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A dependence of the enhancement factor in energy-weighted sums for isovector giant resonances
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We consider the energy weighted sums (EWS) for isovector giant dipole resonances (IVGDR) in finite nuclei
within Landau kinetic theory. The dependence of both IVGDR energy, EIVGDR, and the EWS enhancement factor,
κ(A), on the mass number A occurs because of the boundary condition on the moving nuclear surface. The
values of EIVGDRA1/3 and κ(A) increase with A. The obtained value of the enhancement factor is about 10%
for light nuclei and reaches approximately 20% for heavy nuclei. A fit of the enhancement factor to the proper
experimental data provides a value for the isovector Landau amplitude of F ′

1 � 1.1.
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I. INTRODUCTION

A microscopic description of the isovector excitations
within the nuclear Fermi-liquid theory requires the use of two
Landau amplitudes F ′

0 and F ′
1 to model the nucleon-nucleon

interaction. The amplitude F ′
0 provides the isospin symmetry

energy, whereas the inclusion of the velocity-dependent force
∼F ′

1 leads to the renormalization of the isovector energy
weighted sums (EWS) mk [1,2]. In particular, the isovector
EWS m1 becomes dependent on the nucleon-nucleon interac-
tion. This is opposite to the case of the isoscalar excitations
where the corresponding sum m1 is model independent.
Moreover, the presence of the velocity-dependent force causes
the 100% exhaustion of Thomas-Reiche-Khun (TRK) sum
rule to be exceeded for the isovector giant dipole resonances
(IVGDR). The origin of the corresponding enhancement factor
of the IVGDR sum m1 was intensively investigated for both
nuclear matter and finite nuclei (see Refs. [1,3] and references
therein). The random-phase approximation (RPA) calculations
of the enhancement factor for symmetric nuclear matter were
recently performed for a representative set of Skyrme forces
in Ref. [4]. As shown in Ref. [4], the value of the enhancement
factor is changed in almost a factor of 2, depending on
the choice of the Skyrme force parametrization. The high
sensitivity of the enhancement factor to the choice of the
Skyrme forces was also demonstrated in Ref. [5] for the
nucleus 208Pb.

In finite nuclei, both the IVGDR eigenenergy EIVGDR and
the EWS m1 are rather complicated functions of the mass
number A. In contrast to the classical Steinwedel-Jensen model
[6], the value EIVGDRA1/3 is not a constant but increases with
A. The theoretical approaches to a microscopic description of
IVGDR are mainly based on the RPA [7]. A RPA analysis
of the enhancement factor for some spherical nuclei (but not
its A dependence) has been recently done in Ref. [8]. Note,
however, that the RPA calculations [1,3,8,9] overestimate
the magnitude of the enhancement factor (see Fig. 3 later).
Note also that, within the RPA, the highly excited IVGDR is
strongly fragmented over a wide energy interval and a special
averaging procedure has to be applied to pick up a smooth A

dependence of the IVGDR characteristics. Furthermore, the
RPA calculations of the EWS mk are restricted by taking into
account one-particle–one-hole (1p-1h) excitations only and,

thereby, one can expect an underestimation of the contribution
to m1 from more complicated states [1,9–11].

In this work, we study the IVGDR within Landau kinetic
theory [12], which is extended to the finite two-component
Fermi-liquid drop. The A dependence of both the IVGDR
eigenenergy and the corresponding EWS occurs because of
the boundary conditions on the moving nuclear surface. Our
approach is more general than the scaling model [13] or the
fluid dynamic approaches [14] because it takes into consider-
ation all multipolarities of the Fermi surface distortions.

In Sec. II, we start from the response theory based
on the collisionless kinetic Landau-Vlasov approach to the
isovector excitations. We derive the main characteristics of
the IVGDR, taking into account the velocity-dependent part
of the Landau isovector interaction. In Sec. III, we obtain
the boundary condition for the isovector sound mode on the
free nuclear surface. In Sec. IV, the numerical calculations for
the IVGDR eigenenergy and the corresponding EWS sum m1

are presented. Conclusions are given in Sec. V.

II. RESPONSE FUNCTION AND ENERGY-WEIGHTED
SUMS

We consider the response of the nucleus to an external
periodic in time field Uext(t):

Uext(t) = λ0e
−iωt q̂ + λ∗

0e
iωt q̂∗, (1)

where q̂ is the Hermitian one-particle operator, which depends
on both spatial and isospin coordinates. If we assume λ0 � 1,
the quantum mechanical expectation of the operator q̂ is given
by the following form [15]:

〈q̂〉 = χ (ω)λ0e
−iωt + χ∗(ω)λ∗

0e
iωt , (2)

where χ (ω) is the linear response function. We will evaluate
the isovector density-density response function χ (ω) by using

q̂ =
A∑

j=1

τj e
−i �qj ·�rj ,

where τj = 1 for the neutron and τj = −1 for the proton.
To evaluate the response function χ (ω), we use the

collisionless kinetic Landau-Vlasov equation for the isovector
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excitations,

∂

∂t
δf + �v · �∇rδf − �∇pfeq · �∇r (δUself + Uext) = 0. (3)

Here, δf is the isovector variation of the Wigner distribution
function, �v is the nucleon velocity, feq is the equilibrium
distribution function, and δUself describes the dynamical
component of the self-consistent mean field.

The solution to Eq. (3) can be written in terms of a plane
wave [12]

δf = −∂feq

∂εp

ν�q( �p) ei(�q·�r−ωt), (4)

where εp = p2/2m∗,m∗ is the nucleon effective mass, and
ν�q( �p) is an unknown amplitude. The variation of the self-
consistent field δUself in Eq. (3) is obtained through the
isovector interaction amplitude F ′( �p, �p′) as

δUself =
∫

2d �p′

(2πh̄)3
F ′( �p, �p′) δf (�r, �p′; t). (5)

The interaction amplitude F ′( �p, �p′) is usually parametrized in
terms of the Landau constants F ′

k as [16]

F ′( �p, �p′) = 1

NF

∞∑
k=0

F ′
k Pk(p̂ · p̂′), p̂ = �p/p, (6)

where Pk(x) is the Legendre polynomial, NF is the averaged
density of states at the Fermi surface, given by

NF = −
∫

2d �p
(2πh̄)3

∂feq

∂εp

= m∗pF

π2h̄3 , (7)

and pF is the Fermi momentum.
The parameter F ′

0 is related to the isotopic symmetry energy
Csym in the Weizsäcker mass formula [6,16] by

Csym = 2
3εF (1 + F ′

0), (8)

with the Fermi energy εF = p2
F /2m∗. In the following, we will

assume that

F ′
0 �= 0, F ′

1 �= 0, F ′
l � 2 = 0. (9)

By using Eq. (3) to get the amplitudes ν�q( �p), we obtain the
isovector response function in the form [17]

χ (ω) = Q00(s)

1 − g(s)Q00(s)
. (10)

Here, s = ωm∗/qpF ,

Q00(s) = NF Q00(s),
(11)

Q00(s) = 1 + s

2
ln

∣∣∣∣ s − 1

s + 1

∣∣∣∣ + i
π

2
s θ (1 − |s|),

and

g(s) = − 1

NF

(
F ′

0 + F ′
1

1 + F ′
1/3

s2

)
. (12)

The frequencies of isovector eigenvibrations [the poles of
the response function (10)] can be derived from the dispersion
relation

1 − g(s)Q00(s) = 0. (13)

The response function in Eq. (10) allows us to evaluate the
isovector EWS

mk = 1

π

∫ ∞

0
d(h̄ω) (h̄ω)kImχ (ω). (14)

Using the dispersion relation between Imχ (ω) and Reχ (ω),
and the asymptotic behavior of Reχ (ω) at ω → 0 and ω → ∞
limits, one obtains (see also Ref. [1])

m−1 = A

2

1

Csym
, m1 = h̄2 A

2m′ q
2, m3 = h̄4 A

2

C ′
sym

m′2 q4.

(15)

Here, we introduced the renormalized (because of the Fermi
surface distortion effect) isotopic symmetry energy C ′

sym =
Csym + 8εF /15 and the effective mass m′ = m/(1 + κNM ) for
the isovector channel, where κNM is the enhancement factor
of the sum rule (for nuclear matter), which is defined by the
relation

1 + κNM = (1 + F ′
1/3)/(1 + F1/3), (16)

where Fk is the Landau amplitude for the isoscalar channel.
In contrast to the isoscalar excitations, the isovector EWS
sum m1 in Eq. (15) is not model independent in the sense
that it depends on the effective mass m′ and, thereby, on the
interaction amplitudes F1 and F ′

1. We also point out that the
EWS mk of Eq. (15) allows us to evaluate the constrained
energy, Econstr, and the scaling energy, Esc, for the IVGDR.
Namely,

Econstr =
√

m1

m−1
= h̄

√
Csym

m′ q, Esc =
√

m3

m1
= h̄

√
C ′

sym

m′ q.

(17)

III. BOUNDARY CONDITION

For finite nuclei, the dispersion relation [Eq. (13)] has to
be supplemented by a corresponding boundary condition. The
boundary condition can be viewed as a condition for a balance
of the forces acting on the free nuclear surface:

�n · �F |S + �n · �FS = 0, (18)

where �n is the unit vector normal to the nuclear surface S, the
internal force �F is associated with the isovector sound wave,
and �FS is the isovector surface tension force. The internal
force �F is defined by the momentum flux tensor δPαβ inside
the nuclear volume. Thus, Fα = nβδPαβ , where δPαβ is given
by [18,19]

δPαβ = µF (∇αξβ + ∇βξα) + (
Csymρ̄eq − 2

3µF

) �∇ · �ξδαβ.

(19)

Here, �ξ is the displacement field, ρ̄eq = (ρn,eq + ρp,eq)/2, and

µF = 3

2
ρeqεF

s2

1 + F ′
1/3

[
1 − (1 + F ′

0)(1 + F ′
1/3)

3s2

]
. (20)

The surface force �FS in Eq. (18) is defined as Fν,S = nνδPS ,
where δPS is the pressure caused by the isovector polarizations
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at the nuclear surface [13,17], given by

δPS = 8

3

ρeq

r0
QδR1. (21)

Here, r0 is the mean distance between nucleons, Q is related to
the surface symmetry energy in the Weizsäcker mass formula
[20], and δR1 = R0αS(t)Y10(r̂). The amplitude αS(t) of the
isovector vibrations of the nuclear surface is connected to the
corresponding amplitude �ξ of the displacement field in a sound
wave.

Finally, from Eqs. (18), (19), and (21) we derive the
following secular equation for the wave number q:[

ρ̄eq

4
Csym + µF

3
− µF

x2

]
j1(x)

+
[
µF

x
− 2ρeqQ

3qr0(1 + κNM )

]
j ′

1(x) = 0, (22)

where x = qR0 and R0 = r0A
1/3. In the limit Q → ∞, the

boundary condition [Eq. (22)] gives rise to the boundary
condition j ′

1(x) = 0 of the Steinwedel-Jensen model [6]. We
point out that the secular equation (22) for q has to be solved
consistently with the dispersion equation (13) for s.

IV. NUMERICAL CALCULATIONS

Numerical calculations were carried out by using the
following set of nuclear parameters: r0 = 1.2 fm, F1 = −0.3,
and F ′

0 = 1.41. According to Eq. (8), the bulk symmetry
energy Csym is equal to 60 MeV [6]. The value of the Landau
amplitude F ′

1 will be discussed in the following.
In Fig. 1, the solid curve 1 shows the A dependence of

the value x obtained from the secular equation (22); it is
consistent with the dispersion relation [Eq. (13)] including all
multipolarities l of the Fermi surface distortions. Curve 3 rep-
resents the analogous result but for the velocity-independent
nuclear forces (i.e., for F1 = 0 and F ′

1 = 0). Curve 2 shows
a solution to the secular equation (22), when one takes into
account the Fermi surface distortions up to quadrupole order
(scaling approximation with l � 2) [13]. In the last case, instead
of solving the dispersion equation (13), we have used the
expression s2 = (9/5 + F ′

0)/3, which gives the dimensionless
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FIG. 1. Dependence of the value x = qR0 on the mass number
A obtained from the secular equation (22) for Q = 10.5 MeV and
F ′

1 = 1.1.
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FIG. 2. Dependence of the IVGDR energy on the mass number
A. The dashed line is the calculation that includes Fermi surface
deformations up to quadrupole order [scaling approximation; see Esc

in Eq. (17)]; the solid line was obtained from the dispersion equation
(13) and the secular equation (22). The dots are the experimental data
taken from Ref. [22].

sound velocity s for l � 2 [19]. As seen from Fig. 1, the value of
x is significantly smaller than the corresponding one obtained
within the Steinwedel-Jensen model (dashed line in Fig. 1).

In Fig. 2 we show a dependence of the IVGDR energy
(multiplied by the factor A1/3) on the mass number A. The
calculations have been performed at Q = 10.5 MeV and
F ′

1 = 1.1. The solid line is the eigenenergy obtained from
the dispersion equation (13) supplemented by the boundary
condition [Eq. (22)]. The dashed line in Fig. 2 was obtained
from the EWS definition of the scaling energy, Esc, of Eq. (17).
A significant upward shift of the exact eigenenergy (solid line)
with respect to the scaling one, Esc, is due to the Fermi surface
distortions of the higher multipolarities (l > 2) contributed
to the dispersion equation (13). The values of the Landau
amplitude F ′

1 = 1.1 and the parameter Q = 10.5 MeV have
been chosen such that the best fit of the A dependence of the
eigenenergies to the experimental data is obtained.

Let us now consider the enhancement factor κ of the
isovector EWS m1. For infinite nuclear matter, it is given by
the value of κNM in Eq. (16). The experimental determination
of the enhancement factor κ is connected to the investigation of
the photoabsorption cross section σabs(ω) of γ quanta. For the
velocity-independent forces, the isovector EWS m1 is model
independent and reads (TRK sum rule) [7]

m̃1,TRK =
∫ ∞

0
d(h̄ω)σabs(ω) = 2π2h̄e2

mc

NZ

A
. (23)

The photoabsorption cross section σabs(ω) can be expressed in
terms of the strength function S(ω) = Imχ (ω)/π as follows
[21]:

σabs(ω) = 4π2e2

cq2
0 (A)ρ0

NZ

A
ωS(ω), (24)

where the wave number q0(A) has to be found from Eq. (22)
in the limit of velocity-independent forces (i.e., at F1 = 0 and
F ′

1 = 0).
In a general case of velocity-dependent nuclear forces, by

using Eq. (15) for m1 and Eqs. (23) and (24), we generalize
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FIG. 3. Dependence of the enhancement factor 1 + κ(A) for
IVGDR on the mass number A. The calculation result was obtained
for a Landau amplitude F1 = −0.3, F ′

1 = 1.1 (solid curve). The
dashed line is the microscopic RPA calculations with Skyrme forces
SkM∗ from Refs. [1,10]. The solid points are the experimental data
of the Livermore group from Ref. [22]. Two points (noted by the
symbol �) were obtained by the inclusion of the contribution from
the (γ, p) cross section.

the TRK sum rule in the form

m̃1(A) = 2π2h̄e2

mc

NZ

A

[
q1(A)

q0(A)

]2

(1 + κNM ), (25)

where q1(A) is derived by Eq. (22) at F1 �= 0 and F ′
1 �= 0.

In Fig. 3, the EWS enhancement factor 1 + κ(A) is plotted
as a function of the mass number A:

m̃1(A)

m̃1,TRK
=

[
q1(A)

q0(A)

]2

(1 + κNM ) = 1 + κ(A). (26)

The exceedance of the 100% sum rule for m̃1(A), which is
observed for the IVGDR, is caused by the dependence of the
effective nucleon-nucleon interaction on the nucleon velocity.
For the value of the isovector amplitude F ′

1 = 1.1, one can fit
(on average) the results of our calculations of 1 + κ(A) (solid
curve in Fig. 3) to the experimental data of the Livermore group
[22]. Our estimate to the enhancement factor κ(A) is about 10%
for light nuclei and increases to 20% for heavy nuclei. This
result is consistent with the general conclusion of Ref. [22];
that is, for A > 100, the experimental data center is at about
1.2 TRK sum-rule units. For the mass region A < 70, the TRK
sum rule is not exhausted. As noted in Ref. [22], this no doubt
results from the neglect of the (γ, p) channel contribution for
these nuclei. It was reported recently that inclusion of the
contribution from the (γ, p) cross section increases the EWS
exhaustion from 0.87 to 1.15 for 60Ni and from 0.64 to 0.92 for
63Cu [23]. The corresponding new data are shown in Fig. 3 by
the symbol �. The result of a microscopic RPA calculation of
the enhancement factor is shown in Fig. 3 as a dashed line (see
Refs. [1,10]). We point out that both our Fermi-liquid approach
and the RPA prediction give very similar A dependence of
the enhancement factor 1 + κ(A). However, it is seen from
Fig. 3 that the RPA calculation overestimates the magnitude
of κ(A) (see also Refs. [3,8,9]). The RPA result for κ(A) can
be improved by a fit of the relevant parameters t1 and t2 in the
Skyrme forces.

The corresponding study has been recently performed
within the microscopic Hartree-Fock plus RPA approach in
Ref. [5], where a best value for κ(A) of 0.22 ± 0.04 was de-

duced from a fit to the experimental data for the nucleus 208Pb.
However, reducing the enhancement factor by the variation
of the Skyrme force parameters, one can expect a significant
change of the A behavior (slope) of the corresponding curve
κ(A) (dashed line in Fig. 3). Unfortunately, in the nuclear
literature, this kind of analysis has not yet been carried out.
We also note that the latest microscopic RPA calculations
presented in Refs. [4,5] are related to nuclear matter and the
nucleus 208Pb only. They do not show an A dependence of
the enhancement factor, but they do give a demonstration of
significant variation of the dependence of the enhancement
factor on the choice of the Skyrme force parametrization (see
the last column in Table I of Ref. [5]).

V. CONCLUSIONS

In conclusion, we wish to comment that it was conceptually
important for us to achieve a description of the A dependence
of both the IVGDR energy and the enhancement factor
simultaneously (see Figs. 2 and 3). In our approach, we
used appropriate boundary conditions that allowed us to
combine both the Steinwedel-Jensen and Goldhaber-Teller
models. A similar problem was considered earlier in Ref. [13]
but within the scaling approximation only. Thus, an inclu-
sion of the effective isovector surface stiffness Q into the
boundary condition [Eq. (22)] leads to the A dependence
of the value qR0, which becomes significantly smaller than
the Steinwedel-Jensen’s estimate qR0 = 2.08 [6]. Using the
obtained value of qR0, we have described the IVGDR energies
within the Landau kinetic theory quite well. Fitting the slope
of the energy dependence on the mass number A to the
experimental data, we have estimated the value of the effective
isovector surface stiffness as Q � 11 MeV.

The dependence of the effective nucleon-nucleon interac-
tion on the nucleon velocity causes the 100% exhaustion of
the TRK sum rule to be exceeded for the IVGDR. Within
Landau kinetic theory, the EWS enhancement factor κNM in
infinite nuclear matter depends on the interaction amplitudes
F1 and F ′

1. In finite nuclei, the A dependence of the EWS
enhancement factor κ(A) occurs because of the boundary
condition [Eq. (22)]. The value of κ(A) increases with A. A fit
of the enhancement factor to the proper experimental data leads
to a value for the isovector Landau amplitude of F ′

1 � 1.1.
The obtained value of F ′

1 exceeds the estimate F ′
1 = 0.5–0.7

derived earlier from Skyrme forces for infinite nuclear matter
[9,11,16]. This exceedance appears since our derivation of F ′

1
is related to the interior of the finite nucleus. For finite nuclei,
the Landau amplitudes Fk and F ′

k are r-dependent ones with
a bump within the nuclear surface [11,16]. This effectively
increases the bulk values of Fk and F ′

k in the limit of the sharp
nuclear surface assumed in this paper.

We show that the value of the enhancement factor is about
10% for light nuclei and reaches approximately 20% for heavy
nuclei. For nuclei with A > 100, our results are close to the
experimental data from Livermore discussed in Ref. [22] and
they are in agreement with the best value for the enhancement
factor obtained for the nucleus 208Pb in Ref. [5]. We note
also that the A behavior of the enhancement factor obtained
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in our Fermi-liquid approach is similar to the one derived
from the microscopic RPA calculations (see the dashed line in
Fig. 3), but, as was previously mentioned, the RPA

results show a strong variation of the enhancement fac-
tor with the choice of the Skyrme force parametrization
[5].
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[5] L. Trippa, G. Coló, and E. Vigezzi, Phys. Rev. C 77, 061304(R)

(2008).
[6] A. Bohr and B. Mottelson, Nuclear Structure, Vol. 2 (Benjamin,

New York, 1975).
[7] P. Ring and P. Schuck, The Nuclear Many-Body Problem

(Springer-Verlag, New York, 1980).
[8] D. Sarchi, P. F. Bortignon, and G. Coló, Phys. Lett. B601, 27
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