
PHYSICAL REVIEW C 79, 024605 (2009)

Generalized optical potential for weakly bound nuclei: Two-cluster projectiles
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A generalized optical potential for elastic scattering induced by light nuclei is calculated within the Feshbach
projection operator method. The model explicitly takes into account the contribution of the projectile breakup
continuum treated within a microscopic few-cluster model. In this work, we formulate the model, deriving an
explicit expression for the optical potential, and demonstrate the ability of the model by applying it to deuteron
elastic scattering.
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I. INTRODUCTION

During the last few years, reactions with light weakly bound
nuclei have been of increased interest from the experimental
and theoretical points of view and the progress made in the
investigation of these nuclei has been impressive [1,2]. This
progress is conditioned by the important efforts devoted to
investigating reaction mechanisms and by new techniques
enabling the production of exotic nuclei. In spite of that, we are
still far from a clear understanding of the unusual structure of
exotic nuclei and the reaction mechanisms they induce. This
arises from the experimental difficulties (also from the low
intensities of available beams) and the difficulties arising in
the description of a few-body nuclear dynamics taking place
under conditions of a strong coupling of all reaction channels
with the breakup channel of weakly bound projectiles.

Generally, it is assumed that in light exotic nuclei, the
nucleons tend to group into clusters, whose relative motion
mainly defines the properties of these nuclei. This assumption
leads to great advantages for models employing the cluster
concept for both the structure and the reactions involving light
exotic nuclei [3–15]. For the study of nuclear reactions, the
coupled-channel (CC) formalism is one of the most consistent
and efficient approaches [16–20]. The continuum-discretized
reduction of this method (CDCC) allows us to study the
interplay between elastic and breakup channels in reactions
involving two-cluster nuclei [11,12,15–18,21]. However, the
application of the CC approach to reactions with few-body
projectiles meets significant computational difficulties if a
realistic few-body wave function is used. Consequently, very
little work has been done in this area [22,23].

The generalized optical model (GOM) of H. Feshbach [24]
is an alternative approach to the problem. Models based on the
Feshbach theory are extensively used for the study of coupling
effects on different reaction channels. It is worth mentioning, in
particular, studies of the role of deuteron breakup in its elastic
scattering with heavy ions [25–28], the influence of collective
excitations on heavy ion elastic scattering [29–35], and the
interplay between breakup and complete fusion channels in
weakly bound nucleus reactions [36]. However, the application
of the Feshbach method was hampered in the past by the
complexity of the formulation and of computational burden. As
a result, even in studies of the deuteron breakup, the application
of this method has been done with many simplifications.

In contrast to the CDCC approach, the GOM allows one
to avoid the simplifying discretization of the continuum
spectrum. The calculation within the GOM is faster. On
the other hand, the CDCC method provides phase shifts
in all reaction channels, treats the continuum-to-continuum
coupling, and does not require an approximation for Green’s
function, while the GOM does. Therefore, for a two-cluster
projectile, the CDCC approach is somewhat more efficient.
However, for a few-body projectile, the application of the
CDCC method becomes difficult (e.g., the large size of the
coupling matrix and the complicated procedure of matrix
element calculation), while the GOM remains more feasible.

Our main goal is to apply the GOM to studying the
elastic scattering of light weakly bound nuclei using a realistic
few-body model description of their internal structure. As a test
of the approach, in the present work, the GOM is applied to the
deuteron elastic scattering from heavy targets at intermediate
energies in order to draw conclusions about its applicability.
Applications of the model to reactions with few-cluster weakly
bound nuclei (such as 6He) will be done in a subsequent
publication.

The method proposed earlier [25,27] is extended here to
avoid simplifying assumptions. In Refs. [25,27] the authors (i)
neglected the spins of the particles, (ii) considered coupling
with s-wave continuum only, (iii) neglected or treated the
Coulomb forces in an approximate way, and (iv) used the
free-particle Green’s function instead of the total one. Our
approach goes beyond these assumptions. Within the method,
a structureless target nucleus interacts with a projectile treated
as a system of a few bound clusters. The bound and continuum
states of the projectile are described in the framework of the
microscopic cluster model and used to construct the Feshbach
projection operators. We derive an explicit expression for
the optical potential which takes into account explicitly the
coupling with projectile breakup channels. We show also
the importance of an accurate treatment of Green’s function
appearing in the dynamical polarization potential in the case
of light targets.

II. MODEL

We consider the scattering of a weakly bound projectile
by a structureless target. The projectile is treated as a bound
few-cluster system. The corresponding Hamiltonian has the
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form

ĤR,ξ = T̂R + Ĥξ + V̂R,ξ , (1)

where T̂R is the kinetic energy operator of the projectile-target
relative motion, Ĥξ = t̂ξ + v̂ξ is the Hamiltonian describing
the projectile internal structure, and ξ denotes an appropriate
set of internal coordinates. The interaction potential V̂R,ξ is
a sum of effective (non-Hermitian) cluster-target potentials,
which is obtained from a fit of elastic scattering data. By
employing these cluster-target interactions, we implicitly take
into account the internal properties of the clusters and target.

The total scattering wave function |�〉R, ξ satisfies the
Schrödinger equation with the Hamiltonian (1) and eigenvalue
E = Ep + ε0, where Ep = h̄2p2/2m is the projectile-target
relative energy, m is the reduced projectile-target mass, while
ε0 is the projectile ground state energy. The ground |ε0, j0〉ξ
(here j0 is a projectile total angular momentum) and continuum
|κ〉ξ states of the projectile form together the spectrum of the
Hamiltonian Ĥξ , since the weakly bound projectile is supposed
to have only one bound state. The Feshbach projection
operators P̂ξ and Q̂ξ [24] are constructed as

P̂ξ + Q̂ξ = |ε0, j0〉〈ε0, j0| +
∫

|κ〉〈κ|dκ.

The operator P̂ξ extracts the elastic component of the to-
tal wave function P̂ξ |�p〉R,ξ = |�p〉R,ξ , which satisfies the
Schrödinger equation(
T̂R +

[
P̂ V̂R,ξ P̂ + P̂ V̂R,ξ Q̂

1

E − Q̂ĤR,ξ Q̂
Q̂V̂R,ξ P̂

])
|�p〉R,ξ

= (E − ε0)|�p〉R,ξ , (2)

where the expression in square brackets is the generalized
optical potential (GOP). The first term Û (1) = P̂ V̂R,ξ P̂ is
the local cluster-target interactions folded over the projectile
ground state. The second term (we will refer to it as Û (2)) is the
nonlocal dynamical polarization potential (DPP), describing
the coupling of elastic and nonelastic channels.

A. Optical potential for N-cluster projectiles

Following the usual technique [37], the elastic component
of the many-body wave function may be expanded in partial
waves as

�
(+)
p,j0m0

(ξ, R)

= 1

pR

∑
JL

iLeiσL

√
2L + 1

2π2
ψJLj0 (p,R) 	

Lj0
Jm0

(ξ,
R), (3)

where p is supposed to be parallel to the z axis. ψJLj0 (p,R) is
a partial wave function describing the projectile-target relative
motion with total (J ) and orbital (L) angular momenta, and
with asymptotic

ψν(p,R → ∞) → FL(pR) + Sν − 1

2i
H

(+)
L (pR), (4)

where Sν = e2iδν is a scattering S-matrix element, H
(+)
L =

GL + iFL, while FL and GL are the regular and irregular

Coulomb functions. In Eq. (3), we use the notation 	
Lj0
JM (ξ,
R)

for the spin-angle wave function resulting from the L and j0

vector coupling

	
Lj0
JM (ξ,
R) =

∑
γ0

φj0γ0 (ξ )
[
Yγ0

j0
(
ξ ) ⊗ YL(
R)

]
JM, (5)

where φj0γ0 (ξ ) Yγ0
j0m0

(
ξ ) is a partial component of the projec-
tile ground state wave function.

We substitute expansion (3) in the Schrödinger equation
(2). Multiplying the resulting equation by 	

†L ′j0
J ′M ′ (r,
R) from

the right, and integrating over r and 
R , one obtains a set of
coupled Schrödinger equations for the partial wave functions(

d2

dR2
+ p2 − L(L + 1)

R2

)
ψν(R)

− 2m

h̄2

∑
L ′

(
U

(1)
LL ′(R)ψν ′(R)

+R

∫ ∞

0
R ′U (2)

LL ′(R,R ′)ψν ′(R ′)dR ′
)

= 0, (6)

where index ν denotes the set of quantum numbers {JLj0}.
The sets ν and ν ′ differ in orbital momentum L and L′ only,
and are used here just for the sake of simplicity. Note that
the nondiagonality is very weak in reactions considered here
and will be finally neglected (see below). Thus the set of
equations (6) becomes uncoupled. In the numerical procedure,
we reduce each integro-differential equation (6) to a set of
linear algebraic equations applying the finite difference and
the Simpson methods to approximate the second derivative
and the integral, respectively.

1. Cluster-folding potential

The projectile-target interaction V̂R,ξ is chosen as a sum
of effective complex cluster-target potentials. Each potential
is supposed to be a sum of Coulomb, nuclear, and spin-orbit
terms. The cluster-folding potential U (1) can be defined as the
integral

U
(1)
LL′(R) = ∫

dξd
R	
†L ′j0
JM (ξ,
R)V (R, ξ )	Lj0

JM (ξ,
R).

(7)

The cluster model has been used intensively in studies of
reactions involving light nuclei. Thus an explicit expression
for the cluster-folding potential in some particular cases can
be found elsewhere [38,39]. Therefore we give here its final
expression only. Using the Fourier-Bessel transform of the
potential V̂R,ξ , and performing the integration over angles and
the summation over the momenta projections, we obtain the
cluster-folding potential in the form

U
(1)
LL′(R)

= 1

2π2

∑
λ

(−)λL̂′λ̂2CL0
L′0λ0W (j0JλL; L′j0)Fj0λj0 (R), (8)

where â = (2a + 1)1/2, Ccγ

aαbβ is a Clebsch-Gordan coefficient,
W (abcd; ef ) is a Racah coefficient. The radial factor in Eq. (8)
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reads

Fj0λj0 (R) =
N∑

n=1

∑
γ0γ

′
0

∫ ∞

0
q2jλ(qR)ṽn(q)〈j0γ

′
0‖Cn,λ‖j0γ0〉dq,

(9)

where N is a number of clusters, ṽn(q) is a Fourier transform
of the cluster-target potential, and operator Cn,λµ is defined as

Cn,λµ = λ̂−1
√

4π jλ(qrn)Yλµ(
n). (10)

The reduced matrix element arising in Eq. (9) is a partial
component of the elastic form factor of the nth projectile
cluster (i.e., the Fourier transform of its spatial distribution).

The contribution of the spin-orbit interactions v
(SO)
i (r) to

the folding potential can be calculated in the same way as the
central one. However, both phenomenological and theoretical
analyses [40,41] show that the spin-orbit interaction plays a
minor role even for deuteron elastic scattering and becomes
almost negligible in heavy ion elastic scattering [41]. It was
shown [38] that the nucleon-nucleus spin-orbit interaction in
the first-order perturbation also gives only a spin-orbit term
for the potential of s-wave projectile (such as deuteron or 6Li).
It allows us to consider the folding spin-orbit potential within
the approximation proposed in Refs. [25,38,41].

2. Dynamical polarization potential

The calculation of the polarization potential U (2)(R,R ′)
requires the definition of matrix elements of the many-body
Green’s operator Ĝ(z) = (z − Ĥξ − T̂R − V̂R,ξ )−1. We write
the total Green’s operator in the form of the Born series as

Ĝ = Ĝ + Ĝ(V̂R,ξ − V̂)Ĝ + · · · , (11)

where the operator Ĝ = (z − T̂R − Ĥξ − V̂)−1 may be factor-
ized if the potential V depends on the relative projectile-target
coordinates R only. The appropriate choice of the potential
V(R) is the cluster-folding potential U (1)(R) obtained above.
Note, that in this case, ĤR is a non-Hermitian operator, because
the folding potential U (1)(R) = U(R) + iW(R) is complex.

For the total Green’s operator, we use the approximation
Ĝ ≈ Ĝ. By this we neglect the transfer channels, whose con-
tribution is included implicitly through the effective cluster-
target interactions. Omitting the second term, we neglect
also the contribution from the multistep processes such as
continuum-to-continuum excitations. The role of continuum-
to-continuum coupling has been investigated, in particular, by
Sakuragi et al. [17] within the CDCC approach. Significant
contribution of the continuum-to-continuum coupling was
shown. However, one should point out differences in the
formulations of the models in our work and in Ref. [17]. The
authors of Ref. [17] defined the projectile-target interaction
by using the M3Y-type effective nucleon-nucleon interaction
with a complex normalizing coefficient and applied a double-
folding procedure for the calculation of coupling matrix
elements. The DPP obtained in Ref. [17] has an additional
large repulsion of the real part in the peripheral region
(ReU (2) ∼ 20 MeV) and an almost negligible additional
contribution to the imaginary part. On the other hand, in

Ref. [42] the DPP for the similar reaction was calculated
within the adiabatic breakup model [43], which is quite
close to our approach. The DPP found in Ref. [42] pro-
vides weak real (ReU (2) < 3 MeV) and strong absorptive
(Im U (2) ∼ −10 MeV) contributions. Our results are similar.

In Ref. [15] the continuum-to-continuum coupling was
also neglected. The authors concluded that this approximation
should be valid if the elastic component of the total wave
function is larger than breakup ones. Obviously this condition
becomes stronger with higher collision energies.

It is difficult to define an explicit applicability condition
for our approximation. We need to compare the collision time
tcoll with the excitation-deexcitation time which is unknown.
Instead, we may use the time tint associated with the cluster-
cluster relative motion inside the projectile. This gives us the
validity criteria in the form τ = tcoll/tint � 1. For all reactions
considered in this work, this condition is fulfilled.

Since the total Hamiltonian ĤR,ξ ≈ T̂R + V̂R + Ĥξ is
separable, one constructs a basis as the direct product of
the ĤR and Ĥξ bases. The Green’s operator Ĝ may be then
decomposed over the few-body partial states |EpεkJMLjγ 〉,
which reads

〈ξ, R|EpεκJMLjγ 〉

= Cξ i
LeiσL

(
2

π

mp

h̄2

)1/2 1

pR
ψJLj (p,R) �

L(jγ )
JM (κ, ξ,
R),

(12)

where εκ is an energy of the cluster-cluster relative motions,
and Cξ is a phase-volume quantity, which depends on the model
used for the description of the projectile structure. The spin-
angular wave function

�
L(jγ )
JM (κ, ξ,
R) = φjγ (κ, ξ )

[
Yγ

j (
ξ ) ⊗ YL(
R)
]

JM

has the same structure as function 	
Lj0
JM (ξ,
R) except for the

sum over γ .
The dynamical polarization potential is written as

U
(2)
νν ′ (R ′, R) =

∑
νi

∫ ∞

0
|Cξ |2 V

†
ννi

(κ,R ′)g(+)
νi

(E − εκ ; R ′, R)

× Vνiν ′ (κ,R)dεκ, (13)

where the matrix elements read

Vννi
(κ,R) = δJJi

δMMi

∫
	

†Lj0
JM (ξ,
R)

×V (ξ, R) �
Li (jiγi )
JiMi

(κ, ξ,
R)dξd
R, (14)

and the quantum number sets ν = {JMLj0} and νi =
{JiMiLijiγi}. The partial two-body Green’s function [34] in
Eq. (13) is

g(+)
νi

(Ep; R,R′) = −2m

h̄2

1

RR ′
ψνi

(p,R< )̃h(+)
νi

(p,R>)

pSνi

, (15)

where notations R< and R> refer to the smallest and largest
of coordinates R and R′. The wave function h̃(+)

νi
(p,R) =

ϕνi
(p,R) + iψνi

(p,R) is a combination of two linear-
independent solutions of the two-body Schrödinger equation
with potential V(R) = U (1)(R). The regular wave function
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ψνi
(p,R) has the boundary conditions (4), while the irregular

solution ϕνi
(p,R) has the asymptotic form

ϕνi
(p,R → 0) ∼ (pR)−l ,

ϕνi
(p,R � Rm) = GL(pRm) + Sνi

− 1

2
H

(+)
L (pRm).

The correct calculation of Green’s function is important
for the GOP calculation, since it defines the radial de-
pendance of the polarization potential. Therefore the free-
particle Green’s function, which was used in Refs. [25,27],
provides a crude approximation and could be used for a
qualitative analysis only. Note also that the local plane wave
approximation for Green’s function [44] gives a simple and
fast calculation method, which is, however, less accurate than
Eq. (15) but still applicable.

The matrix elements Vννi
(k, R) have the same structure as

the integral (7) except for the difference between functions
	 and �. Following the scheme used for the cluster-folding
potential, one gets the polarization potential as

U
(2)
L′L(R ′, R) = 1

4π4

∑
Liji

∑
λ′λ

(−)λ
′+λλ̂′2λ̂2L̂′L̂iC

Li0
L′0λ′0C

L0
Li0λ0

×W (j0Jλ′Li ; L
′ji) W (jiJλL; Lij0)

×
∑

γ ′
0γiγ0

∫ ∞

0
|Cξ |2 F(j0γ

′
0)λ′(jiγi )(εκ, R

′)

× g
(+)
JLi

(E − εκ ; R′, R)F(jiγi )λ(j0γ0)(εκ, R) dεκ,

(16)

where the functions F(εκ, R) read

F(j0γ0)λ(jiγi )(εκ, R)

=
N∑

n=1

∫ ∞

0
q2jλ(qR) ṽn(q) 〈j0γ0‖Cn,λ‖εκ, jiγi〉 dq. (17)

The reduced matrix element in Eq. (17) is a component
of the transition form factor, which depends only on the
projectile structure and may be calculated once. The integrand
in Eq. (17) is an oscillating and decreasing function of q,
and the integration can be done quite easily with a truncation
at qmax ∼ 6 fm−1. The resulting function F(εκ, R) describes
the transition probability and decreases with increasing εκ .
Therefore an integration in Eq. (16) may be performed up
to some appropriate projectile excitation energy εk , which is
about 40 MeV in the deuteron case [16].

The polarization potential (16) is nondiagonal on L and
L′ indexes. Consequently, one needs to solve numerically
the system of coupled integro-differential equations (6). It
can be done by an iteration procedure using a solution of
the uncoupled system as an initial approximation. However,
we avoid this complicated procedure here. The potential
(16) has a more simple form in the case of the s-wave
projectile (such as deuteron or 6Li). It is still nondiagonal
(L′ = L,L ± 2, . . . , L ± 2j0), and this nondiagonality arises
from the noncentral part of the cluster-cluster interaction. The
calculations show that the nondiagonal terms are about 102

times smaller than the diagonal one, and therefore can be
neglected.

3. Two-cluster projectile’s form factor

Let us define the bound and continuum state wave function
treating the projectile as a two-cluster system (e.g., the
deuteron d = p + n). Vector r = r1 − r2 is an appropriate
choice of the coordinate ξ for the description of the cluster-
cluster dynamics. A wave function describing bound and
scattering states of a two-body system |ε, jmls〉 (γ ≡ ls) at a
relative energy ε can be expressed as

〈r|ε, jmls〉 = r−1 φjl(ε, r) [Yl(
r ) ⊗ χs]jm , (18)

where the wave function φjl(ε, r) has the usual asymptotic at
r → ∞. It is either a condition similar to Eq. (4) for a scattering
state or the usual asymptotic with the Whittaker function
for a normalizable state [45]. Then using the Wigner-Ekkart
theorem, the reduced matrix element of the Cn,λµ operator may
be written as

〈εκ, j ls‖Cn,λ‖j0l0s0〉
= δss0 Pn,λ(−)j0+j+l0+l ĵ ĵ0 l̂0C

l0
l00λ0 W (l0sλj ; j0l)

× ρ̃
(n)
(j l)λ(j0l0)(εκ, q), (19)

where quantity Pn,λ is defined by the symmetry properties
of the spherical harmonics Yλµ(
n). In particular, P1,λ =
1 and P2,λ = (−)λ, since r1 = m2

m1+m2
r and r2 = − m1

m1+m2
r,

respectively. The function ρ̃(n)(q) reads

ρ̃
(n)
(j l)λ(j0l0)(εκ, q) =

∫ ∞

0
φ∗

j l(εκ, r)jλ(qrn)φj0l0 (r)dr. (20)

The quantity Cξ arising in Eq. (13) for the two-cluster system
reads

Cξ = ileiσl

( 2

π

µ

h̄2κ

)1/2
.

III. APPLICATION TO DEUTERON ELASTIC
SCATTERING

The deuteron is a two-body projectile with only one bound
state. We analyze the elastic scattering of 2H as a test of
the model. Only the s-wave component of the ground state
wave function is considered. The proton-neutron interaction
is chosen in a Gaussian form (see Table I) with parameters
that give the deuteron binding energy 2.22 MeV, r.m.s. radius
〈r2

d 〉1/2 = 1.97 fm, and triplet scattering length at = 5.46 fm,
close to the experimental data.

As already mentioned, the effect of the deuteron breakup on
elastic deuteron-nucleus scattering has been analyzed in many
papers [16,18,25–27,38,46]. We confirm here, in particular,
that the breakup transition matrix elements F(j0l0)λ(j l)(k, R)
[Eq. (17)] with even λ dominate in deuteron-induced reactions.
The contribution of odd partial waves is weak because of
the P2,λ coefficient in Eq. (19) and the similarity of the p-A
and n-A nuclear interactions. The Coulomb dipole excitation
(λ = 1) gives comparable effect at energies well above the
Coulomb barrier. In particular, the overall contribution of
the dipole excitation is less than 10%, while the main part
of the polarization potential is defined by the transitions with
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TABLE I. Effective interaction potentials.

V0
a Rv av W0

b WD Rw aw VSO
c RSO aSO RC

n + pd 62.105 1.625
n + 12C 52.25 2.57 0.570 8.05 2.57 0.500 6.2 2.29 0.750
58Ni 42.67 4.53 0.750 7.24 2.586 4.88 0.580 6.2 4.26 0.750
120Sn 38.70 5.77 0.750 7.79 0.375 6.22 0.580 5.5 5.18 0.750
208Pb 33.38 6.93 0.750 6.80 7.48 0.580 6.2 6.52 0.750
p + 12C 53.29 2.57 0.570 8.05 2.57 0.500 6.2 2.29 0.750 2.75
58Ni 44.92 4.53 0.750 6.10 2.214 5.11 0.534 6.2 3.91 0.750 4.53
120Sn 48.46 5.77 0.750 6.65 3.175 6.51 0.627 5.5 5.18 0.750 5.77
208Pb 48.66 6.94 0.750 8.23 8.68 0.580 6.2 6.52 0.750 6.93
d + 12C 94.65 2.24 0.800 3.50 7.40 3.19 0.700 3.29

aReal part has the Woods-Saxon form V (r) = −V0 f (r, Rv, av), where function f (r, R, a) = (1 + e(r−R)/a)−1.
bImaginary part is chosen in the form W (r) = −W0 f (r, Rw, aw) + 4awWD

d

dr
f (r, Rw, aw).

cSpin-orbit interaction has the Thomas form VSO(r) = 2λπ (L · s)VSO
1
r

d

dr
f (r, RSO, aSO).

dThe proton-neutron interaction has the Gaussian form V (r) = −V0e
−r2/R2

v .

λ = 0 and 2 [16,27]. The deuteron breakup energies up to about
15 MeV certainly play a leading role in the expansion of the
total wave function. It allows one to truncate the sum over λ in
the polarization potential (16) at λmax = 6 and to perform an
integration over the excitation energy εκ up to 40 MeV.

In spite of the number of applications of the generalized
optical model to the deuteron elastic scattering, a detailed
study of the subject has not been reported. In this section,
we present the results obtained within the approach de-
scribed above to the deuteron elastic scattering at energies of
30–50 MeV/u. We consider reactions with heavy and light
targets separately because of specific features observed in the
case of deuteron elastic scattering by light ions.

A. Scattering by heavy targets

The cluster-target potentials for each reaction were obtained
from a phenomenological optical model analysis of appropri-
ate experimental data on the n-A and p-A elastic scattering at
energies around En,p = Ed/2 (see discussion in Ref. [16]). We
use the optical potential parametrization given in Ref. [47] in
the fitting procedure as a starting parameter set. The obtained
parameters are listed in Table I.

The cluster-folding potential U (1) presents well-known
properties independent of the target [46]. It is close to the
sum of the nucleon-target optical potentials. The resulting
radial dependence of the real part has a Woods-Saxon shape
with a noticeably larger diffuseness parameter (a ∼ 1 fm)
and somewhat reduced in magnitude. The same is valid for
the imaginary part of U (1). The folding of the spin-orbit
nucleon-target interactions, which are usually chosen as a
Thomas form (see Table I), results in a shape close to the
Woods-Saxon form with parameters similar to the central part.

The elastic scattering cross section obtained with the
cluster-folding potential U (1) (dashed curves in Fig. 1) sig-
nificantly overestimates the experimental data at scattering
angles larger than the nuclear-rainbow angle. This means that
the imaginary part of the folding is too weak and gives us an
estimate of the role of the polarization potential U (2).

We calculate the generalized optical potentials U (1) + U (2)

for deuteron elastic scattering by 56Ni, 120Sn, and 208Pb
targets at energies 80, 85, and 110 MeV, respectively. The
corresponding theoretical cross sections are in good agreement
with the experimental data (see Fig. 1).

The polarization potential U
(2)
JL(R,R′) is illustrated in

the top panel of Fig. 2 for the 208Pb (d, d) reaction and

FIG. 1. Cross sections for deuteron elastic scattering on different
targets. Dashed lines show the cross sections obtained with the cluster-
folding potential, while solid lines correspond to the calculation with
the nonlocal optical potential. The experimental data from Refs. [49–
51] are shown by dots.
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FIG. 2. Top panel: dynamical polarization potential calculated
for the deuteron elastic scattering on the 208Pb target at Ed =
110 MeV and J = L = 25. The real (imaginary) component of
the DPP is shown by the solid (dash) contours. The values of the
potential at the extremum are indicated. Bottom panel: module
of the partial wave function ψJL=25(k, R) corresponding to the
d(110 MeV) + 208Pb reaction is shown in the top part. Solid and
dash curves correspond to the wave functions calculated with the
U (1) cluster-folding and with (U (1) + U (2)) nonlocal optical potentials.
Real and imaginary parts of the folding potential (solid curves) and
WLP (dash curves) are shown for the same reaction in the middle and
bottom parts.

J = L = 25. The DPP is symmetric with respect to R and
R′, therefore we plot the real and imaginary parts of DPP
in the same figure. The polarization potential is noticeably
nonlocal, nonmonotonic, and L dependent. It makes the po-
larization potential U

(2)
JL(R,R′) complicated for analysis. The

L-independent “weighted mean” local polarization potential
(WLP) was proposed in Ref. [48] as an alternative for the
nonlocal DPP. In the bottom panel of Fig. 2, the WLP for
the same reaction is shown together with the module of the
corresponding partial wave functions. The wave functions

ψL=25 calculated with the nonlocal DPP and with the WLP
are indistinguishable and shown by the dashed curve in the
top part of the bottom panel of Fig. 2. Note also that the cross
sections obtained with the WLP and with the initial nonlocal
DPP are almost identical. It is illustrated in Fig. 1 for the case
of a lead target, where the dotted line shows the cross section
obtained with the WLP. It allows us to analyze the properties
of the WLP instead of the DPP.

The relative contribution of polarization potential to the real
part of the optical potential is rather small. In particular, the
value of Re U

(2)
WLP (R) at the minimum around R = 8 fm is

about −0.7 MeV and amounts to 3% of the folding potential
U (1), whereas the contribution of the imaginary part of the
polarization potential is more than 30% of the folding potential
at this point. For the d+208Pb collision, the total reaction cross
section is σR = 2.9 b at Ed = 110 MeV, where the folding
potential gives σ

(F )
R = 2.73 b and the polarization potential

gives σ
(DPP)
R = 0.17 b.

Thus, we may conclude that the generalized optical po-
tential model provides an adequate description of the light
two-cluster projectile elastic scattering by heavy nuclei at
intermediate energies. The deuteron polarization due to the
coupling with the breakup channels properly describes the
missing part of the total reaction cross section (about 10%).

B. Scattering by light targets

We study here the d + 12C collision at 56 MeV, because
there are experimental data both on the elastic scattering [52]
and on the proton-neutron correlations in the 12C(d, pn)
breakup reaction [53]. We use the parameters of the nucleon-
carbon potentials taken from Ref. [53] (see Table I).

The general properties of the optical potential are the same
as in the case of reactions with heavy targets. The elastic
scattering cross section calculated with the folding potential
exceeds the experimental data, see Fig. 3(a). However, in con-
trast to heavy targets, an addition of the polarization potential to
the folding does not lead to agreement with experimental data.
Comparison of the partial S-matrix elements generated by the
folding (dash-dotted line) and by the nonlocal optical potential
(solid line) shows that the polarization potential provides a
strong additional absorption at low orbital momenta.

We perform a fit of experimental data on the d + 12C
elastic scattering within the usual phenomenological optical
model [54] using the cluster-folding interaction as an initial ap-
proximation. The fitted optical model parameters (see Table I)
provide an angular distribution which agrees with the ex-
perimental points. The corresponding S-matrix elements are
shown in Fig. 3(b) by the short-dashed curve. As it can be seen,
there is a good agreement of the partial S-matrix elements
obtained with the generalized and phenomenological optical
potentials at L � 6 and significant differences at L < 6. Also
the phenomenological SJL elements are rather close to those
obtained with the folding at low values of L, i.e., the breakup
probability for central collisions should be small. Thus, one
may conclude that the model does not describe properly the
deuteron breakup and, consequently, elastic scattering at low
partial waves.
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(a) (b)

FIG. 3. Elastic scattering cross sections (a) and S matrices
(b) for the 12C(d, d) reaction at 56 MeV. Dash-dotted and solid curves
in both panels correspond to the results obtained with cluster-folding
and nonlocal optical potentials. The long dashed line in panel (a)
shows the cross section obtained by neglecting the polarization
potential at L < 6. The short dashed line in panel (b) is an S

matrix generated by phenomenological optical potential. Dots are
the experimental data taken from Ref. [52].

1. Deuteron breakup within the prior-form DWBA

The function F(j l)λ(j0l0)(k, R) in the polarization potential
(16) determines also the prior form of the DWBA breakup
amplitude [55]

T DW = 〈ψ (−)
p′ (R)φ(−)

k (r)|VR,r|φg.s.(r)ψ (+)
p (R)〉, (21)

where φg.s.(r) and φ
(−)
k (r) are the ground and excited states of

the projectile, and ψ
(±)
p (R) are the distorted waves describing

the projectile-target relative motion in the entrance and exit
channels. We calculated the deuteron breakup cross section
for the 12C(d, pn) reaction at 56 MeV and compared it
with experimental data [53], where the angular and energy
distributions of the protons were measured in coincidence
with neutrons emitted at θn,lab = 15◦. Here we used the same
optical model parameters as in the analysis of d + 12C elastic
scattering above.

The results are shown by solid lines in Fig. 4. The DWBA
amplitude (21) gives a good agreement with the data for
negative proton angles and fails at positive ones. One may
suppose that the differences between the calculations and
experimental data on deuteron breakup and elastic scattering
have the same origin.

2. Deuteron breakup within the classical dynamics model

To confirm this assumption, we performed an analysis of
this reaction within the few-body classical molecular dynamics
[14]. The models based on the Newtonian equations have been
successfully applied to the study of heavy ion fragmentation
at intermediate energies (see, for example, Refs. [14,56–59]).
Note also that classical dynamics approaches turn out to be
very effective in combination with quantum consideration,
allowing us to explain many aspects of nuclear dynamics using
a “trajectory” language.

Within the classical model, the two-body projectile d =
(p + n) and target 12C are treated as classical particles

FIG. 4. Left panel: energy spectra of protons in coincidence with neutrons emitted at θn,lab = 15◦ for the 12C(d, pn) elastic breakup at
56 MeV in the angular region −60◦ � θp,lab � 60◦. Right panel: angular distribution of p − n correlations in the same reaction. Solid and dashed
curves are the DWBA calculations of the breakup cross section. Dashed lines show results by omitting the contribution of the projectile-target
partial waves with L < 6. The calculated triple differential cross sections at positive θp,lab are renormalized by the factor shown near each
curve. Dots are the experimental data from Ref. [53].
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FIG. 5. Averaged correlation angle between the protons and
neutrons emitted in the 12C(d, pn) breakup reaction at Ed = 56 MeV
as a function of the impact parameter. The calculation is performed
within the classical three-body model [14].

moving along the classical trajectories determined by the same
interactions (VR,r + vr) as in the quantum case considered
above. We tested 106 trajectories with randomly distributed
initial parameters (see details in Ref. [14]). Figure 5 shows
the averaged angle 〈�θpn〉 between the proton and neutron
emitted during the deuteron breakup as a function of the impact
parameter b = L/p. As it can be seen, protons emitted at
negative angles (relative to θn,lab = 15◦, large �θpn) originate
mainly in peripheral collisions with L � 6, whereas positive
angles θp correspond to central collisions (small 〈�θpn〉
values). Hence, the disagreement with experiment at positive
values of θp (Fig. 4) originated from a wrong treatment of the
contribution of small angular momenta (L < 6)—just as in the
analysis of elastic scattering.

Note that a large 〈�θpn〉 value in the peripheral deuteron
breakup process is caused by the repulsion of protons by the
Coulomb field of the target, whereas the neutron is deflected
by attractive nuclear forces. In central collisions, the effect
of the Coulomb forces is much weaker, therefore the 〈�θpn〉
angle turns out to be relatively small.

The origin of the critical orbital momentum L = 6 (for
d + 12C at 56 MeV) also has a clear explanation in the
classical model. Using the phenomenological optical potential
for the d(56 MeV) + 12C reaction (see Table I) and employing
an appropriate computational code [60], we calculated the
classical deflection function and survival probability

PS(L) = exp

−
∫

tr

W(R) dR√
h̄2

2m
[Ep − U(R)]

 (22)

as a function of the orbital momentum L = bp. PS(L) is the
probability that the projectile, moving along the trajectory with
a given impact parameter b, remains in the elastic channel.
U(R) and W(R) in Eq. (22) are the real and imaginary parts
of the optical potential, and the integration is performed along
the trajectory. The calculated survival probability PS is very
similar to the partial S-matrix elements, which have the same
physical meaning (see Fig. 6). The deflection function reveals
the nuclear-rainbow angle θNR ≈ 70◦, which is close to the
experimental value.

FIG. 6. Deuteron survival probability and deflection function
calculated within classical model [60] for the d(56 MeV) + 12C
reaction. Open squares show the SJL matrix obtained within the
phenomenological optical model with the same potential.

As it can be seen from Fig. 6, the orbital momentum
LNR = 6 corresponds to the nuclear-rainbow scattering. This
means that the trajectories with L < LNR pass deeply in the
interaction region, while the trajectories with L > LNR are
more peripheral. Thus the model used here for a calculation of
the generalized optical potential does not treat properly central
collisions with strong overlapping of the colliding nuclei.

3. Projectile-target nonphysical bound states

The phenomenological optical model analysis shows that
the absorption at low orbital momenta in the elastic scattering
is well described by the imaginary part of the folding potential
only and does not require any addition [compare dash-dotted
and dashed curves in Fig. 3(b)]. Note that a simple cut of
the polarization potential at L < 6 in the elastic scattering
analysis and omitting the contribution of these partial waves
to the DWBA breakup cross section lead to a significant
improvement of the results in both cases. It is shown by the
dashed curves in Figs. 3(a) and 4. Thus, the experimental data
indicate that the deuteron in the inner region of the target
nucleus turns out to be stable relative to the breakup channels,
which has been confirmed also in previous studies [25].

Thus, we conclude that the calculated DPP overestimates
the absorption at small partial waves, i.e., at small projectile-
target relative distance. The radial dependence of the po-
larization potential in this region is defined mainly by the
partial Green’s function g

(+)
JL (R,R′) (15). The properties of

Green’s function at low L values are significantly affected
by the properties of the folding potential U (1)(R), which is
used to calculate Green’s function. The interaction U (1)(R)
is calculated as a sum of the folded complex cluster-target
optical potentials. Parameters of these potentials are usually

024605-8



GENERALIZED OPTICAL POTENTIAL FOR WEAKLY . . . PHYSICAL REVIEW C 79, 024605 (2009)

fitted in order to reproduce experimental cross sections. In
this procedure, the scattering phase shifts are retrieved but
not the wave functions. Thus, the cluster-target potentials may
provide an incorrect behavior of the partial wave functions at
small distances because of the π ambiguity of the phases. In
particular, cluster-target potentials and, consequently, cluster-
folding ones turn out to be deep and contain many forbidden
bound states. This may result in incorrect radial dependence
of Green’s function at small distance, since the corresponding
partial wave functions penetrate deeply into the interaction
region. This leads to the rise of the DPP at small R values.

The observed stability of a deuteron moving in nuclear
matter with respect to the breakup means in fact that the
deuteron does not penetrate deeply into a target due to the
Pauli blocking. The effects of antisymmetrization in deuteron
elastic scattering have been studied before [61–63]. To take
it into account consistently within our approach, one needs to
remove the forbidden states from the nucleon-target potentials,
which makes them nonlocal and results in the complication of
their further treatment. Therefore we apply a simplified method
modifying the d−12C cluster-folding potential U (1)(R), which
also presents a number of nonphysical bound states. Let us
then remove these states.

States found in the d−12C folding potential (without
spin-orbit interaction) are listed in Table II. E′

nL are the
eigenvalues corresponding to the states in the potential without
an imaginary part, while EnL are the eigenvalues in the
complex potential (since the cluster-folding interaction is
complex). The imaginary part of the potential leads to the
appearance of a negative imaginary addition to the eigenvalues.
Re EnL of the bound states as well as of the narrow resonances
are modified a little, while the broad resonances are shifted
significantly.

For a Hermitian Hamiltonian, the S-matrix poles corre-
sponding to resonant states are symmetric with respect to the
imaginary p axis. In the case of a complex potential, this
symmetry is broken. Generally, the resonant poles move in
clockwise direction in the complex p plane (see Ref. [64]

TABLE II. Bound, resonant, and normalizable states in the
d + 12C folding potential.

L Nodes E′
nL (MeV) EnL (MeV)

0 0 −51.47 + i0 −51.29 − i8.25
1 0 −34.60 + i0 −34.52 − i9.11
0 1 −19.72 + i0 −19.57 − i8.34
2 0 −18.57 + i0 −18.48 − i9.25
1 1 −6.93 + i0 −6.37 − i6.82
3 0 −4.03 + i0 −3.62 − i8.39
0 2 0.14 − i0.0 0.49 − i0.65
1 2 1.24 − i2.10 0.82 − i1.25
2 1 1.89 − i0.18 1.76 − i1.72
3 1 5.95 − i4.51 3.51 − i3.49
4 0 7.36 − i0.59 7.11 − i3.57
5 0 16.45 − i4.88 12.12 − i7.45
0a 1.47 − i3.06
2a 3.85 − i3.57
4a 9.57 − i5.78

aThe normalizable states in the d + 12C folding potential with
positive real energy.

for details). The states with Rep > 0 (right half-plane) get
negative addition to the Im p, while some of the poles in
the left complex half-plane cross the real axis and become
normalizable states (Re p < 0 and Imp > 0, i.e., ψL(R →
∞) ∼ e−ImpR). The energies corresponding to these states in
the d−12C folding potential are also listed in Table II.

We apply the technique explained in Refs. [65,66], which
allows us to eliminate normalizable states from the spectrum
of the complex potential using supersymmetric (SUSY) trans-
forms in each partial wave. The resulting potential becomes
L dependent and contains a strong repulsive core at small
distances. The SUSY transforms do not modify the scattering
phase shifts. Nevertheless, the partial wave function and,
consequently, Green’s function turns out to be pushed out from
the interaction region [see Fig. 7(a)]. The obtained Green’s
function was used in the DPP calculation. The corresponding

(a) (b)

FIG. 7. (a) Imaginary part of the partial Green’s functions (L = 2) and real part of corresponding interaction potentials for the 12C(d, d)
reaction. Functions gL and g

(S)
L are calculated using effective potential VL = U (1) + h̄2L(L + 1)/2mR2 and its supersymmetric partner V (S)

L

after removal of the state E2 = −(18.5 + i9.3) MeV, respectively. (b) WLPs for the same reaction resulting from calculations with nonmodified
nonlocal optical potential (dotted line), with nonlocal potential neglecting the polarization part at L < 6 (dashed line), and with nonlocal optical
potential after removal of forbidden states (solid line).
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(a) (b)

FIG. 8. (a) S matrices for 12C(d, d) reaction at energy Ed = 56 MeV. Full and open squares show the S-matrix generated by nonmodified
nonlocal and empirical optical potentials, respectively. Full and open circles are the S-matrix elements calculated with nonlocal optical potential
after removal of forbidden states and with the corresponding WLP, respectively. (b) Elastic scattering cross section for the same reaction. The
solid curve shows the calculations with the WLP after removal of the forbidden states, while the dashed curve shows the calculation with
nonmodified nonlocal optical potential. Dots are the experimental data [52].

WLP results are shown in Fig. 7(b) in comparison with the
initial WLP and with the WLP resulting from a dropping of
the nonlocal polarization potential at L < 6. We may conclude
that the elimination of the forbidden states modifies the DPP
in a correct way.

Modules of the S-matrix elements for the same reaction are
shown in Fig. 8(a). One may see that the supersymmetric
transform leads to a decrease of the absorption in elastic
channels at low partial waves. Thus the elimination of the
nonphysical states in the d−12C folding potential allows one
to describe effectively the suppression of the deuteron breakup
at low values of angular momenta.

The d−12C folding interaction does not contain normaliz-
able states with L = 5 as it may be expected from the behavior
of the phenomenological S matrix [see Fig. 8(a)]. This
indicates that the folding potential is not the best substitution
for the VR,r in the Green’s function calculation. Damped
SL=5 matrix element [solid circles in Fig. 8(a)] results in the
oscillating behavior of the cross section at large scattering
angles. This problem is overcome somehow if we use the WLP
[solid line in Fig. 7(b)], which smooths the S matrix [open
circles in Fig. 8(a)] by averaging the nonlocal polarization
potential over all orbital momenta. The angular distribution in
the d + 12C elastic scattering is shown in Fig. 8(b) together
with experimental data and the cross section obtained without
the SUSY transforms.

IV. CONCLUSIONS

By extending the model proposed in earlier papers, we
derive the generalized optical potential for elastic scattering
of a few-cluster projectile, taking into account explicitly the
coupling with the breakup channels. We do not use most of
the simplifications which were employed in previous papers. In

particular, in applying the model to deuteron elastic scattering,
we take into account the spin of projectile, consider the cou-
pling to the projectile continuum with cluster-cluster relative
orbital momenta l � 6, and apply the suitable approximation of
Green’s function instead of the free-particle one used before. It
allows us to improve the agreement with the data and previous
results obtained within different approaches, which supports
the efficiency of the model. The model was applied to studying
the deuteron elastic scattering at energies of a few tens of MeV
per nucleon, and good agreement with experimental data was
obtained.

It was also shown that the behavior of the polarization
potential at low orbital momenta is noticeably affected by the
nonphysical bound states in the projectile-target system. In
light heavy ion scattering, it leads to the overestimation of the
absorption in the GOP in low partial waves. The elimination
of these forbidden states allows one to obtain an appropriate
polarization potential.

Note that the nonphysical bound states do not reveal
themselves in the deuteron scattering by heavy targets in
spite of their existence for low partial waves. The reason
is that the absorption part of the folding potential is much
stronger in heavy targets than in light nuclei. Addition
of the polarization potential to the folding one gives a
negligible effect on the elastic scattering cross section in
low partial waves, because the contribution of these partial
waves is suppressed by the absorptive part of the folding
interaction. Note, however, that the forbidden states may
play some role in other reaction channels, for example, in
breakup. This subject is an interesting problem for future
studies.

Application of the proposed model to reactions with three-
cluster weakly bound nuclei (such as 6He = α + n + n) will
be done in future work.

024605-10



GENERALIZED OPTICAL POTENTIAL FOR WEAKLY . . . PHYSICAL REVIEW C 79, 024605 (2009)

ACKNOWLEDGMENTS

One of the authors (A.D.) thanks the PNTPM depart-
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