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Recently, charge radii and ground-state electromagnetic moments of Li and Be isotopes were measured
precisely. We have performed large-scale ab initio no-core shell model calculations for these isotopes using
high-precision nucleon-nucleon potentials. The isotopic trends of our computed charge radii and quadrupole
and magnetic-dipole moments are in good agreement with experimental results with the exception of the 11Li
charge radius. The magnetic moments are in particular well described, whereas the absolute magnitudes of the
quadrupole moments are about 10% too small. The small magnitude of the 6Li quadrupole moment is reproduced,
and with the CD-Bonn NN potential, also its correct sign.
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Recent developments of both experimental and theoretical
techniques have allowed very precise measurements of charge
radii and ground-state electromagnetic moments of exotic
isotopes [1–4]. In particular, charge radii can be determined
through measurements of isotope shifts in certain atomic
transitions using high-precision laser spectroscopy at isotope
separation facilities [1,2]. Theoretical calculations of electron
correlations, as well as relativistic and QED corrections, can
be performed [5,6] to yield very small uncertainties in the
extracted results. Electric quadrupole and magnetic dipole
moments can be determined using an experimental method that
is based on the nuclear magnetic resonance technique [3,4].

These observables reflect, in different ways, the evolving
nuclear structure along the isotopic chains. Fascinating trends
with varying N/Z ratio have been revealed [7]. It is a true chal-
lenge for theoretical methods to compute these observables
and to reproduce all of the observed trends simultaneously.
In particular, for ab initio many-body methods, this type
of study allows one to test properties of the high-precision
nuclear Hamiltonians that are used as the single input to the
calculations. But these calculations also constitute a critical
test of the limitations of the many-body method itself and of
the operators used to compute the matrix elements.

Efforts to compute some of these observables with mi-
croscopic approaches have been performed using different
realistic and semirealistic interactions [8–11]. Concerning
the ab initio no-core shell model (NCSM) used in this
study, increased computational capabilities and improved
algorithms have led to the opportunity to reach significantly
extended model spaces. In addition, studies of realistic nuclear
Hamiltonians have led some authors to explore the extent
to which effects of multinucleon forces can be absorbed by
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nonlocal terms in the NN interaction [12,13]. The use of these
NN interactions allows, to some extent, the study of three-body
interaction effects while still maximizing the size of the model
space.

In concert, these developments can be regarded as a strong
motivation to repeat and extend some earlier NCSM studies
[9,14,15]. In this Rapid Communication, we calculate the
charge radii and electromagnetic moments of the A � 11
chains of Li and Be isotopes. We compare the performance
of two very different NN interactions: (i) the CD-Bonn 2000
interaction (CDB2k) [16], which is a charge-dependent NN

interaction based on one-boson exchange, and (2) the INOY
IS-M [12], which is a phenomenological interaction for which
nonlocality was introduced in certain partial waves so that the
binding energies of 3H and 3He are described correctly.1 All
calculations are performed up to very large model spaces and
efforts are made to quantify the rates of convergence of the
observables.

The NCSM method has been described in great detail
in several papers; see, e.g., Refs. [17–19]. Here, we just
outline the approach as it is applied in the present study.
We start from the intrinsic two-body Hamiltonian for the
A-nucleon system HA = Trel + V , where Trel is the relative
kinetic energy and V is the sum of two-body nuclear and
Coulomb interactions. We solve the many-body problem in a
large but finite harmonic-oscillator (HO) basis truncated by a
chosen maximal total HO energy of the A-nucleon system. If
we use realistic nuclear interactions such as CDB2k or INOY,
which generate strong short-range correlations, it is necessary
to compute a model-space-dependent effective Hamiltonian.

1It is important to note that, for this particular version, the on-shell
properties of the triplet P -wave interactions were modified to improve
the description of 3N analyzing powers.
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For this purpose, we perform a unitary transformation [20,21]
of the Hamiltonian, which accommodates the short-range
correlations. In general, the transformed Hamiltonian is an
A-body operator. Our simplest, yet nontrivial, approximation
is to develop a two-particle cluster effective Hamiltonian,
while the next improvement is to include three-particle clus-
ters, and so on. The effective interaction is then obtained from
the decoupling condition between the model space and the
excluded space for the two-nucleon transformed Hamiltonian.
Details of the procedure are described in Refs. [17,18,22].

In the present application, we aim to describe nuclear
observables that, in some cases, are sensitive to long-range
properties of the wave function. It is therefore essential to
include as many terms as possible in the expansion of the total
wave function. For this reason, we limit ourselves to the use of
realistic two-nucleon (NN ) interactions, and we only present
results obtained with the two-body cluster approximation.

Our calculations are not variational, so higher order terms
may contribute with either sign to total binding. Hence,
evaluating the dependence on the basis-space parameters help
calibrate our convergence. Once the effective interaction is de-
rived, we diagonalize the effective Hamiltonian in a Slater de-
terminant HO basis that spans a complete Nmaxh̄� space. This
is a highly nontrivial problem because of the very large dimen-
sions we encounter. To solve this problem, we have used a spe-
cialized version of the shell model code ANTOINE [23], adapted
to the NCSM [24]. The first step in our study is a search for the
optimal HO frequencies. The converged results should not de-
pend on the HO frequency. In practice, however, because of the
cluster approximation of the effective interaction, our results
will be sensitive to the choice of h̄�. Furthermore, by construc-
tion, the effective interactions depend on the size of the model
space, Nmax, and on the number of nucleons, A. To investigate
these dependences, we have performed calculations for a large
series of frequencies. As an example, the results from this study
for the 6Li ground-state binding energy and electromagnetic
moments are presented in Fig. 1 for the INOY interaction.

We are looking for the region in which the dependence on
h̄� is the smallest, and we select this frequency (from the
calculation in the largest model space) as a starting point for
our detailed investigation of ground-state observables. The se-
lected optimal HO frequencies, h̄�A, are presented in Table I.

In addition, our results will depend on the size of the model
space represented by the parameter Nmax. Our approach is to
fix the HO frequency, at the value h̄�A specified in Table I,
and observe the convergence with increasing model space.
At the same time, we investigate the Nmax dependence at
h̄�A ± 1 MeV.

Using these studies, we can gauge the degree of conver-
gence of our final results. For a given observable O, the total
error �O is estimated by

�O =
√

�O2
N + �O2

�, (1)

where �ON and �O� represent the observed rates of
convergence with respect to model-space size and HO fre-
quency, respectively. We choose �ON simply as the difference
between the numerical results in the largest and next-to-largest
model spaces using the optimal HO frequency. To determine

FIG. 1. (Color online) h̄� dependence for 6Li ground-state
observables calculated with the INOY interaction. Each curve
corresponds to a particular model space represented by the parameter
Nmax (see text for details).

�O� we consider the triplet of results computed at h̄�A

and h̄�A ± 1 MeV in the largest model space for which all
three are available. We then define the quantity �O� as the
difference between the maximum and minimum value of this
triplet of results. The total error �O is presented in the tables
of this paper. Ground-state binding energies E for Li isotopes
are summarized in Table II. We note that for the INOY NN

potential, the ground-state energy convergence is very uniform
with respect to the HO frequency with systematic changes with
Nmax. The convergence with increasing Nmax is quite evident,

TABLE I. Selected optimal HO frequencies h̄�A (in
MeV). Also shown is the maximum model space (represented
by Nmax) that was reached for each mass number A.

Interaction Mass number

6 7 8 9 10 11

CDB2k 11 11 12 12 13 13a

INOY 14 16 16 16 17 17
Nmax 16 12 12 10 10 10

aThe choice h̄�A = 12 MeV is used for 11Li.

021303-2



RAPID COMMUNICATIONS

CHARGE RADII AND ELECTROMAGNETIC MOMENTS OF . . . PHYSICAL REVIEW C 79, 021303(R) (2009)

TABLE II. Ground-state binding energies E for Li isotopes.
The INOY results are extrapolated energies (with convergence-rate
estimates), while the actual computed results from the largest model
space are given in square brackets. The experimental results are from
Refs. [25–27].

E (MeV)

CDB2k INOY Exp.

6Li 29.07(41) 32.33(19) [32.07] 31.99
7Li 35.56(23) 39.62(40) [38.89] 39.24
8Li 35.82(22) 41.27(51) [39.94] 41.28
9Li 37.88(82) 45.86(74) [42.30] 45.34
11Li 37.72(45) 42.50(95)a [40.44] 45.72(1)

aThe exponential convergence rate is not fully reached.

in particular for A = 6–9, see, e.g., the top panel of Fig. 1; and
we are able to extrapolate assuming an exponential dependence
on Nmax as E(Nmax) = E∞ + a exp(−bNmax). The same type
of extrapolation was successfully performed for the He iso-
topes [28]. Therefore, extrapolated INOY energies are given in
Table II together with computed results from the largest model
space (in square brackets).

It also deserves to be mentioned that we can, in principle,
have different h̄� dependences for different observables. In
particular, since we are using effective Hamiltonians to com-
pute the eigenenergies and eigenfunctions but employing bare
operators to evaluate other observables. In practice, however,
the choice of h̄�A is relatively stable. The exception to this
general rule is observed for those observables that depend
critically on the size of the system. In particular, for large
systems, we sometimes observe a different h̄� dependence for
the electric quadrupole moment and for the radius. In this case,
the convergence-rate estimate should be viewed as providing
the magnitude of variations around the maximum model space
reached. The effective-operator formalism for general one- and
two-body operators was developed and studied in Ref. [29],
finding weak renormalization of long-range operators.

To complete the present survey, we collected results for
odd-A Be isotopes from earlier papers. The 7Be results are
partly from Ref. [14], while the 9,11Be results are from
Ref. [15]. However, additional calculations were performed
in the present study to provide convergence rate estimates. In
addition, new calculations have been performed for the 10Be
ground state.

Ground-state quadrupole and magnetic dipole moments
have been calculated in the impulse approximation using
bare operators. Two-body meson-exchange currents have been
shown to increase isovector magnetic moments [30,31] but
are not included here. The Nmax dependence of Q and µ

is presented in Fig. 2 for odd Li isotopes using the CDB2k
interaction. We note that the magnetic moment is usually
very well converged in the NCSM. The quadrupole moment
is sensitive to the length scale of the NCSM basis, and for
smaller model spaces it tends to increase with decreasing
HO frequency. Final results for all isotopes are presented in
Table III together with recent and very precise experimental
results using the nuclear magnetic resonance technique [3,4].

TABLE III. Ground-state quadrupole moments Q, magnetic
dipole moments µ, and charge radii rc for Li and Be isotopes. The-
oretical results for 7Be and 9,11Be are partly from Refs. [14,15]. The
experimental results are from Refs. [3,4,25,26] for electromagnetic
moments and from Refs. [1,2,6] for radii.

Isotope CDB2k INOY Exp.

Q(e fm2)
6Li −0.066(40) +0.080(19) −0.0806(6)
7Li −3.20(22) −2.79(17) −4.00(3)
8Li +2.78(12) +2.55(12) +3.14(2)
9Li −2.66(22) −2.30(12) −3.06(2)
11Li −2.81(27) −2.32(13) −3.33(5)
7Be −5.50(48) −4.68(28) –
9Be +4.12(26) +3.67(23) +5.288(38)

µ[µN ]
6Li +0.843(5) +0.843(2) +0.822
7Li +3.01(2) +3.02(2) +3.256
8Li +1.24(6) +1.42(4) +1.654
9Li +2.89(2) +2.98(5) +3.437
11Li +3.56(4) +3.54(4) +3.671(1)
7Be −1.14(1) −1.15(1) −1.3995(5)
9Be −1.22(9) −1.06(6) −1.1774
11Be −1.55(6) −1.47(3) −1.6813(5)

rc (fm)
6Li 2.40(6) 2.29(4) 2.540(28)
7Li 2.36(7) 2.20(5) 2.390(30)
8Li 2.31(8) 2.16(5) 2.281(32)
9Li 2.25(10) 2.07(6) 2.185(33)
11Li 2.26(13) 2.06(6) 2.426(34)
7Be 2.56(10) 2.39(5) 2.647(17)
9Be 2.41(11) 2.22(6) 2.519(12)
10Be 2.34(9) 2.16(6) 2.357(18)
11Be 2.37(11) 2.19(7) 2.463(16)

We note that the two different interactions used in this study
give very similar isotopic trends but with a consistently smaller
magnitude for the INOY interaction. This observation is
connected to the anomalously large nuclear density generated
by this interaction found already in 4He calculations [28,32].
For 6Li, the quadrupole moment is basically converged,
and the magnitude agrees well with the experimental value.
However, for the larger systems, the calculated magnitudes
are consistently <∼10% too small when compared with the
experimental results. This result is expected from working
in a finite HO basis, and we observe that the magnitude of
the quadrupole moment is steadily increasing with increasing
model space, as shown in Fig. 2.

The point-nucleon radii (rpt−p and rpt−n) can be computed
from the NCSM wave functions with complete removal of
spurious c.m. motion. We have translated these results into a
rms charge radius rc by folding in proton 〈R2

p〉 and neutron
〈R2

n〉 rms charge radii [33] and adding the Darwin-Foldy
term [34] according to the relation 〈r2

c 〉 = 〈r2
pt−p〉 + 〈R2

p〉 +
N〈R2

n〉/Z + 3h̄2/(4M2
pc2). These results are compared with

recent high-precision laser spectroscopy measurements [1,2]
in Table III. The experimental results are obtained using
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FIG. 2. (Color online) Nmax dependence of ground-state electro-
magnetic moments and charge radius for odd Li isotopes calculated
with the CDB2k interaction. Each curve corresponds to a fixed HO
frequency. In particular, thick (thin) lines correspond to h̄�A(h̄�A ±
1 MeV) for each isotope.

previously measured 7Li and 9Be radii as references. The
convergence of the calculated radius with increasing Nmax

is shown in Fig. 2 for odd Li isotopes using the CDB2k
interaction. We also conclude that the larger binding energy
obtained with the INOY interaction can partially be explained
by an abnormally large nuclear density and consequently a
charge radius that is too small. For CDB2k, the radius results
are rather well converged and show good agreement with
experiment. However, the known halo structure of the 11Li
ground state is not reproduced in the limited HO model space
of the NCSM.

In summary, we have computed charge radii and electro-
magnetic moments of Li and Be isotopes using two different
high-precision nuclear Hamiltonians within the ab initio
NCSM. In Fig. 3, we compare the calculated and experimental
trends for these observables for the Li chain of isotopes. With
the exception of the radius of the 11Li halo ground state, we
find a very good agreement between NCSM results and recent

FIG. 3. (Color online) NCSM calculated electric quadrupole
moments, magnetic dipole moments, and charge radii of Li isotopes
compared with experimental results. See also Table III.

experiments. The overall trends of all observables are well re-
produced. Magnetic dipole moments are usually characterized
by very good convergence properties in the NCSM, and we
find a good agreement with the experimental values. Another
success is the tiny quadrupole moment of 6Li that is known
to pose a difficult task for most theoretical calculations. In
particular, the general failure of three-body models for this
observable has been blamed on missing antisymmetrization
of the valence nucleons and the nucleons in the α core [35].
The NCSM correctly reproduces the very small value, but with
CDB2k and INOY giving different signs. Simultaneously, the
trend for the much larger moments of A = 7–11 is nicely
reproduced. We note that the ratio Q(11Li)/Q(9Li) is found to
be very close to unity, as confirmed recently by very precise
experimental data [4]. This finding is obtained without a very
accurate description of the dilute halo structure of 11Li, a
structural feature that we find would require an extension of
the HO basis used in the standard NCSM. Still, the decrease of
the charge radius of A = 6–9 isotopes is reproduced, although
the INOY interaction gives too high nuclear densities.

We conclude by observing that the recent achievement
of performing very precise measurements of ground-state
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properties of exotic isotopes proves to be a very valuable tool in
the quest for understanding the nuclear interaction and forms
of relevant operators as well as the evolving structure of the
nuclear many-body system.
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[15] C. Forssén, P. Navrátil, W. E. Ormand, and E. Caurier, Phys.

Rev. C 71, 044312 (2005).
[16] R. Machleidt, Phys. Rev. C 63, 024001 (2001).
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