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Microscopic calculation of symmetry projected nuclear level densities
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We present a quantum Monte Carlo method with exact projection on parity and angular momentum that is free
of a sign problem for seniority-conserving nuclear interactions. This technique allows the microscopic calculation
of angular momentum and parity-projected nuclear level densities. We present results for the >Fe, *°Fe, and >’ Fe
isotopes. Signatures of the pairing phase transition are observed in the angular momentum distribution of the

nuclear level density.
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The level density is a fundamental property of a many-body
system as all thermodynamical quantities can be derived from
it. In nuclear physics, level densities are important because
they are required for estimating nuclear reaction rates. The
assumption of a free Fermi gas leads to the well-known Bethe
formula for the level density [1,2]. A phenomenological way
of incorporating pairing correlations and shell effects is to
back-shift the excitation energy E, by an amount A, resulting
in the backshifted Bethe formula.

The calculation of statistical nuclear reaction rates also
requires knowledge of the angular momentum distribution
of the nuclear level density. An empirical formula for the
angular momentum distribution of the level density at a fixed
excitation energy E, assumes uncorrelated and randomly
coupled single-particle spins and is given by [3,4]
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Here J is the total angular momentum and o is a spin-cutoff
parameter that can be used as an energy dependent fitting
parameter. The total level density p(E,) in Eq. (1) is often
parametrized by a backshifted Bethe formula. The main
disadvantage of this approach is that it requires a fit for each
individual nucleus.

The microscopic calculation of the level density, and in
particular its angular momentum distribution beyond the Fermi
gas model and the spin-cutoff parametrization of Eq. (1), poses
a complex problem. Recently, progress has been made both
experimentally [5,6] and theoretically [7] in gaining more
insight into the angular momentum distribution of level den-
sities. The level density has been calculated microscopically
using the shell model Monte Carlo (SMMC) method [8—13].
In the SMMC the effect of residual interactions between the
nucleons is taken into account, although restricted to pairing
plus multipole-multipole interactions that are free of the Monte
Carlo sign problem. Angular momentum projection in the
SMMC method was recently carried out for scalar observables
by first projecting on the angular momentum component J [7].
Angular momentum projection, however, introduces a new
sign problem for J # 0 even for a good sign interaction.

In the present study, we discuss a quantum Monte Carlo
(QMC) method to solve a general isovector J = 0 pairing
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model and carry out an angular momentum projection for
seniority-conserving models. The pairing model serves as a
benchmark to identify signatures of pairing correlations in
the nuclear level density. Our QMC method allows us to
treat the very large model spaces that are needed for the
calculation of level densities at higher excitation energies
and, particularly, for the study of their parity and angular
momentum dependence.

We start from a general isovector J = 0 pairing model, here
written in the quasi-spin formalism [14,15]
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where the operator &}m creates a particle in the mean-field

single-particle state | jm) with energy ¢; and | jm) is the time-
reversed conjugate state of | jm). The operators § (i)’ S ;r, and § i
close an SU(2) algebra and are known as quasi-spin operators.
The Hamiltonian (2) is exactly solvable for a constant pairing
strength. The QMC method discussed here allows us to solve
the general case when all terms in Eq. (2) are attractive, i.e.,
gjj > 0.

We formulate the pairing problem in the quasi-spin for-
malism to address the problem of the angular momentum
projection. The quasi-spin projection S? determines the total
number of particles N; = ZS? + Qjinlevel j (2; = j+1/2
is the pair degeneracy of orbital j), while the quasi-spin
quantum number S; determines the seniority quantum number
v; = Q; —2§;, ie., the number of unpaired particles in
level j. Within this quasi-spin (or seniority) scheme, angular
momentum remains a good quantum number. Given a set
of quasi-spin quantum numbers §;, one can determine the
degeneracy for a given value of the total angular momentum
J. Formally, the problem is equivalent to a chain of spins.
The pairing interaction can flip spins such that the total
“magnetization” ) j S? remains constant (particle number
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conservation). In addition, each quasi-spin quantum number
S; can take values between 0 and 2 /2.

There exist a number of very efficient QMC approaches
to simulate spin chains [16]. However, in our quasi-spin
model it is necessary to implement a method that will keep
the value of the magnetization ) ; S? fixed. Recently, we
developed a nonlocal loop update QMC scheme that is capable
of sampling spin models at constant magnetization. In our
case this means sampling the canonical ensemble [17,18].
Assuming the Hamiltonian H = Hy — V consists of two
noncommuting parts Hy and V, our scheme is based on a
perturbative expansion of the partition function at inverse
temperature S,
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The basic idea of the QMC method is to insert a so-called
worm operator A in the partition function, obtaining an
extended partition function Tr (Ae—# ’ ). By propagating this
worm operator through imaginary time according to the rules
explained in Refs. [17,18], one generates configurations that
are distributed according to their weight in the canonical

partition function Try (e ##) at fixed particle number N. Here,
the worm operator is chosen to be C + Z S+S with C a
constant. Such a worm operator allows for the samphng of
all configurations that correspond to a fixed set of quasi-spin
quantum numbers S; without changing the value of ) ; S?.
However, to be ergodic, the worm operator must also generate
configurations with varying seniority quantum numbers, and
therefore we add a worm operator that can change the values of
the quasi-spins S;, S; and their projections S0 S0 for two levels

i and j such that (Si0 + 59) remains the same (partlcle -number
conservation). The complete quasi-spin phase space is now
sampled by propagating a seniority-conserving worm operator
and an additional seniority nonconserving worm operator.
Additional details on the worm operator moves can be found
in Refs. [17,18].

The moves of the worm operator can be constrained in
such a way that the angular momentum J of the configuration
does not change. Choosing an initial configuration with a well-
defined angular momentum quantum number J enables us to
calculate thermal averages for that fixed value of J. Parity is
also a good quantum number in the quasi-spin basis, so that
parity projection can be carried out in a similar way.

We have used the QMC method outlined above to study
the angular momentum and parity distribution of nuclear level
densities in the presence of pairing correlations. We focused
on the iron isotopes >Fe, °Fe, and 3’ Fe, within the complete
0f + 1p + 0g9/>» model space. To study truncation effects, we
also consider an extended model space 1s +0d +0f + 1p +
0g9/2 + 25 + 1d. The inverse temperature 8 ranges from O to
2.5 MeV~!. For the mean-field one-body potential, we used a
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Woods-Saxon potential with the parametrization of Ref. [19].
The single-particle energies € ; were obtained by diagonalizing
this potential in a harmonic oscillator basis. For simplicity, we
used a constant pairing strength g;; = g (although our QMC
method is not restricted to this case), determined to reproduce
the experimental gap parameter A = —1/2[B(N — 1, Z) —
2B(N,Z)+ B(N + 1, Z)] for Z protons and N neutrons
(B denotes the binding energy) [2]. For the larger valence
space, the value of pairing strength g is renormalized in such
a way that the pairing gap A remained fixed. Based on the
temperatures for which the heat capacity is maximal, we
estimate our calculations to be free of truncation effects for
excitation energies up to £, <20 MeV and E, < 50 MeV
for the pf + go2 and sd + pf + goj2 + sd valence spaces,
respectively. Total and angular momentum/parity-projected
level densities are calculated as usual in the saddle-point
approximation.

Figure 1 shows the angular momentum distribution of the
projected level density p; at four different excitation energies
E, [we do not include the magnetic degeneracy in p,, i.e.,
p(Ey) =) ,(2J + 1)p;(E,)]. The solid squares are the QMC
results (the statistical errors are much smaller than the size of
the squares), while the solid lines are the spin-cutoff model
Eq. (1) fitted to the QMC data with o2 as a fit parameter.
For all three iron isotopes, the angular momentum distribution
becomes broader with increasing excitation energy. When this
energy is sufficiently high (E, > 10 MeV), the QMC data
are well described by the spin-cutoff model. For excitation
energies <10 MeV, some deviations are observed. In particular,
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FIG. 1. The angular momentum distribution of the level density
at a given excitation energy E, for the iron isotopes *>Fe, Fe, and
57Fe. Solid squares are the Monte Carlo results in the pf + goj
valence space. The solid lines are fits to the spin-cutoff model
Eq. (1). Also shown are distributions given by the spin-cutoff model
with o2 calculated from Eq. (7) using the rigid body moment of inertia
(dotted-dashed lines) and from Eq. (6) (dotted lines).
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FIG. 2. (Top panels) The moment of inertia
I (in units #%) for 3Fe (left), 3Fe (middle),
and “’Fe (right) versus excitation energy E..
The solid lines are moments of inertia calculated
from Egs. (7) and (6), and the solid circles are

(s*s)

from Eq. (7) with o determined by py/p (in
the even-even case) and p;,,/p (in the odd-even
case). The horizontal dashed lines describe the
rigid-body moments of inertia. (Bottom panels)
The pair correlation energy (S'S).
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a staggering effect in J is found for the even-even **Fe isotope
but not in the odd-even iron isotopes. The strong suppression
of the J = 1 level density (p; & pp), which is much smaller
than the J = 2 level density, is a signature of the pairing
correlations. For higher angular momenta, there is only a very
small staggering in the angular momentum dependence. This
can be understood from the fact that the pairing interaction
scatters only J = 0 nucleon pairs.
In the spin-cutoff model (1), the parameter o is given by

o’ =3(J%), (6)

with (...) denoting a thermal average at temperature 7' [20].
It is then common to define a semiclassical effective moment
of inertia from
I P 7

=7 o°. @)
The spin-cutoff parameter is often determined by substituting
the rigid-body moment of inertia, I = 2mA(roA'/?)?/5 in
Eq. (7). (Here, r is the nuclear radius parameter, A is the mass
number, and m is the nucleon mass). For E, > 10 MeV, the
spin-cutoff model (1) with o% calculated from the rigid-body
moment of inertia (dotted-dashed lines in Fig. 1) essentially
coincides with the distribution fitted to the Monte Carlo data
(solid lines in Fig. 1). However, below E, ~ 10 MeV and
for *°Fe, the rigid-body moment of inertia predicts a broader
angular momentum distribution than the one described by
the fit to the QMC results. This indicates a reduction of the
effective moment of inertia because of pairing correlations and
can be regarded as a signature of nuclear superfluidity. We also
determined o2 from Eq. (6) with (f 2) calculated directly in the
QMC simulations. The angular momentum distributions using
these spin-cutoff parameters are shown by the dotted lines in
Fig. 1. We observe that these distributions are slightly more
peaked than the fitted distributions (solid lines), especially
at low excitation energies (E, < 10 MeV). For S0Fe at E, =
5.5 MeYV, this curve coincides with the fit.

The top panels of Fig. 2 show the effective moment of
inertia as a function of excitation energy. At high excitation
energies, the moment of inertia calculated from (J%) (solid
lines) is very close to its rigid-body value, the latter indicated
by the horizontal dashed lines. We also calculated the moment

of inertia using the o2 obtained by fitting the QMC angular
momentum distribution. At low excitation energy, however,
we found that the error bars in this o2 increase, making the
fit less meaningful. Therefore, we calculated the spin-cutoff
parameter o2 directly from the ratio po( 2/ p in the even (odd)
case. The corresponding moments of inertia are also shown in
the top panels of Fig. 2 (solid circles). Although different
methods for calculating o2 lead to different values of I, these
differences do not lead to significant differences in the angular
momentum distribution shown in Fig. 1. In general, we find that
the moment of inertia of *°Fe is strongly suppressed compared
to the moments of inertia of >Fe and 3" Fe.

The bottom panels of Fig. 2 show the pair correlation
energy (STS™) = (> i S]JTS;,) as a function of excitation
energy. It is seen that the pair correlation energy is strongly
suppressed with increasing excitation energy. The suppressed
neutron correlation energy of >Fe and 3’Fe shows a slight
increase at low excitations with increased excitation energy
(or temperature). This reflects a blocking effect of the unpaired
neutron at low temperatures.

In Fig. 3 we show the level density projected on parity and
the four lowest angular momentum values as a function of
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FIG. 3. The angular momentum and parity-projected level densi-
ties of *°Fe for the four lowest angular momentum values. A strong
parity dependence is found for excitation energies up to ~20 MeV.
The valence model space is sd + pf + go/» + sd.For J = 2, we also
show results for the smaller pf + g9/, valence space (dashed lines).
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FIG. 4. The total QMC level density for *Fe, well described by
the backshifted Bethe formula (dotted-dashed line), together with
the projected densities J =0, J =2 (left panel) and J =1, J =3
(right panel). The solid lines connect the J-projected Monte Carlo
results, while the dashed lines show the projected level density from
the spin-cutoff model Eq. (1) using rigid-body values of o2.

excitation energy using the sd + fpg + sd valence space. For
energies below ~20 MeV, the angular momentum projected
level densities show a strong parity dependence. Recently, J =
2 parity-projected level densities were determined experimen-
tally in ®Ni at intermediate excitation energies [6]. However,
no parity dependence was observed in the experiments. Our
calculations show that the angular momentum projected level
density displays a strong parity dependence. For J =2, we
also show in Fig. 3 the level density within the smaller
pf + goy2 valence space (dashed lines). Below ~20 MeV,
the even-parity level density is in good agreement with the
results found in the sd + fpg + sd model space. However,
the inclusion of the sd shells below and above the pf + go/2
shell enhances significantly the odd-parity level density at
low excitation energies. We found a similar effect for the
total odd-parity level density. This results from the increased
fraction of single-particle levels with positive parity and shows
the necessity of using large model spaces.

In the left (right) panel of Fig. 4 we show the total QMC
level density, as well as the angular momentum projected level
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densities J = 0(J = 1)and J = 2 (J = 3), for *°Fe. The total
QMC level density is well described by the backshifted Bethe
formula (fitted for 4.5 MeV < E, < 40 MeV) with a single-
particle level density parameter a = 5.741 & 0.034 MeV ™!
and a backshift A = 1.591 4+ 0.057 MeV (see dotted-dashed
line in Fig. 4). These are similar to the SMMC level den-
sity parameters a = 5.780 & 0.055 MeV~! and A = 1.560 &+
0.161 MeV of Ref. [9], which were found to be in good
agreement with the experimental level density. The dashed
lines of Fig. 4 are the angular momentum projected level
densities, calculated from the total level density through
Eq. (1) with a rigid-body value of 0. At high excitation
energy, these densities coincide with the QMC densities.
However, for excitation energies below ~10 MeV, the J =0
QMC level density deviates from the level density predicted
by the spin-cutoff model with a rigid body o2. This can be
interpreted as a signature of the pairing phase transition in
the level density. This signature is also visible in the J =2
level density for energies below ~8 MeV. For odd J values,
however, the QMC data are well described by the rigid-body
model.

In conclusion, we have used a quantum Monte Carlo method
to calculate angular momentum and parity-projected level
densities for a nuclear pairing model. This method allows us
to calculate level densities in the very large model spaces.
We have found that pairing correlations affect the angular
momentum distribution of the level density at low excitation
energies, thereby revealing signatures of the pairing phase
transition in nuclei.
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