, A. S. Jensen, and B. Jonson, Annu. Rev. Nucl. Sci.

45, 591 (1995).
[3] M. V. Zhukov, B. V. Danilin, D. V. Fedorov, J. M. Bang,

I. J. Thompson, and J. S. Vaagen, Phys. Rep. 231, 151 (1993).
[4] D. Baye, Eur. Phys. J. Special Topics 156, 93 (2008).
[5] R. J. Glauber, in High Energy Collision Theory, Lectures

in Theoretical Physics, edited by W. E. Brittin and
L. G. Dunham (Interscience, New York, 1959), Vol. 1, p. 315.

[6] Y. Suzuki, R. G. Lovas, K. Yabana, and K. Varga, Structure and
Reactions of Light Exotic Nuclei (Taylor and Francis, London,
2003).

[7] M. Yahiro, Y. Iseri, H. Kameyama, M. Kamimura, and M. Kawai,
Prog. Theor. Phys. Suppl. 89, 22 (1986).

[8] J. A. Tostevin, F. M. Nunes, and I. J. Thompson, Phys. Rev. C
63, 024617 (2001).

[9] T. Kido, K. Yabana, and Y. Suzuki, Phys. Rev. C 53, 2296 (1996).
[10] H. Esbensen, G. F. Bertsch, and C. A. Bertulani, Nucl. Phys.

A581, 107 (1995).
[11] S. Typel and H. H. Wolter, Z. Naturforsch. Teil A 54, 63 (1999).
[12] V. S. Melezhik and D. Baye, Phys. Rev. C 59, 3232 (1999).
[13] P. Capel, D. Baye, and V. S. Melezhik, Phys. Rev. C 68, 014612

(2003).
[14] D. Baye, P. Capel, and G. Goldstein, Phys. Rev. Lett. 95, 082502

(2005).
[15] G. Goldstein, D. Baye, and P. Capel, Phys. Rev. C 73, 024602

(2006).
[16] T. Matsumoto, E. Hiyama, K. Ogata, Y. Iseri, M. Kamimura,

S. Chiba, and M. Yahiro, Phys. Rev. C 70, 061601(R) (2004).

[17] T. Matsumoto, T. Egami, K. Ogata, Y. Iseri, M. Kamimura, and
M. Yahiro, Phys. Rev. C 73, 051602(R) (2006).

[18] M. Rodrı́guez-Gallardo, J. M. Arias, J. Gómez-Camacho,
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