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Spatial correlation properties of the anomalous density matrix in a slab of
nuclear matter with realistic N N forces
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Spatial correlation characteristics of the anomalous density matrix κ in a slab of nuclear matter with the Paris
and Argonne v18 forces are calculated. A detailed comparison with predictions of the effective Gogny force is
made. It is found that the two realistic forces lead to very close results that are qualitatively similar to those for
the Gogny force. At the same time, the magnitude of κ for realistic forces is essentially smaller than that for the
Gogny force. The correlation characteristics are practically independent of the magnitude of κ and turn out to
be quite close for the three kinds of forces. In particular, all of them predict a small value of the local correlation
length at the surface of the slab and a big one inside. These results are in agreement with those obtained recently
by N. Pillet, N. Sandulescu, and P. Schuck [Phys. Rev. C, 76, 024310 (2007)] for finite nuclei with the Gogny
force.
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I. INTRODUCTION

The problem of the surface nature of nuclear pairing has a
long history (see review article Ref. [1] and references therein).
First, it was formulated in terms of the effective pairing
interaction (EPI) entering the gap equation in a model space
in which the pairing problem is usually considered. Within the
self-consistent Finite Fermi System theory, the use of a natural
density dependent ansatz for the EPI has resulted in a strong
attraction at the nuclear surface, being rather small inside
nuclei [2]. A similar conclusion was obtained in the ab initio
calculation of the EPI [3]. Later, the surface enhancement of
the gap function �(X) was found by solving the gap equation
for the complete Hilbert space in semi-infinite nuclear matter
with the realistic Paris force in Ref. [4] and with the effective
Gogny force in Ref. [5]. Similar conclusions were obtained
for a nuclear slab in Ref. [6] where the gap equation was
solved for both types of NN force simultaneously. It was
found that, although there is a quantitative difference between
the predictions of the two calculations, both of them show
a pronounced maximum of �(X) at the surface of the slab,
X = L, where 2L is the slab width, the effect being stronger
for smaller values of L. In more detail, the gap equation for the
nuclear slab was solved in Ref. [7] for the Paris force and in
Ref. [8] for the Argonne v18 force. It turned out that predictions
of these two absolutely different kinds of realistic NN force
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for the gap function agree with each other within 10%, both
yielding the ratio �(X � L)/�(X = 0) � 2.

Recently, Pillet, Sandulescu, and Schuck [9] investigated
directly spatial properties of the anomalous density κ, which
determines the space distribution of Cooper pairs. Calculations
were carried out within the Hartree-Fock-Bogoliubov (HFB)
approach by employing the D1S Gogny interaction [10] for
a set of Sn, Ni, and Ca isotopes. It was shown that Cooper
pairs in nuclei preferentially are located with small size (2–3
fm) in the surface region. The relevance of this phenomenon
to two-nucleon transfer reactions was discussed. It should be
mentioned that earlier the correlation properties of pairing for
specific nuclei were studied by Catara et al. [11], Ferreira
et al. [12], Bertsch and Esbensen [13], and Hagino et al. [14]
and in several works cited in Ref. [9]. A similar investigation
has also been performed for T = 0 pairing in dilute nuclear
matter [15].

In this article we carry out an analogous study for a nuclear
slab with realistic NN force (the Paris and Argonne v18

potentials) and the Gogny force. Our goal is to compare
predictions for the correlation pairing characteristics of the
Gogny force and of realistic forces to analyze to what extent
the effect found in Ref. [9] is general and independent on
the specific choice of NN force. It should be mentioned that,
with small modifications, the nuclear slab configuration may
be used to describe the so-called “lasagna” phase of the inner
crust of neutron stars.

II. MAIN DEFINITIONS

To make the comparison easier, let us recall the main
definitions introduced in Ref. [9]. In a inhomogeneous system,
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the anomalous density matrix is defined as follows:

κ(r1,r2) =
∑

i

ui(r1)vi(r2), (1)

where ui(r), vi(r) are the Bogolyubov functions. For a spher-
ical nucleus, it is convenient to go to relative and center of
mass coordinates, r = r1 − r2 and R = (r1 + r2)/2. In Ref. [9]
the anomalous density matrix was studied in such a way that
the probability distribution of Cooper pairs, |κ(R,r)|2, was
averaged over the angle between the vectors R and r,

κ
2(R,r) = 1

4π

∫
|κ(R,r)|2 d� . (2)

In particular, the space distribution of the pairing tensor
|κ(R,r)|2 was analyzed. The probability distribution of pairing
correlations,

P (R,r) = R2r2
κ

2(R,r), (3)

was calculated in Ref. [9]. To avoid misunderstanding, this
quantity is not normalized to unity.

The coordinate dependent local correlation length was
defined as

ξ (R) = (
∫

r2
κ

2(R;r) d3r)1/2

(
∫

κ
2(R;r) d3r)1/2

. (4)

At last, the locally normalized pairing tensor was considered
in the form

W (R,r) = r2
κ

2(R,r)∫
κ

2(R,r) r2dr
, (5)

because it enters the definition of the correlation length.
Just as in Ref. [8], we consider a nuclear slab embedded into

the Saxon-Woods potential U (x) symmetrical with respect to
the point x = 0 with potential well depth U0 = −50 MeV and
diffuseness parameter of d = 0.65 fm typical for finite nuclei.
The chemical potential is taken equal to µ = −8 MeV. To
compare our calculations with those of Ref. [9], we fixed the
thickness parameter of the slab as L = 6 fm to mimic nuclei
of the tin region. We use the notation r = (s,x), where s is
the two-dimensional vector in the plane perpendicular to the x

axis. The system under consideration is homogeneous in the
s plane; therefore one has κ(r1,r2) → κ(R,r) → κ(X;x,s),
with the obvious notation. The definition (4) is then rewritten
as follows:

ξ 2(X) =
∫

(x2 + s2)|κ(X;x,s)|2 d3r∫ |κ(X;x,s)|2 d3r
. (6)

As far as the correlation properties in the x direction and in the
s plane are essentially different, it looks reasonable to consider
them separately,

ξ 2(X) = ξ 2
x (X) + ξ 2

s (X), (7)

with the obvious notation.
In the slab geometry, the angular averaging procedure

similar to that in Eq. (2) is as follows:

κ
2(X,r) = 1

4π

∫
|κ(X;x,s)|2 2

r
δ(r2 − x2 − s2) d2s dx.

(8)

It gives the distribution of the pairing tensor for a fixed value
of the three-dimensional relative distance r . There is another
possibility, just to integrate over s:

κ
2(X,x) =

∫
|κ(X;x,s)|2 d2s . (9)

It yields the quantity κ
2(X,x) which gives the distribution of

the pairing tensor in variables which are natural for a slab. For
brevity, we use the same notation for the integrated anomalous
density matrix as for the initial one and the one in Eq. (8). The
arguments should help to avoid misleading. Note that κ(X,x)
and κ(X,r) have different dimensions.

III. CALCULATION RESULTS

Methods of solving the gap equation and the Bogolyubov
equations for a nuclear slab are described in Ref. [7] for the
separable representation of the Paris potential and in Ref. [8]
for the Argonne v18 force. The latter could be used for arbitrary
NN potential, and we repeated all the calculations of Ref. [8]
for the Gogny force. To begin the comparison, let us start
from infinite nuclear matter. The dependence of the gap on the
density of nuclear matter for the three kinds of NN force is
displayed in Fig. 1. The correlation length (4) in infinite matter
can be easily found in the momentum space:

ξ 2 =
∫ ∣∣ ∂

∂k
κ(k)

∣∣2
d3k∫ |κ(k)|2d3k

. (10)

Let us substitute in this equation κ(k) = �(k)/2Ek , where
Ek =

√
(εk − εF)2 + �2(k), εk = k2/2m∗, and εF = k2

F/2m∗.
The functions inside the integrals both in the numerator and
in the denominator of this relation are very peaked in the
vicinity of k = kF and rapidly vanish outside the interval
|k − kF| <∼ kF(�F/εF), �F = �(kF). Usually one deals with the
limit (�F/εF) � 1. In this case, one can substitute �(k) = �F

in Eq. (10) and evaluate the integrals analytically. A simple
calculation yields

ξ = vF√
8�F

, (11)

where vF = kF/m∗.
The correlation length for the three kinds of force under

discussion found numerically from Eq. (10), with m∗ = m,

FIG. 1. The gap �(k = kF) in infinite nuclear matter.
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FIG. 2. The correlation pairing length in infinite nuclear matter.

are displayed in Fig. 2. For comparison, the approximate ξ

from Eq. (11) with Argonne force is also displayed. It is seen
that the approximate formula works sufficiently well in all the
interval of kF. Even at the maximum of the gap the deviation
from the numerical result is of the order of 15%.

One can see that at small density, kF < 0.5 fm−1, the
results for all three forces practically coincide. This is not
strange. Indeed, although the Gogny force is an effective one,
in the 1S0 channel under consideration it describes the free
NN scattering perfectly well for small energy values that
are only important in this density interval. In this sense, the
Gogny force could be considered as a semirealistic force. Two
realistic forces lead to close results for all density values. In
the vicinity of the gap maximum, the difference between �Arg

and �Par does not exceed 10%, and only at kF � 1.4 fm−1,
where the gap value itself becomes very small, does the relative
difference become larger. As to the Gogny force, at the density
region kF � 1 fm−1 it leads to the gap values that are bigger
by approximately (20 ÷ 30)% than those for realistic forces.
Correspondingly, the correlation length for the Gogny force
is quite close to that of the realistic forces till kF � 0.8 fm−1,
and only at kF � 1.2 fm−1 does the difference become large.
The density dependence of the correlation length, ξ (kF), is
qualitatively similar for all the three types of force. It consists
of a plateau at 0.3 <∼ kF

<∼ 1 fm−1 and two intervals of sharp
growth, at kF

<∼ 0.3 fm−1 and kF
>∼ 1 fm−1. In the latter, the

value of ξGog(kF) is growing with kF much slower than that of
ξArg(kF) and ξPar(kF). Note that at kF

>∼ 1.2 fm−1 the difference
between ξArg(kF) and ξPar(kF) also becomes noticeable. This
is a manifestation of their behavior near the critical point kc

F
at which the gap vanishes and transition to the normal phase
of nuclear matter occurs. The values of kc

F for the Argonne
force and the Paris potential are a little different. This results
in different behavior of ξArg(kF) and ξPar(kF) in the region of
kF � 1.5 fm−1.

Let us now turn to the slab system. Before analyzing the
correlation characteristics, it is instructive to briefly compare
the EPI and the gap itself found with the realistic forces and
the Gogny force. The “Fermi averaged” gap is displayed in
Fig. 3. It is defined as

�F(X) = �(X,kF(X)), (12)

where the local Fermi momentum is kF(X) =√
2m(µ−U (X)) �(µ−U (X)). This quantity characterizes the

FIG. 3. The Fermi averaged gap �F(X).

gap on average [1,7,8]. We see, first, that all three functions
�F(X) have pronounced maxima at X � L = 6 fm. The ratio
�F(X � L)/�F(X = 0) � 2 for realistic forces and �1.5
for the Gogny force, in agreement with Ref. [6]. Second,
the gap �

Gog
F is significantly bigger than �Par

F and �
Arg
F , by

approximately a factor of one and a half at the surface and two
inside the slab. It is worth discussing this point in more detail.
Let us consider 120Sn as a “reference nucleus.” Its empirical
gap value is estimated usually as � � 1.3 MeV [16,17].
Diagonal matrix elements of the gap found in Refs. [7] and [8]
for a slab with L = 6 fm are about 1 MeV, which agrees
with the above value, leaving about 20–30% for the surface
vibration contribution. The latter was estimated in Ref. [17]
as �50%, which is, in our opinion, too much (see discussion
in Ref. [1]). We consider the estimation of Ref. [18] at �30%
as more realistic, but, evidently, also too big, because of
disregarding so-called tadpole diagrams [19]. Calculations
of Ref. [9] for this nucleus gave � � 2 MeV, which, in our
opinion, is too much, especially if you take into account what
the additional contribution of surface vibrations to the mean
field theory value of � will be! Thus, our observation in slab
calculations that the Gogny force overestimates the gap value
agrees essentially with the results of Ref. [9].

To understand the physical reason for the surface en-
hancement of the pairing gap with each NN force under
consideration and the bigger values of the gap for the Gogny
force, it is useful to calculate the EPI that we use in the two-step
method of solving the gap equation [1]. Let us review how this
quantity is defined. In a symbolic form, the microscopic gap
equation reads

� = VAs�, (13)

where V is the free NN potential and As = GGs stands
for the two-particle propagator in the superfluid system.
Here G and Gs are the one-particle Green functions without
and with pairing effects taken into account, respectively. In
Eq. (13), as usual, integration over intermediate coordinates
and summation over spin variables is understood. Let us now
split the complete Hilbert space S of two-particle states into
two parts, S = S0 + S ′. The first one is the model subspace
S0 in which the gap equation is considered, and the other is
the complementary subspace S ′. They are separated by the
energy E0 in such a way that S0 involves all the two-particle
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states (λ,λ′) with the single-particle energies ελ, ελ′ < E0.
The complementary subspace S ′ involves the two-particle
states for which one of the energies ελ, ελ′ or both of them are
greater than E0. Therefore, pairing effects can be neglected
in S ′ if E0 is sufficiently large. The validity of inequality
�2/(E0 − µ)2 � 1 is the criterium of such an approximation.
Correspondingly, the two-particle propagator is represented
as the sum As = As

0 + A′. Here we already neglected the
superfluid effects in the S ′ subspace and omitted the superscript
“s” in the second term. The gap equation (13) can be rewritten
in the model subspace,

� = V
p

eff A
s
0 �, (14)

where the EPI should be found in the supplementary subspace,

V
p

eff = V + VA′ V p

eff. (15)

Note that the last equation has a strong similarity with the
Bethe-Goldstone equation.

As the analysis showed [7,8], the optimal choice of splitting
corresponds to E0 = 15 ÷ 20 MeV. In a slab system, the EPI is
calculated in the mixed coordinate-momentum representation
[1]. To illustrate graphically properties of the EPI, we present
it in a localized form [7,8] with the Fermi averaged strength

VF
eff(X) =

∫
dtV

p

eff

(
k1 = k2 = kF(X); X + t

2
, X − t

2

)
.

(16)

The Fermi averaged EPI for the Argonne v18 force and the
Gogny D1S force calculated for E0 = 15 MeV are displayed
in Fig. 4. We did not display the EPI for the Paris potential
as it practically coincides with that for the Argonne force.
One can see that both the curves behave in a similar way
changing from a quite weak attraction inside the slab to a
very strong attraction outside. The reason for the latter is that
in the asymptotic region X > L the VF

eff value tends to the
quantity that is very close to the free T matrix taken at the
negative energy E = 2µ. To be precise, the limit is equal to
T (E = 2µ) if the separating energy E0 = 0. In the case of
E0 	= 0 the limit is equal to some “T ′ matrix” that is obtained
by solving the same Lippman-Schwinger equation as the T

matrix, but in a cut momentum space, because the contribution
of nucleons with total energy less than E0 must be pulled out.
As it is known, the Gogny force leads to the scattering length

FIG. 4. The Fermi averaged effective pairing interaction VF
eff(X).

in the 1S0 channel a � 12 fm [13,14]. It differs, of course,
from the experimental value of a � 18 fm that is reproduced
by any realistic force, but not so much. In any case, the virtual
pole of the T matrix for the Gogny force is close to zero as
it should be. Therefore the analytical continuation of the T

matrix (or T ′ matrix) to rather small negative energy E = 2µ

results in an enhancement of the T ′ matrix (�−950 MeV fm3)
in comparison with typical values. This enhancement is not
so strong as in the case of the Argonne force (�−1100 MeV
fm3), but it is equally significant. The inner value of the EPI
for the Gogny force is quite small (�−160 MeV fm3), but is
bigger than that for the Argonne one (�−95 MeV fm3). In our
previous study with realistic forces [1,7,8] we explained the
surface enhancement of the gap in terms of the sharp variation
of the EPI at the surface. In the case of the Argonne force,
the ratio Vout

eff /V in
eff � 12. For the Gogny force, it is about 6.

This is also a big number leading to a surface enhancement of
the gap, but not so pronounced as for realistic force. Figure 4
explains also why the Gogny gap is so big. It is well known
that the pairing gap depends on the interaction strength in an
exponential way. In Ref. [7] it was found that 1% variation of
V in

eff leads to 5% variation of the gap. It explains why the gap
function for the Gogny force is 1.5 ÷ 2 times greater than the
one for realistic forces.

Let us turn now to the correlation pairing characteristics.
The total correlation lengths ξ and the correlation lengths in
x direction ξx found from Eq. (7) for each kind of force are
displayed in Figs. 5 and 6, respectively. The curve ξArg(X) is
quite similar to ξPar(X), the difference is about 5%. Both have
a minimum shifted a little from the surface, X = L, in the
direction of the free space, both have a pronounced maximum
in the vicinity of X = 0 and grow rapidly to the right from the
minimum. Qualitatively, the curve ξGog(X) behaves in a similar
way, but the maximum value at X = 0 is approximately two
times less than the values for realistic forces. The minimum
of ξGog(X) is also shifted from the point X = L, but the
value of the shift is less. Such a behavior of each curve ξ (X)
qualitatively agrees with naive local density approximation
(LDA) predictions. Indeed, inside the slab, the local Fermi
momentum kF(X � 0) � √

2m(µ − U0) � 1.4 fm−1, which
corresponds to big values of ξ in infinite matter (see Fig. 2).
The same is true at X > 8 fm where the local Fermi momentum

FIG. 5. The correlation pairing length ξ (X) in a slab of nuclear
matter.
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FIG. 6. The correlation pairing length ξx(X) in the x direction for
a slab of nuclear matter.

vanishes. But under more detailed examination, deviations
from the LDA predictions are significant. To illustrate this
point, we show in Fig. 5 with a thick line, in arbitrary units,
the density distribution ρ(X). Within the LDA, the correlation
length ξ (X) should show a plateau inside the slab, just as
the density does. Instead, ξ (X) is decreasing rapidly with
the increase of X till X � L. Qualitatively, the coordinate
dependence of the function ξ (X) in the slab reminds us of that
of ξ (R) in spherical nuclei found in Ref. [9]. Both of them
have minima at the surface region and pronounced maxima in
the center. But any quantitative comparison is hardly possible
because, for the problem under consideration, the properties of
the two systems are essentially different. Indeed, in a spherical
nucleus all particles move in a finite space limited by the
nuclear surface. In contrast, in a slab the particle motion is
limited only in the x direction. In the s plane, the motion is
free, which leads to very big values of ξs in Eq. (7) and ξ

close to that in the infinite system. As to the ξx(X) function,
it should be much closer to ξ (R) of Ref. [9]. As it is seen in
Fig. 6, the two curves ξ

Arg
x (X) and ξPar

x (X) practically coincide.
Deviation of ξ

Gog
x (X) from both is much less than in the case

of the total correlation length. It doesn’t exceed 15%. All three
curves have a common minimum at X � L, with the value
of ξmin

x � 1.5 fm. It is not far from the value of ξmin � 2 fm
found in Ref. [9] for Sn isotopes. Evidently, the difference is
mainly due to geometry effects. Thus, for a nuclear slab, the
correlation length of pairing in the x direction at the surface,
calculated with realistic and semirealistic Gogny forces, is very
small, in agreement with the conclusions of Ref. [9].

To visualize the pairing tensor distribution, we draw a three-
dimensional plot in Fig. 7 for the κ

2(X, x) function given
by Eq. (9) for the Argonne force. We see that there is a set
of maxima at x = 0, the highest one being near to the slab
surface, X � L. Figure 8 shows the profile functions κ

2(X =
X0,x) for several values of X0 corresponding to the maximum
positions. The nearest to the surface maximum is at X0 �
5 fm, the neighboring one is at X0 � 3 fm. There is also a
pronounced maximum at X0 = 0. The surface peak is very
narrow, in correspondence with Fig. 6. On the contrary, in the
case of X0 = 0 a comparatively sharp peak is accompanied by

FIG. 7. The pairing tensor distribution κ
2(X,x).

a flat base plate which results in a big value of ξx . The similar
profile functions are drawn, in the same figure, for the Paris
and Gogny forces. The Paris curves are again quite similar to
the Argonne ones. As to the Gogny force, the similarity takes
place only at a qualitative level, absolute values of κ

2 being
bigger than those for realistic forces. This is the result of bigger
values of the gap itself for the Gogny force, as illustrated in
Fig. 3. We see that �Par

F is a little bigger than �
Arg
F ; therefore

(κPar)2 is, on average, bigger than (κArg)2. On the other side,
�

Gog
F is significantly bigger than the gap for realistic forces. As

a result, (κGog)2 significantly exceeds the microscopic values
as well. Note that the correlation length ξ (X), Eq. (6), does not
depend on the magnitude of κ, giving rise to a much smaller
difference between the Gogny and realistic forces. The same
is true for ξx(X), Eq. (7). The surface peak dominates, to some

FIG. 8. The profile functions κ
2(X = X0,x).
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FIG. 9. The probability distribution r2
κ

2(X,r).

extent, for all three kinds of forces, and this effect for realistic
forces is even stronger than that for the Gogny force.

The κ
2(X,r) function given by Eq. (8) multiplied by r2

gives the probability distribution of pairing correlations similar
to Eq. (3) in the case of the spherical symmetry. It is displayed
in Fig. 9, again for the Argonne force. Now the main maximum
positions are shifted from r = 0 to r � 1 ÷ 2 fm due to the
factor r2. The surface maximum at X � L is even more
pronounced than in Fig. 7. To compare results obtained for
the different forces under consideration, we again draw the
profile functions r2

κ
2(X = X0,r) (see Fig. 10). Again, just as

in Fig. 8, the Gogny force results are significantly bigger than
those of the realistic ones in magnitude but are very similar
in form. Again the surface maxima dominates and again the
surface enhancement is stronger for realistic forces.

FIG. 10. The profile functions r2
κ

2(X = X0,r).

FIG. 11. The locally normalized pairing tensor W (X,r).

To make the comparison with Ref. [9] more complete, we
display in Fig. 11 the locally normalized pairing tensor, which
is defined as

W (X,r) = r2
κ

2(X,r)∫
κ

2(X,r) d3r
, (17)

similar to the definition (5) in spherical systems. The profile
functions W (X = X0,r) are displayed in Fig. 12, which is
analogous to Figs. 8 and 10. In this case, the Gogny force
curves are close to those for realistic forces not only in
form but also in magnitude. This happens because the κ

2

quantity appears in both the numerator and the denominator of
Eq. (17), the result being almost independent of the magnitude
of κ. An absolutely similar situation occurs with calculations
of the correlation lengths ξ and ξx .

FIG. 12. The profile functions W (X0,r).
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FIG. 13. The integrated Cooper pair probability distribution p(X).

The denominator of Eq. (17),

p(X) =
∫

κ
2(X,r) d3r =

∫
κ

2(X,x) dx, (18)

gives the total probability distribution of Cooper pairs in-
tegrated over relative coordinates. Note that this quantity
displayed in Fig. 13, like P (R,r) in Eq. (3), is not normalized
to unity. Again we see that the result for the Gogny force
behaves qualitatively similar to those for the realistic forces
but its magnitude is significantly bigger. And for each force
under consideration this quantity in the slab does not exhibit
any surface enhancement. It occurred because, although the
surface maximum for any force in Fig. 8 is higher than
the central one, the correlation length in the x direction at the
surface is much smaller than that inside the slab, which makes
the integral over x smaller. An analogous effect should take
place in nuclei, too, but in this case the “geometrical” factor R2

in Eq. (3) would help the surviving of the surface enhancement
in the Cooper pair distribution if the probability P (R,r),
Eq. (3), were integrated over the relative coordinates.

IV. CONCLUSION

Spatial correlation properties of nuclear pairing in a nuclear
slab are studied with two realistic NN potentials, the Paris
and Argonne v18, and with the phenomenological Gogny D1S
interaction. The results obtained with the two realistic forces
agree with each other with an accuracy of about 10%. But they

agree only qualitatively with those of the Gogny force. The
gap value in the slab for the Gogny force exceeds that from
the realistic forces by a factor about 2, which results in rather
bigger values of the anomalous density matrix κ. Nevertheless,
some of main conclusions of Ref. [9] obtained for finite nuclei
with the Gogny force are confirmed qualitatively, especially
the dependence of the correlation length on the position of the
c.m. of a Cooper pair. This quantity does not depend practically
on the absolute value of κ, only the space distribution of the
pairing tensor κ

2(X,x) being important. At the surface of the
slab the local value of the correlation length in the x direction
is very small, ξx(X � L) � 1.5 fm, for all three kinds of force
under consideration. Inside the slab ξx becomes very large,
i.e., of the order of the slab width or even more. Thus, on this
point our results completely confirm those of Ref. [9].

The pairing tensor κ
2(X,x = 0) has several maxima,

among them the ones at X = 0 and X � L are most pro-
nounced. And the one at the surface is a bit higher, especially
for realistic forces. In this sense, we can speak of surface en-
hancement of the Cooper pair distribution. However, the total
probability p(X) for a pair to have the c.m. coordinate
X, which is obtained by integrating κ

2(X, x) over relative
coordinate, has no surface enhancement. Thus, the second
conclusion of Ref. [9] that Cooper pairs in nuclei prefer to
be concentrated in the vicinity of the surface should not be
drawn for a slab. We explain this with different geometrical
properties of two systems under comparison, with different
“surface-to-volume ratio” in a sphere and in a slab. However,
all surface enhancement features found for realistic forces are
qualitatively reproduced with the Gogny force. We trace this
effect to the “semirealistic” nature of the Gogny force, which
describes the low-energy NN scattering in the 1S0 channel
sufficiently well. It seems reasonable to suppose that all the
main conclusions of Ref. [9] will be confirmed qualitatively if
the Gogny force in the pairing channel is replaced by a realistic
NN potential.
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