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Quark models of dibaryon resonances in nucleon-nucleon scattering
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We look for �� and N� resonances by calculating NN scattering phase shifts of two interacting baryon
clusters of quarks with explicit coupling to these dibaryon channels. Two phenomenological nonrelativistic
chiral quark models giving similar low-energy NN properties are found to give significantly different dibaryon
resonance structures. In the chiral quark model (ChQM), the dibaryon system does not resonate in the NN S waves,
in agreement with the experimental SP07 NN partial-wave scattering amplitudes. In the quark delocalization
and color screening model (QDCSM), the S-wave NN resonances disappear when the nucleon size b falls below
0.53 fm. Both quark models give an IJ P = 03+ �� resonance. At b = 0.52 fm, the value favored by the baryon
spectrum, the resonance mass is 2390 (2420) MeV for the ChQM with quadratic (linear) confinement, and
2360 MeV for the QDCSM. Accessible from the 3DNN

3 channel, this resonance is a promising candidate for the
known isoscalar ABC structure seen more clearly in the pn → dππ production cross section at 2410 MeV in
the recent preliminary data reported by the CELSIUS-WASA Collaboration. In the isovector dibaryon sector,
our quark models give a bound or almost bound 5S��

2 state that can give rise to a 1DNN
2 resonance. None of the

quark models used have bound N� P states that might generate odd-parity resonances.
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I. INTRODUCTION

Quantum chromodynamics (QCD) is widely accepted as
the fundamental theory of the strong interaction. Lattice QCD
methods have recently been used to study low-energy hadronic
interactions, including the nucleon-nucleon (NN ) interaction
[1]. However, QCD-inspired quark models are still the main
tool for detailed studies of the baryon-baryon interaction.

The phenomenological quark model most commonly used
in the study of NN interaction is the nonrelativistic chiral
quark model (ChQM) [2–4]. Nonrelativistic kinematics makes
the many-body treatment of the multiquark system manage-
able, with the very convenient choice that the light quark mass
mq is just one-third of the nucleon mass. With quarks, one
needs a confinement potential to reproduce a distinctive QCD
property, and a one gluon exchange (OGE) to account for the
�-N mass difference and other details of baryon excitations.
The inclusion of pion exchange will take care of long-range
baryon-baryon interactions, as well as some features in the
baryon structure. The fact that the pion is the lightest meson
is a consequence of the relative weakness of chiral symmetry
breaking. Finally, scalar exchange is used to describe an extra
intermediate-range attraction needed in nuclear forces. No
other meson exchanges are included. ChQMs with a few
chosen and a few adjusted parameters are able to give a
surprisingly simple if only semiquantitative picture of both
baryon spectra and baryon-baryon interactions at relatively
low energies. It is therefore of some interest to understand
some of the limitations of these simple quarks models.

The most problematic term in the ChQM is the scalar
exchange term. It takes into account neglected channels
containing �s and pions and should therefore vary when
more of these channels are explicitly included in the coupled-
channel calculation. Its effects always include the exchange

of two pions and are called correlated if the two pions also
interact with each other. Modern treatments of correlated
two-pion exchange show that in addition to a long-range
scalar-isoscalar attraction traditionally associated with scalar
exchange, there is also a strong scalar-isoscalar repulsive
core [5], a complication that has not yet been included in
the ChQM.

In the quark model, the forces between baryonic clusters
of quarks and antiquarks are like molecular forces between
molecules of atoms built up from the forces between their
constituents. This molecular model of nuclear forces has been
extensively developed by using the quark delocalization and
color screening model (QDCSM) [6]. In this model, quarks
confined in one baryon are allowed to delocalize to a nearby
baryon and to change the dynamics of the baryon-baryon
interaction through a reduction of the confinement potential
called color screening. The delocalization parameter that
appears is determined by the dynamics of the interacting
quark system, thus making it possible for the quark system
to reach a more favorable configuration through its own
dynamics in a larger Hilbert space. The model has been
successfully applied to NN and hyperon-nucleon scatterings.
The important intermediate-range NN attraction is achieved in
this model by the mutual distortion of the interacting nucleons,
in a way that is very similar to the mutual distortion of
interacting molecules.

The main difference between the ChQM and the QDCSM is
the mechanism for intermediate-range attraction. Recently, we
showed that both the ChQM containing the σ meson and the
QDCSM without it gave a good description of the low-energy
NN S- and D-wave scattering phase shifts and the properties
of deuteron with almost the same quark-model parameters [7].
Thus the σ -meson exchange can effectively be replaced by the

0556-2813/2009/79(2)/024001(12) 024001-1 ©2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.79.024001


PING, HUANG, PANG, WANG, AND WONG PHYSICAL REVIEW C 79, 024001 (2009)

quark delocalization and color screening mechanism. It is not
clear, however, if their equivalence persists to higher energies
where nucleons overlap more strongly and baryon excitation
and multiquark effects become more important.

Interest in multiquark system has persisted since R. Jaffe
predicted the H-particle in 1977 [8]. All quark models,
including those using lattice QCD techniques, predict that
in addition to the qq̄ mesons and q3 baryons, there should
be multiquark systems (qq̄)2, q4q̄, q6, quark-gluon hybrids
qq̄g, q3g, and glueballs [9]. Up to now there has been no
well-established experimental candidate for these multiquark
states [10]. Recently, the CELSIUS-WASA Collaboration
has reported preliminary results on the ABC anomaly in
the production cross section of the pn → dπ0π0 reaction
that suggests the presence of an isoscalar JP = 1+ or 3+
subthreshold �� resonance, with a resonance mass estimated
at ∼2410 MeV and a width of <100 MeV [11]. The relatively
large binding energy involved gives an object that is much
closer to these interesting multiquark states than a loosely
bound system such as the deuteron. Nonrelativistic quark
models such as ChQMs and QDCSMs fitting both N,�

masses and low-energy NN scattering properties can be
expected to give particularly interesting and parameter-free
predictions for such dibaryon multiquark states.

It thus appears worthwhile to extend our past calculation
of NN phase shifts to the resonance region near the �� and
N� thresholds by including these excited dibaryon channels
in coupled-channel calculations. The � resonance is by far the
most important low-energy baryon resonance. It dominates
even the π−p cross sections, where its production is hindered
relative to the production of isospin 1/2 N∗ resonances by
a factor of 2 from isospin coupling. In dibaryon channels,
the �� threshold at 2460 MeV is clearly separated from
the NN∗(1440) threshold at 2380 MeV, the second most
interesting dibaryon threshold in this energy region. �� bound
states are of immediate interest in understanding resonance
phenomena in this near-subthreshold energy region. The
inclusion of N∗(1440) would be of considerable interest in
a broader study of dibaryon resonances, but its inclusion is
technically difficult for us, because N∗(1440) is commonly
understood to be a monopole excitation of the nucleon that has
a much more complicated quark wave function. In contrast, our
approximate description of the N → � excitation as a simple
spin-isospin excitation without any change in the radial wave
function probably captures the essence of the physics involved.
� excitations are thus within easy reach of the technology used
in our previous coupled-channel calculations. Our first study
in the resonance region will include only � excitations. This
limitation of excited baryon degrees of freedom to only �s has
often been made in past studies of nuclear forces. [12]

We shall use the same Salamanca ChQM [13] and QDCSM
used previously for only NN channels [7], but with additional
sets of potential parameters to find out if their similarity
persists into the resonance region. We are interested in par-
ticular in discovering how similar these simple quark models
are in describing theoretical dibaryon resonances originating
from �� or N� bound states when the �s are treated as
stable particles. In other words, these dibaryon resonances
are theoretical compound dibaryon states that are allowed to

decay only via the NN channels. A brief description of these
two quark models of the baryon-baryon interaction is given in
Sec. II.

The NN phase shifts for these quark-quark potentials are
calculated using a coupled-channel resonating group formal-
ism [14] that includes ��,N�, and sometimes hidden-color
channels as well. No explicit pionic channels are included,
as the �s are treated as stable particles. In this context, a
promising dibaryon resonance is taken to be one arising from
a bound state below the �� or N� threshold. The calculated
results, including resonance masses and widths (full widths at
half maximum, FWHMs), are given in Sec. III in those partial
waves (PWs) where a theoretical dibaryon resonance appears
in at least one quark model. No N� bound state is found in
any isovector odd-parity state in all our quark models.

In Sec. IV, these results are compared with partial-wave
analyses of NN scattering amplitudes [15,16], where the pres-
ence of a dibaryon resonance causes a rapid counterclockwise
motion in the Argand diagram. The possibility that the ABC
effect in the pn → dππ reaction is an isoscalar NN resonance
is also discussed.

Section V contains brief concluding remarks on what we
have learned about quark dynamics in the NN resonance
region.

II. TWO QUARK MODELS OF BARYON-BARYON
INTERACTIONS

A. Chiral quark model

The Salamanca ChQM is representative of chiral quark
models. It has also been used to describe both hadron
spectroscopy and nucleon-nucleon interactions. The model
details can be found in Ref. [13]. Only the Hamiltonian and
parameters are given here.

The ChQM Hamiltonian in the baryon-baryon sector is

H =
6∑

i=1

(
mi + p2

i

2mi

)
− Tc +

∑
i<j

[V G(rij ) + V π (rij )

+V σ (rij ) + V ρ(rij ) + V C(rij )], (1)

V G(rij ) = 1

4
αsλi · λj

[
1

rij

− π

m2
q

(
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3
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)
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3
ij
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]
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V
G,LS
ij = −αs

4
λi · λj

1

8m2
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[rij × (pi − pj )] · (σ i + σ j ),
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V
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V C(rij ) = −acλi · λj

(
r2
ij + V0

) + V
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ij ,

V
C,LS
ij = acλi · λj

1

8m2
q

1

rij

dV c

drij

× [rij × (pi − pj )] · (σ i + σ j ), V c = r2
ij ,

Sij = (σ i · rij )(σ j · rij )

r2
ij

− 1

3
σ i · σ j . (2)

Here Sij is the quark tensor operator; Y (x),H (x), and G(x)
are standard Yukawa functions [17]; Tc is the kinetic energy
of the center of mass; and αch is the chiral coupling constant,
determined as usual from the π -nucleon coupling constant. An
additional ρ-meson exchange potential V ρ between quarks has
been added to give an improved treatment of baryon-baryon
P states. Its parameters will be specified in Sec. III. All other
symbols have their usual meanings.

Table I gives the model parameters used. For each set of
parameters, the nucleon size b that appears in Eq. (5) is given
a predetermined value. Two of the parameters (ac, αs) are
fitted to the �-N mass difference (1232–939 MeV) and the
equilibrium condition for the nucleon mass at the chosen b.
The absolute nucleon mass is controlled by a constant term V0

in the confinement potential that does not affect the baryon-
baryon interaction. In ChQM2 [18], the deuteron binding
energy (2.22 MeV) is fitted by varying the combination mσ ,�

calculated with the standard two NN coupled channels 3S1

and 3D1 (called 2NNcc in the following). The remaining
parameters mq,mπ , and αch are fixed at chosen values.
The numeral 2 in the name ChQM2 refers to its quadratic
confinement potential. The model ChQM1 [2] uses a linear
confinement potential instead. The model ChQM2a differs
from ChQM2 in fitting a different equilibrium nucleon size b,
but for simplicity mσ ,� are allowed to remain at the ChQM2
values. Its deuteron binding energy is reduced, but we do not
consider the difference to be important in our study of dibaryon
resonance properties.

Finally, Table I also gives the effective-range (ER) parame-
ters of a five-parameter ER formula in the NN 3S1 (1S0) state.

TABLE I. Parameters that differ in different models are given
in this table. The dimension of each dimensional parameter is
given within parentheses following each symbol: b (fm), ac (MeV
fm−2 if quadratic, but MeV fm−1 if linear), V0 (fm2), and µ(fm−2).
Parameters having the same value for all the quark models discussed
in this paper are mq = 313 MeV, mπ = 138 MeV, �/h̄c = 4.2 fm−1,
and mσ = 675 MeV for ChMQs. The scattering length and effective
range calculated for each potential are also given: at , rt for the triplet
state 3S1 and as, rs for the singlet state 1S0, all in fm. The deuteron
binding energy εd (MeV) is calculated from the triplet effective-range
parameters.

ChQM2 ChQM2a QDCSM0 QDCSM1 QDCSM3
(ChQM1)

b 0.518 0.60 0.48 0.518 0.60
ac 46.938 12.39 85.60 56.75 18.55

(67.0)
V0 −1.297 0.255 −1.299 −1.3598 −0.5279
µ 0.30 0.45 1.00
αs 0.485 0.9955 0.3016 0.485 0.9955
αch 0.027 0.027 0.027 0.027 0.027

(0.0269)
at 4.52 20.8 34.9 5.94 6.03
rt 1.56 2.24 2.27 1.75 1.67
εd 3.35 0.11 0.04 1.75 1.64
as −170 −2.48 −2.32 −6.90 −5.41
rs 2.17 5.42 4.48 2.63 3.56

The calculation uses five (four) color-singlet channels denoted
5cc (4cc) and defined in the following section. The channels
used include two NN and three �� (an NN , two ��, and
an N�) channels. The deuteron binding energy εd calculated
from the two ER parameters of the 5cc calculation is also
given in the table. According to Ref. [19], this approximation
overestimates the binding energy, but by only 0.015 MeV. So
the tabulated binding energies are sufficiently accurate for this
qualitative study. The same ER approximation for a 2NNcc
calculation gives εd ≈ 1.86 MeV for ChQM2, thus showing
that the three �� channels increase εd by about 1.5 MeV.

B. Quark delocalization, color screening model

The model and its extension were discussed in detail in
Refs. [6,20]. Its Hamiltonian has the same form as Eq. (1), but
is used with V σ = 0 and a different confinement potential

V CON
ij (rij ) = −acλi · λj [fij (rij ) + V0], (3)

where fij (rij ) = r2
ij if quarks i, j , each in the Gaussian single-

quark wave function φα of Eq. (5), are on the same side of the
dibaryon, i.e., both centered at S/2 or at −S/2. If quarks i, j

are on opposite sides of the dibaryon, then

fij (rij ) = 1

µ

(
1 − e−µr2

ij

)
. (4)

Quark delocalization in the QDCSM is realized by assum-
ing that the single-particle orbital wave function of QDCSM
is a linear combination of left and right Gaussians, the
single-particle orbital wave functions of the ordinary quark
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cluster model,

ψα(S, ε) = (φα(S) + εφα(−S))/N(ε),

ψβ(−S, ε) = (φβ(−S) + εφβ(S))/N(ε),

N (ε) =
√

1 + ε2 + 2εe−S2/4b2
, (5)

φα(S) =
(

1

πb2

)3/4

e
− 1

2b2 (rα−S/2)2

,

φβ(−S) =
(

1

πb2

)3/4

e
− 1

2b2 (rβ+S/2)2

.

Quark delocalization with color screening is an approximate
way of including hidden-color (h.c.) effects.

The color screening constant µ in Eq. (4) is deter-
mined by fitting deuteron properties. The parameters of the
QDCSMi (i = 1, 3) used here are those of set i of Ref. [7] and
are given again in Table I. For QDCSM0, µ is an estimated
value that has not been fine-tuned to the deuteron binding
energy. These models differ in the equilibrium nucleon size b.

III. RESULTS

NN scattering phase shifts are calculated for the quark
models of Table I to energies beyond the �� or N� threshold
for different choices of coupled channels. We include channels
containing one or more �s treated as stable particles, and
channels containing hidden-color (h.c.) states. The resonating-
group method (RGM), described in more detail in Ref. [14],
is used.

Past experience has suggested that reliable estimates of
resonance masses can be made using nondecaying �s [2].
For the theoretical N� resonance d ′ (IJ P = 20−) at the
theoretical mass 2065 MeV (and an N� binding energy of
106 MeV), an increase in the imaginary part of the � resonance
energy by 10–15 MeV is known to increase the d ′ mass by
only a few tenths of a MeV [21]. This result suggests that
the complete neglect of the imaginary part /2 ≈ 60 MeV of
the � resonance energy will underestimate the d ′ resonance
mass by perhaps 2 MeV. If this result holds generally for
other resonances at other binding energies, our estimates of the
resonance masses can be expected to be good to a few MeV.

The use of coupled channels containing stable �s does
mean that the calculated NN phase shifts do not describe
inelasticities correctly. Thus they cannot be compared quan-
titatively to experimental phase parameters above the pion-
production threshold in NN channels with strong inelastic-
ities. For this reason, the primary emphasis of this paper is
the extraction of resonance energies from phase shifts in the
resonance region.

Our theoretical dibaryons are made up of two stable
constituents below their breakup threshold and are therefore
real resonances in the model. They have finite widths that come
from the coupling to open NN channels.

A. I = 0 states

Calculational details and results for the IJ P = 03+ states
are given in Table II. The number of channels used in the theory

TABLE II. �� or resonance mass M and decay width , in
MeV, in five quark models for the IJ P = 03+ states. The channels
included are one channel or 1c (7S��

3 only), two coupled channels or
2cc (1c + 3DNN

3 ), 4cc (2cc + 7,3D��
3 ), and 10cc as described in the

text. The pure 7S��
3 bound-state mass for ChQM1 is 2456 MeV [2].

Nch ChQM2 ChQM2a QDCSM0 QDCSM1 QDCSM3

M  M  M  M  M 

1c 2425 – 2430 – 2413 – 2365 – 2276 –
2cc 2428 17 2433 10 2416 20 2368 20 2278 19
4cc 2413 14 2424 9 2400 14 2357 14 2273 17
10cc 2393 14 – – – – – –
10cc′ 2353 17 – – – – – –
10cc′′ 2351 21 – – – – – –

is given by Nch. The theoretical pure 7S��
3 binding energy is

next estimated by diagonalizing the Hamiltonian matrix for
this state in a generator-coordinate representation, where the
average baryon-baryon separation is taken to be less than 6 fm
(to keep the matrix dimension manageably small). In this way,
the pure 7S��

3 is found to be bound by 35–190 MeV, with the
ChQM2 mass 60 MeV lower than the ChQM1 mass obtained
in Ref. [2]. Coupling to the 3DNN

3 channel causes this bound
state to change into an elastic resonance where the phase shift,
shown in Fig. 1, rises through π/2 at a resonance mass that
has been shifted up by 3 MeV. The same small mass increase
caused by the coupling to the NN continuum is seen in all
JP states studied here. The result shows that the mass shift is
always dominated by the NN scattering states below the pure
bound-state mass rather than those above it.

The table next shows that on coupling to the two 7,3D��
3

channels above the pure 7S��
3 bound state, the resonance is

pushed down in mass, as expected. The effect is not large,
however, being 15 MeV in ChQM2 and 11 MeV in QDCSM1,
which has the same αs .

Both the pure 7S��
3 bound state and the associated 3DNN

3
resonance are lower in mass in QDCSM1, by about 60 MeV,
than in ChQM2. Since the QDCSMs contain h.c. effects, we
must first determine how much the h.c channels contribute to
this mass difference. This study is done with ten channels
(case 10cc). Besides the four baryon channels shown in
Table II, they include the following six h.c. channels: the four
3D3 channels of 2�8

2�8,
4N8

4N8,
4N8

2N8, and 2N8
2N8,

the 7S3(4N8
4N8), and the 7D3(4N8

4N8). Here the baryon
symbol is used only to denote the isospin, so 2�8 means the
T , S = 3/2, 1/2 color-octet state. The table shows that these
six h.c. channels lower the ChQM2 resonance mass by 20 MeV.
Assuming that the QDCSMs account adequately for h.c.
contributions, we see that the QDCSM1 dibaryon resonance
mass is now lower than that in ChQM2 by only 36 MeV.

It is interesting that the pure 7S��
3 bound-state masses

in the ChQM2 and ChQM2a of different nucleon size b

differ by only 5 MeV. In contrast, both bound-state and
resonance masses change by 90 MeV in the two QDCSMs
with the same difference in the nucleon size b. This shows
that the QDCS mechanism depends sensitively on the nucleon
size. The possibility of a 7S��

3 bound state giving rise to a

024001-4



QUARK MODELS OF DIBARYON RESONANCES IN . . . PHYSICAL REVIEW C 79, 024001 (2009)

FIG. 1. 3DNN
3 phase shifts. (a) Calculated for a single channel

(sc) and two coupled channels (2cc) (3DNN
3 + 7S��

3 ) in two different
quark models (ChQM2 and QDCSM1) as functions of the c.m. kinetic
energy Ec.m. = W − 2MN , where W is the total c.m. energy and MN

is the nucleon mass. The experimental phase shifts of the partial-wave
solution SP07 [16] are also shown. (b) Calculated in the ChQM2 using
different numbers of coupled channels, as described in more detail in
the text.

subthreshold resonance has been suggested previously [22],
but the resonance masses for the present quark models are
higher.

The calculated 3DNN
3 phase shifts are shown in Fig. 1. They

differ noticeably between two quark models of very similar
parameters that differ only in the replacement of the scalar
exchange in ChQM2 by the QDCS mechanism in QDCSM1.
The ChQM2 phase shifts agree better with experiment than do
the QDCSM1 phase shifts for 100 < Ec.m. < 400 MeV. The
situation is different in the 3SNN

1 state shown in Fig. 2, where
the phase shifts from these two quark models agree, as already
pointed out in Ref. [7].

Dibaryon resonance masses can be quite sensitive to
short-range dynamics. For example, the ChQM2 resonance
mass can be forced down to the lower QDCSM1 value by
artificially increasing the attractive confinement interaction
involving h.c. configurations that appear only for overlapping
baryons. The change can be made in two different ways: (1)
increase the color confinement interaction strength among h.c.
channels, and also that between color-singlet channels and
h.c. channels (a model denoted 10cc′) by an overall factor of
1.3, or (2) increase the color confinement interaction between
color-singlet channels and h.c. channels only (model 10cc′′)
by an overall factor of 1.55. Figure 1(b) shows that the re-
sulting 3DNN

3 phase shifts change noticeably only for Ec.m. >

350 MeV. In other words, only these “high-energy” NN phase
shifts are sensitive to changes in short-range dynamics when
shielded by the strong centrifugal barrier in the NN D waves.
Hence these changes in the confinement interactions, artificial
as they are, are not excluded by the experimental phase shifts.

FIG. 2. 3SNN
1 phase shifts. (a) Calculated with two or five coupled

color-singlet channels defined in Table III in two different quark
models ChQM2 and QDCSM1. (b) Calculated in the ChQM2 using
different numbers of coupled channels, as described in more detail in
the text.

The resonance widths given in Table II are FWHMs. They
are quite small and agree with one another.

Results for the IJ P = 01+ state are shown in Table III
and Fig. 2. The theoretical pure 3S��

1 state is bound by 100–
350 MeV, around twice the 7S��

3 binding energy. The coupling
to the 3SNN

1 channel has an unexpectedly large effect, pushing
up the lowest of these bound 3S��

1 masses, by 293 MeV in
QDCSM3, so that it becomes a resonance at 2408 MeV. This
very large mass shift is caused by the presence of a lower-mass
state, the deuteron, in the admixed 3SNN

1 channel. Admixing
three additional channels with no lower bound states pushes
the resonance mass down a little to give for the 5cc treatment,
the mass shift

�M ≡ MR(5cc) − M(1c) = 278 MeV. (6)

The pure 3S��
1 bound-state mass appears 100 MeV or more

higher in the other four quark models. The additional large
mass increase caused by the coupling to the 3SNN

1 channel

TABLE III. �� or resonance mass M and decay width , in
MeV, in five quark models for the IJ P = 01+ states. The channels
included are 1c (3S��

1 only), 2cc (1c + 3SNN
1 ), and 5cc (2cc +

3DNN
1 + 3,7D��

1 ). The pure 3S��
1 bound-state mass for ChQM1 is

2274 MeV [2].

Nch ChQM2 ChQM2a QDCSM0 QDCSM1 QDCSM3
M M M M

M 

1c 2366 2344 2317 2206 2115 –
2cc nra nr nr nr 2408 74
5cc nr nr nr nr 2393 70

aNo resonance in these coupled channels.
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without or with the additional channels then pushes the state
above the �� threshold. Then no resonance appears.

The pure 3S��
1 bound-state mass in ChQM1 is higher by

160 MeV than the QDCSM3 mass. So the 3SNN
1 resonance

also does not appear in ChQM1. We shall find that QDCSM3
model has an unusually rich dibaryon spectrum arising from
an unusually strong attraction in �� channels.

It is clear from Table III that the strong �� attraction in
QDCSM3 is caused by the large nucleon size b used there. As
b decreases, the �� attraction also decreases. This sensitivity
to b is not seen in ChQMs, thus showing that it is caused by
the QDCS mechanism.

In fact, the 3SNN
1 resonance disappears somewhere between

QDCSM1 and QDCSM3. The critical value bcrit below
which the resonance disappears can be estimated under the
assumption that the mass shift �M caused by the coupling
to the NN channels is the same for all parameter sets. The
critical point then appears when the bare 3S��

1 bound-state
mass is 2186 MeV. Interpolation from the bound-state masses
shown in Table III gives bcrit ≈ 0.53 fm.

In contrast, the decrease of the pure 3S��
1 bound-state

mass for ChQM2s as b increases from 0.52 to 0.60 fm is
only 20% that of QDCSMs. Furthermore, b can be increased
only to 0.645 fm, for the confinement potential strength ac

turns negative above that value and hence no ChQM2s can
be constructed. At b = 0.645 fm, the pure 3S��

1 bound-state
mass is 2332 MeV, which is too large for the system to resonate
on coupling to NN channels. Hence ChQM2s have no 3SNN

1
resonance.

The pure 3S��
1 bound-state mass for ChQM1 is 2274 MeV,

which is 92 MeV below the ChQM2 mass. If its b dependence
is the same as ChQM2s, the decrease in bound-state mass is
insufficient, by about 50 MeV, to induce a resonance.

Turning now to the NN phase shifts, Fig. 2 shows that
ChQM2 and QDCSM1 give quite similar results, with the 5cc
treatment giving much more attraction in both quark models,
especially for Ec.m. < 150 MeV. There is fair agreement with
experiment for Ec.m. < 150 MeV, but all theoretical phase
shifts become increasingly too attractive at higher energies.

Figure 2(b) shows the 14-channel 3SNN
1 phase shifts calcu-

lated in ChQM2 with the addition of nine h.c. channels: eight
3(S,D)1 channels of 2�8

2�8,
4N8

4N8,
4N8

2N8,
2N8

2N8,
and 7D1(4N8

4N8). Their inclusion causes the phase shift to
become only a little more attractive.

The figure also shows the phase shifts obtained after the two
arbitrary increases of the color confinement strength involving
h.c. channels made previously for the 3DNN

3 system. The phase
shifts are now noticeably different from each other. Both are
considerably more attractive than those for case 14cc, but
still not attractive enough at high energies for a resonance
to appear below the �� threshold. These large changes in the
low-energy phase shifts are inconsistent with experiment, thus
showing that these additional h.c. effects can now be excluded.

Two other NN partial waves merit a short discussion.
The 5cc 3DNN

1 phase shifts, like their 3SNN
1 partners, are

nonresonant except for QDCSM3. All theoretical phase shifts
agree well with experiment, to around 200 MeV. The quality
of the theoretical 3SNN

1 and 3DNN
1 phase shifts shows that both

quark models give good descriptions of the longer range part

TABLE IV. Dibaryon or resonance mass and decay width, all in
MeV, in four quark models for I = 1 states. The channels included
in the J P = 0+ state are 1c (1S��

0 only), 2cc (1c + 1SNN
0 ), and 4cc

(2cc + 5D��
0 + 5DN�

0 ). The channels included in the J P = 2+ state
are 1c (5SN�

2 only), and 2cc (1c + 1DNN
2 ). The bound-state masses

for ChQM1 are 2304 MeV for 1S��
0 and 2171 MeV for 5SN�

2 [2].

Nch ChQM2 ChQM2a QDCSM0 QDCSM1 QDCSM3
M M M M

M 

J P = 0+:
1c 2395 2390 2335 2231 2148 –
2cc nra nr nr nr 2448 106
4cc nr nr nr nr 2433 128

J P = 2+:
1c ubb ub ub ub 2167 –
2cc nr nr nr nr 2168 4

aNo resonance in these coupled channels.
bUnbound.

of the effective isoscalar central potential. The isoscalar 5S��
2

is Pauli forbidden, while the pure 3D��
2 state is unbound.

As a result, the 2cc 3DNN
2 phase shifts are nonresonant. The

QDCSM values agree quite well with experiment, while the
ChQMs agree less well.

B. I = 1 states

Table IV summarizes the results for two isovector states
with possible resonances. The JP = 0+ (1SNN

0 ) state is qual-
itatively similar to the isoscalar JP = 1+ (3SNN

1 ) state, since
they are mostly different spin states of the same dibaryon pairs
in the same relative orbital angular momenta. The pure 1S��

0
bound state in QDCSM3 is pushed up from its unperturbed
energy of 2148 MeV by 300 MeV on coupling to the 1SNN

0
channel by the presence of a lower-mass state, the well-known
slightly unbound 1SNN

0 state. The perturbed mass is still small
enough for the system to resonate below the �� threshold.

In the remaining five quark models, the pure �� mass is
80–250 MeV higher. In each case, the strong coupling to the
NN channel pushes the state well into the �� continuum,
thus preventing a resonance from materializing. Following the
procedure used for 3S��

1 , the critical nucleon size below which
the resonance disappears in the QDCSM is found to be bcrit ≈
0.56 fm.

Figure 3 shows the nonresonant behavior of the coupled-
channel 1SNN

0 phase shifts for ChQM2 and QDCSM1. These
phase shifts become much more attractive than the experimen-
tal values from SP07 as the scattering energy increases into the
resonance region, the effect being more than twice as strong
as the similar behavior in the 3SNN

1 state. All the quark models
studied here do not give enough short-range repulsion in these
S states.

In the JP = 2+ state, the pure 5SN�
2 bound state appears

at roughly the same mass straddling the N� threshold in all
six quark models used. (Model differences in the N� S-state
masses are much smaller for the high intrinsic spin state than
for the low intrinsic spin states, just like the model differences
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FIG. 3. NN 1S0 phase shifts calculated with two or four coupled
color-singlet channels in two different quark models ChQM2 and
QDCSM1.

in the ��S states.) The pure 5SN�
2 mass is pushed up only

a little by coupling to the 1DNN
2 continuum. It remains bound

only in QDCSM3. The pure 5SN�
2 binding energy for ChQM1

is only 0.14 MeV. So the state is unlikely to remain below the
N� threshold after coupling to the NN channel.

The pure N� state is unbound in ChQM2. [It becomes
bound if the attractive central part of the scalar potential V σ

shown in Eq. (2) is increased in strength by a multiplicative
factor of 1.7.] The calculated nonresonant NN phase shifts
are shown in Fig. 4 for ChQM2 and QDCSM1. The prominent
cusp is a threshold or Wigner cusp with its maximum located
right at the N� threshold. The phase shift above the threshold
is the phase of S11, where the subscript 1 denotes the
NN channel. For comparison, the resonant phase shifts for
QDCSM3 are also given.

Even though a resonance appears only in one quark model
in our limited theoretical treatment, the masses involved are

P
ha

se
 s

hi
fts

 (
de

g.
)

Ec.m. (MeV)

FIG. 4. NN 1D2 phase shifts calculated with two coupled color-
singlet channels in three different quark models ChQM2, QDCSM1,
and QDCSM3.

sufficiently close to one another and to the N� threshold
that they describe similar dynamical situations to within the
uncertainties of the models. Moreover, the large � width when
included would cause the state to straddle the N� threshold
for all these quark models. We therefore consider a 5SN�

2
resonance near the N� threshold to be possible in all these
quark models.

In fact, inelastic Argand looping (which we shall define
in Sec. IV) has been obtained by Entem, Fernandez, and
Valcarce [23] in the 1D2 and possibly also 3F3 systems
for a ChQM having αs = 0.4977, only a little larger than
the value 0.485 used in ChQM1 or ChQM2. The crucial
feature in their treatment is the explicit inclusion of NN

inelasticities by giving decay widths to the �s appearing in
the coupled-channel treatment. There exist quite extensive PW
solutions of both NN [16] and πd [24] scattering amplitudes
in these and other isovector dibaryon systems. They could
yield interesting information concerning quark dynamics in
this resonance region.

We do not find any resonance attributable to an N� or
�� bound state in any of the quark models in the following
four isovector states: (a) the 3P0,1,

3F3 states (with each state
calculated using three coupled color-singlet channels of the
same quantum numbers for NN,N�, and �� constituents,
respectively), and (b) the JP = 2− state (using the four color-
singlet channels 3P2 of NN,N�,��, and 7P ��

2 ).
It is worthwhile to show in Fig. 5 the difference between

ChQM2 and QDCSM1 in the well-known decomposition into
central, spin-orbit, and tensor components of the 3P NN

J phase
shifts:

3PC = 1
9

3P0 + 1
3

3P1 + 5
9

3P2,

3PLS = − 1
6

3P0 − 1
4

3P1 + 5
12

3P2, (7)
3PT = − 5

36
3P0 + 5

24
3P1 − 5

72
3P2.

We see that the inclusion of one pion exchange (OPE) takes
good care of the tensor component, but both quark models

FIG. 5. Central, spin-orbit, and tensor components of the 3P NN
J

phase shifts calculated with three coupled color-singlet channels
(containing NN, N�, and ��) in two different quark models
ChQM2 and QDCSM1.
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give too weak spin-orbit components and too repulsive central
components, especially for QDCSM1 [2,6].

As is well known [2], the problem with the spin-orbit
component comes about because the included OPE potential,
though clearly needed to generate a NN tensor force, also
contributes to the �-N mass difference. The color coupling
constant αs needed to account for this mass difference is
then reduced to 0.3–1.0 from the value 1.7 in quark models
without pion exchange. This weaker αs gives in turn a weaker
baryon-baryon spin-orbit potential from OGE. The additional
spin-orbit contribution from the scalar exchange used in the
ChQMs is not enough to compensate for the deficit. Resolution
of this problem would require significant modifications to the
quark models used.

A simple way to study the spin-orbit problem in the present
limited objective of looking for dibaryon resonances without
overhauling these quark models is to just modify a term or add
terms to the quark-quark interaction phenomenologically. A
number of related quark models are thus generated: a modified
ChQM2m model, where the OGE strength αs of the spin-orbit
potential V

G,LS
ij has been increased five times, and a number

of ChQM2ρ(f) models with the additional ρ-meson exchange
potential V ρ displayed in Eq. (1). Here

f = αchv

αchv0
(8)

is the multiplicative increase of the ρ-quark-quark coupling
strength above the usual and customary value αchv0 = 0.021,
corresponding to the coupling constant gchv0 = 2.351 used in
Ref. [17]. Since the effects on these P -wave NN phase shifts
of the coupling to N� and �� channels are quite small, we
use only a single color-singlet NN channel to calculate the
NN phase shifts for these modified models. Figure 6 shows
that the resulting central, spin-orbit, and tensor components
of the 3P NN

J phase shifts for the quark model ChQM2ρ(11)
give quite good agreement with the experimental SP07 values.
By diagonalizing the Hamiltonian matrix in the appropriate
N� channel, we find that none of the modified quark models

FIG. 6. Central, spin-orbit, and tensor components of the 3P NN
J

phase shifts calculated with only a single uncoupled NN channel in
the quark model ChQM2ρ (11).

described in this paragraph have a pure N� P -wave bound
state.

The difficulty of forming P -wave bound states can readily
be appreciated in the attractive square-well potential model.
It is well known that to bind a P state, its attractive potential
depth must be four times that needed to bind an S state [25]. To
see how far we are from N�P -wave bound states for our quark
models, we increase the strength of the attractive central scalar
potential V σ in ChQM2 by a multiplicative factor fs . The
3P N�

2 state then becomes bound at fs >∼ 3.1, with a binding
energy of 6 (22) MeV when fs = 3.2 (3.4). The potentials in
the other 3P N�

J states are less attractive.
A similar situation holds for ChQM2ρ(11): its 3P N�

2
(5P N�

2 ) state is unbound. It becomes bound only when its
attractive central scalar potential strength has been increased
by a multiplicative factor fs ≈ 3.0 (2.6). It is thus clear that
N�P -wave bound states would appear only for quark models
with substantially stronger attraction than those studied here.

Concerning the missing P -wave attraction in both ChQM2
and QDCSM1, one cannot just use the isoscalar scalar δ meson
of mass 980 MeV that appears in the Bonn potentials [26]
because of the cutoff mass � ≈ 830 MeV used in our chiral
quark models. It is not a trivial problem to reconcile these two
classes of models for nuclear forces.

Turning now to our experimental knowledge of possible
resonances in NNP states, we recall that in the PW analysis
FA91 [15], resonance poles are found for the isovector
odd-parity NN states 3P2,

3F2, and 3F3. These empirical
resonance-like solutions reproduce the empirical Argand
loopings of the PW solutions, but many studies in the past [27]
have left unresolved the question of whether these Argand
loopings represent new dibaryon resonances. The difficulty
centers around the observation of Brayshaw [28] that when
decay channels with three or more final particles are present,
Argand looping can appear in models known to have no
resonance because their S matrix has no pole. Brayshaw
has given an explicit dynamical example for the case of the
pp 1D2 state coupled to N� and π+d channels. The strong
energy dependence that causes the Argand looping in his
model comes from a logarithmic rescattering singularity in the
N� ↔ π+d transition amplitude near the N� threshold. The
physical situation this singularity describes is the oscillation or
exchange of a nucleon between the decaying � and the second
or spectator nucleon with which it forms the bound deuteron
d. In Brayshaw’s model, there is no new 1D

pp

2 resonance near
the N� threshold.

To complete our very brief review of resonance conditions,
we should mention that recent studies of πN resonances
[29,30] have shown that the speed test can track the positions of
resonance poles, if present, more reliably than the time delay
criterion. (The speed test determines the resonance energy
from the maximum speed of Argand looping as a function of
the on-shell kinetic energy, while the time delay test locates it
by maximizing the positive time delay of the scattered wave
packet relative to the free wave packet.) A different kind of
complication can appear in dynamical models that already
have resonance poles; namely, the speed test can fail because
the Argand looping does not have a solution with maximum
speed [29]. This is an extension to another dynamical model
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(one having two coupled nonrelativistic two-body channels)
of another old observation of Brayshaw that when relativistic
many-body channels are present, true resonance poles can
appear without any Argand looping [31].

In view of all these complications, we shall take the tentative
but conservative position that a promising dibaryon resonance
is one involving at least one � or N∗ baryon that is a bound
state below the dibaryon breakup threshold in the absence of a
centrifugal potential when these baryons are treated as stable
particles. In practice, the only excited baryon we are able to
describe with some degree of confidence is the �. In the limited
context of our quark models, we consider the 1DNN

2 structure
a promising dibaryon resonance, at least for some of our quark
models, but not the NN P -wave Argand loopings.

IV. DISCUSSION

The theoretical resonance properties calculated in the last
section are summarized in Table V. The first line for each
dibaryon type gives the dominant PW. The PW responsible
for the resonance trapping in the theory is shown in bold type.
The experimental information used for the comparison is the
PW solution SP07 [16] of NN scattering data. The four states
are arranged in order of increasing relative orbital angular
momentum �NN .

Each of our calculated resonances is an elastic resonance,
where the scattering phase shift rises sharply through π/2. The
Argand plot of its complex PW amplitude

T = S − 1

2i
(9)

shows rapid counterclockwise motion on the unitarity circle.
This mathematical behavior describes a physical picture in
which the NN system resonates or continues to “sound” due
to its partial trapping into the resonance region, namely, the
closed channel containing one or two �s. Each of these elastic
resonances has a finite but very small elastic (or NN ) width.

The resonance properties shown in the table must be cor-
rected for the width of a decaying �, leading to the appearance
of pionic channels. Inelasticities cause the reduction |S| < 1
and the restriction of the Argand plot to the interior of the
unitarity circle. We shall avoid Brayshaw’s two complications
from many-body channels by considering only channels where
for stable �s, the dibaryon system in our quark model
treatment is a bound or almost bound two-body state. This
restriction allows us to take the standard position that for
these special states, rapid counterclockwise Argand looping
is an acceptable signal of an inelastic resonance [27,32]. In
physical terms, leakage of the trapped system into pionic
channels reduces the effect “heard” in the NN channel but does
not eliminate it altogether. From the perspective of the quark
models used here, the I = 1 odd-parity NN Argand structures
are not promising candidates for dibaryon resonances.

We shall estimate inelasticities only at the crudest level of
branching ratios, with

BNN = NN


, (10)

TABLE V. Mass, decay widths (both in MeV), and branching
ratio of theoretical baryon resonances in five quark models and
comparison with partial-wave analyses of experimental data from
SP07 [16] and FA91 [15]. MR for ChQM2a is estimated from the
4cc value and is shown in parentheses.

NN 1S0
3S1

1D2
3D3

3D1

�� 1 S0
3 S1

7 S3
5D0

3,7D1
3,7D3

N� 5D0
5 S2

ChQM2:
MR 2393
NN 14
inel 136
BNN 0.09

ChQM2a:
MR (2404)
NN 9
inel 149
BNN 0.06

QDCSM0:
MR 2400
NN 14
inel 144
BNN 0.09

QDCSM1:
MR 2357
NN 14
inel 96
BNN 0.13

αcrit
s 0.60 0.57

QDCSM3:
MR 2433 2393 2168 2273
NN 130 70 4 17
inel 190 136 117 33
BNN 0.41 0.34 0.03 0.34

SP07:
MR none none? 2148a ?
 118a

BNN 0.29 0.26b

aPole position of FA91.
bAt W = 2400 MeV.

where  = NN + inel depends on the inelastic width inel

caused by decaying �s. Close to the breakup threshold where
the �s are almost on-shell, the inelastic width can be related
approximately to the � width f � = 120 MeV in free space
by only accounting for the reduction in phase space available to
a decaying bound � whose mass has been reduced to roughly
Mb� ≈ Mf � − 0.5B, where B is the binding energy of the
dibaryon. Then [33]

b�(Mb�) ≈ f �

k2�
b ρ(Mb�)

k2�
f ρ(Mf �)

, (11)
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where k is the pion momentum in the rest frame of the decaying
�, � = 1 is the pion angular momentum, and

ρ(M) = π
kEπEN

M
(12)

is the two-body decay phase space at mass M when each
decay product has c.m. energy Ei, i = π,N . We shall use this
crude estimate indiscriminately even far below the breakup
threshold, but the harm done is not great because most
promising resonances are near the threshold.

If each decaying � in the dibaryon has a Breit-Wigner (BW)
distribution of width b�, the total mass of two decaying �s
can be shown to have a BW distribution with width 2b�.
Hence

inel ≈ nb�b�(Mb�), (13)

where nb� is the number of �s in the resonance. The results
for different theoretical dibaryons are summarized in Table V.
The shift in resonance masses caused by the coupling to pionic
channels has not been included in these estimates.

The experimental branching ratios shown in Table V are
obtained from the energy-dependent SP07 PW solution [16]
at the stated resonance masses using the formula for coupled
PWs

BNN = σel,J

σtot,J
= |T11|2 + |T12|2

ImT11
, (14)

while T12 = 0 for an uncoupled PW. Here the subscripts i, j

in Tij are channel labels.
Our theoretical estimates can now be compared with the

experimental results from the PW analysis of NN scattering
data, in Table V. The absence in the SP07 PW solution of a
resonance accessible from the 1SNN

0 channel and its probable
absence in the 3SNN

1 give an approximate upper bound on the
nucleon size of bcrit ≈ 0.53 fm for the QDCSM. This upper
bound causes the 3DNN

3 resonance mass to exceed 2340 MeV,
the interpolated value for the QDCSM at b = 0.53 fm.

The 3DNN
3 resonance appears also in both ChQM2 and

ChQM2a at around 2400 MeV, the resonance mass being not
very sensitive to b. The resonance mass has not been calculated
for the ChQM1 but is about 2420 MeV. NN S-wave resonances
do not appear in ChQM with quadratic or linear confinement.

Table V also shows that the theoretical 3DNN
3 branching

ratio BNN is smaller than the SP07 value. This means that
the theoretical coupling to the trapping �� channel is too
weak. The theoretical branching ratio BNN for the QDCSM3
resonance in the 1DNN

2 state is much smaller than the SP07
value except for QDCSM3. This suggests that the theoretical
coupling to the trapping N� channel is also too weak.

A. ABC effect

The ABC effect, named after Abashian, Booth, and Crowe
[34] who first observed it, describes an enhancement above
phase space of the missing-mass spectrum of the inelastic
fusion reaction pd → 3HeX. Subsequent experimental studies
have been reviewed recently by Clement et al. (or WASA07)
[11], who also report preliminary results for the exclusive
reaction pd → 3He ππ from the WASA Collaboration, and
by Bashkanov [35].

The enhancement is associated with a ππ invariant mass
<340 MeV, with the two pions emitted in parallel and in a
relative S wave opposite in direction to the recoiling nucleus.
The structure is isoscalar because it is seen in dd → 4He X0,
but not in dp → 3HX+.

In the reaction pd → 3He π0π0, the differential cross
section dσ/dMπ0π0 at fixed M3, the invariant 3He π0 mass,
has a maximum at ≈3080 MeV, just under the value of
2MN + M� ≈ 3100 MeV. The cross section has a FWHM
of about 3 ≈ 130 MeV, the same as f �. (These numbers
are from Fig. 5-5 of Ref. [35].) Hence the pion in M3 appears
to have come from the decay of a slightly bound �. These
features of the experimental data suggest that the ABC effect
in these reactions comes from the decay of a �� bound state.
The preliminary WASA07 resonance peaks at 2410 MeV,
about 50 MeV below the �� threshold, with a width
<100 MeV. If the estimated width holds up, it would eliminate
the larger values of 2b� ≈ 160 MeV (from Table VI) to
23 ≈ 260 MeV (from Fig. 5-5 of Ref. [35]). As pointed
out by WASA07, such an outcome would disagree with the
situation in the 1D2 resonance whose width is close to the free
� width even though the resonance straddles the N� breakup
threshold.

The energy dependence of the production cross section
σdππ (all final pion states) has been measured. Two rough fits
to different data are shown in Table VI. The recent preliminary
WASA07 results [11] agree roughly with the older Heidelberg-
Tel-Aviv data (H-TA73) [36]. Information can also be deduced
from NN scattering. For comparison, the table gives the PW
total and inelastic (or reaction) cross sections from the latest
energy-dependent solution SP07 [16]. We must next estimate
the fraction of σinel that goes through the dππ channel.

The estimate is made by using the following two assump-
tions. (1) The single-pion production cross section in either J

state is certainly not zero, because a pion can be produced with
the dibaryon left in isovector states. However, to maximize
our estimate for σdππ , we shall ignore the contributions of all
one-pion decay branches. (2) The experimental cross section
σdπ+π−(σnpπ+π− ) is known to be 0.270 (0.55) mb at W =

TABLE VI. Experimental peak position (in MeV) and produc-
tion cross section σdππ (in mb) and width (in MeV) of the ABC
effect compared with the estimate from the partial-wave solution
SP07 of np scattering amplitudes under the assumption that the
ABC effect comes from a dibaryon resonance in the specified PW
at the resonance mass 2410 MeV. These estimates are described
in more detail in the text.

Reaction np → dX np → dππ np → np

Ref. H-TA73 [36] WASA07 [11] SP07 [16]
PW 3S1

3D3

Peak 2460a 2410 none? ?
σtot,J 3.6 3.2
σinel,J 0.41 2.3
σdππ,J 0.63 2.3 ≈0.12 ≈0.8
 >220a <100 160b 160b

aTheoretical calculation of Ref. [37].
bFrom Eq. (13) at 2410 MeV.
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2340 MeV, and 0.33 (4.05) mb at W = 2510 MeV [38].
These points straddle the 2410 MeV ABC peak of WASA07
[11]. Both cross sections should increase significantly as one
approaches the ABC peak from below. Above the ABC peak,
the larger dibaryon breakup cross section probably reflects
an increase in phase space, including the number of other
contributing states. We now assume that both cross sections
at and below the ABC peak are dominated by the same
resonance in one of the two J states in the table. Using the ratio
0.27/0.55 ≈ 0.5 of these cross sections at W = 2340 MeV for
the entire resonance, we therefore assume that σdππ ≈ σinel/3
to get the rough and perhaps generous estimates shown in the
table. Finally the estimated width for the two �� states is that
of Eq. (13) which includes the reduction in phase space for
bound �s.

Table VI suggests that it is relatively unlikely that the
ABC effect originates from a dibaryon resonance in the 3SNN

1
channel. The main reason is that the NN scattering described
by SP07 is highly elastic, so σdππ is far too small. The situation
for the 3DNN

3 channel is more promising but not without
difficulty unless the preliminary WASA07 estimate of σdππ

is reduced.
Additional information can be obtained from the energy

dependence of the SP07 3DNN
3 scattering amplitude [16]. They

are nonresonant at the QDCSM3 resonance mass of 2270 MeV,
but they are too uncertain at the ABC peak at 2410 MeV to
settle the question of an NN resonance there.

The resonance widths are also of interest, especially for the
exclusive reaction that excludes contributions from three and
more pions on the high-energy side of the possible resonance.
The theoretical calculation of Bar-Nir, Risser, and Schuster
[37] is based on a one-pion exchange excitation to two �s
followed by a pion emission from each �. Their calculated
resonance width is close to the free-space value 2f � =
228 MeV used in their calculation. Our estimated decay width
shown in Table VI is much smaller but not as small as the
preliminary WASA07 value. As for the branching ratio BNN

given in Table V, the calculated value for our quark models
seems too small, but the experimental value from SP07 at
2400 MeV is not necessarily reliable.

In his study of the ABC effect, Alvarez-Ruso [39] pointed
out that the �� contribution is greatly reduced when short-
range repulsive correlations are included in the NN channels.
Then the cross section at W = 2240 MeV, some distance below
the ABC peak, is found to be dominated by the NN∗(1440),
with both pions emitted by the decaying Roper resonance.
However, at this lower energy region, the SP07 np 3D3 Argand
phase motion is not resonant.

Short-range correlations are already included in the quark
models used here. They are not the short-range repulsion
from the exchange of vector mesons (specifically the isoscalar
ω meson), which would reduce if not eliminate the ��

resonance. Our short-range correlations come from Pauli
antisymmetrization and channel coupling effects generated by
overlapping clusters of quarks, including baryon excitations
and hidden-color configurations that enhance rather than
reduce these short-distance phenomena.

The relative importance of these explicit quark effects found
in our studies also comes from the use of large baryon clusters

of quarks in all the quark models used here. The situation could
be different if the baryon “bags” are small [40] and the meson
clouds around them are thicker. Our calculated results for the
dibaryon spectrum is sensitive to the model nucleon size used
in the QDCSM but not in the ChQM. The baryon spectrum,
on the other hand, is quite sensitive to the model nucleon size,
especially in the radial excitations. Past calculations in the
ChQM [2] favor the choice near b = 0.52 fm. With this choice,
the theoretical 3DNN

3 resonance arising from the 7S��
3 bound

state appears at about 2390 MeV in ChQM with quadratic
confinement, probably at 2420 MeV with linear confinement,
and at 2360 MeV for the QDCSM.

Experimental ed form factors at large momentum transfers
that show the premature dominance of six-quark effects seem
to favor the kind of quark models studied here over the more
traditional short-range NN repulsive correlation [41]. The
experimental confirmation of a NN3D3 resonance would be
a dramatic demonstration of quark effects in the resonance
region. Its experimental nonconfirmation, on the other hand,
would point to a missing short-range repulsion in our quark
models, a repulsion that is usually attributed to vector meson
exchanges in traditional meson exchange models of nuclear
forces.

V. CONCLUSION

We have studied resonances in NN scattering in a theoret-
ical treatment of two baryon clusters of quarks interacting by
Pauli antisymmetrization and by gluon and pion exchanges.
The nucleons can resonate by changing into �s, but only if
the resulting baryons attract each other with sufficient strength
to stay below its S-wave breakup threshold. The absence of
NNS-wave resonances in the SP07 partial-wave amplitudes
places an approximate upper bound of b < 0.53 fm on the
nucleon size in the QDCS quark model. This restriction in turn
requires that the 3DNN

3 + 7S��
3 resonance mass should exceed

2340 MeV. In ChQMs, the NN system does not resonate
in relative-S waves, but it has a 3D3 resonance at 2390–
2420 MeV. This 3D3 resonance is thus a promising candidate
for the explanation of the ABC structure at 2410 MeV in the
production cross section of the reaction pn → dππ .

The most promising isovector NN resonance candidate in
our quark models appears in the 1DNN

2 state and comes from a
bound or almost bound 5S��

2 state. None of the quark models
used has bound N� P states that might generate odd-parity
isovector resonances.

It is satisfying that these simple quark models containing
only a few adjustable parameters fitting the N,� masses and
the deuteron binding energy can yield physically interesting
information about the possibility of dibaryon resonances at the
much higher energies near the �� and N� thresholds of NN

scattering. Their success is partly due to the fact that a good part
of the available collision energy in the center-of-mass frame
has been used to excite the nucleons into one or two �s whose
mass is fitted by the models. The system is thus effectively
at much lower energies in these � channels. The success is
also derived from the ability of these simple models to capture
some essential features of the baryon-baryon interactions in
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different energy regimes in the many channels involved in the
calculation.

The quark models used have many shortcomings. In the
context of nonrelativistic models alone, a quantitative fit to
NN phase shifts appears difficult without the fine-tuning
provided by the addition of the many meson exchange terms
that appear in conventional boson-exchange potentials [26,42].
The need to use both quarks and meson exchanges suggests
that the resonance region of interest in this paper is a transition
region between the traditional low-energy regime of baryons
interacting via meson exchanges and the high-energy regime
of quarks interacting by quantum chromodynamics.

From a more technical perspective, our theoretical de-
scription can be improved by treating the �s as decaying
particles. It would be difficult to go beyond this improvement,
because explicit pion channels contain three or four bodies.
In our discussion of the ABC effect, it is of considerable

interest to improve upon our very rough estimate of the
partial-wave pn → dππ production cross sections from NN

partial-wave amplitudes. In spite of these limitations, it is clear
that additional experimental knowledge and theoretical studies
of NN properties in the NN resonance region near the N�

and �� thresholds will add significantly to our understanding
of quark dynamics between baryons.

Finally, we should add that the final report of the CELSIUS-
WASA Collaboration on the ABC effect has now appeared
[43]. The structure in the total cross section for the pn →
dπ+π− reaction centers at 2.39 GeV with a width of 90 MeV.
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