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Sign of the overlap of Hartree-Fock-Bogoliubov wave functions
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The problem of how to compute accurately and efficiently the sign of the overlap between two general
Hartree-Fock-Bogoliubov (HFB) wave functions is addressed. The results obtained can easily be extrapolated to
the evaluation of the sign of the trace of a density operator exponential of one body operators.
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Introduction. Beyond mean field calculations are becoming
very popular [1] as they allow a fairly good description of many
nuclear state properties of both the ground state and several
kinds of excited states all over the nuclide chart. In these
calculations, overlaps of Hartree-Fock-Bogoliubov (HFB)
wave functions have to be computed. Standard formulas [2]
involve the square root of a determinant leaving the sign
of the overlap undefined. However, when the HFB states
preserve some kind of discrete symmetry like time reversal
or simplex, the block structure of the matrices involved fixes
the sign. This has been discussed, for instance, in some
recent applications of angular momentum projection (AMP)
using axially symmetric and time reversal preserving intrinsic
wave functions [3,4]. To move forward, HFB wave functions
that do not have any spatial symmetry (triaxial) and also
breaking time reversal symmetry have to be considered in
order to incorporate K �= 0 configurations. This is the case
to describe, for instance, the ground state of odd-A nuclei.
For the usual time reversal breaking (TRB) mean field wave
functions, the simplex symmetry endows the HFB amplitudes
U and V with a common bipartite structure and the usual
arguments used to extract out the sign of the overlap apply.
However, when full triaxial angular momentum projection of
HFB intrinsic states [5] is considered, the simplex symmetry
is no longer preserved in the evaluation of rotated overlaps
and the determination of the sign becomes more difficult. A
general solution to the sign problem was given in Ref. [6],
where it was shown that the overlap, including the sign,
can be computed from the pairwise degenerate eigenvalues
of a non-Hermitian matrix. Handling the eigenvalues of
non-Hermitian matrices is a difficult task [7], that increases
its complexity if the pairwise degenerate eigenvalues have
to be obtained numerically without any symmetry enforcing
degeneracy, as is the case with HFB wave functions breaking
simplex. Neergard’s method has been used along with small
configuration spaces [8] but in the majority of the calculations
continuity arguments are used (see Refs. [5,9,10] for recent
examples) in spite of the difficulties with that procedure. The
same sign problem is also present in the evaluation of the trace
of statistical density operators [11,12]. In this case, however,
Neergard’s method has not been implemented up to date,
leaving as the only choice the continuity method in such finite
temperature calculations. The same difficulty also applies to
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the recently proposed method to compute multi-quasiparticle
overlaps that relays on the statistical Wick’s theorem [13].
Recently, [14] the group structure of the unitary Bogoliubov
transformation has been discussed, as well as its implications in
the relative phase between two HFB wave functions. However,
its practical implications are still unclear.

In this paper, I will introduce a new way to compute the
overlap of two HFB wave functions based on the concept of
fermion coherent states [15–17]. The new formula involves a
quantity similar to the determinant called pfaffian of a skew-
symmetric matrix. The advantage of the proposed method
is that the numerical evaluation of the pfaffian is simple
and lacks the problems previously mentioned about pairwise
degenerate eigenvalues. Another advantage of the present
formulation is its applicability to the evaluation of the trace
of density operators like the ones found in applications of
the auxiliary-field shell model Monte Carlo [11] or symmetry
restoration at finite temperature [12]. A reliable determination
of the sign of the norm can also be useful in to order to pin
down the location of the zeros of the HFB overlaps [10]. This
determination would eventually be useful to get rid of the so
called “pole problem” that plagues present beyond mean field
calculations.

Overlaps and traces: Preliminaries. Let |φ0〉 and |φ1〉 be
two HFB wave functions defined in terms of a set of single
particle creation and annihilation operators a+

k and ak that
are assumed to be related by hermitian conjugation and also
to satisfy fermion commutation relations. The HFB wave
functions, in the Thouless representation [2,16], are given by

|φi〉 = exp

(
1

2

∑
kk′

M
(i)
kk′a

+
k a+

k′

)
|0〉, (1)

where the skew-symmetric matrices

M (i) = (
ViU

−1
i

)∗

are defined in terms of the Ui and Vi coefficients of the
Bogoliubov transformations defining the HFB wave functions
and |0〉 is the true vacuum. The arbitrary phase that can always
be associated with a vector state in quantum mechanics has
been implicitly fixed in the definition of Eq. (1) by requiring
〈0|φi〉 = 1. Ways to enforce this normalization for general
HFB wave functions are discussed, for instance in Refs. [2,16].
In the event of having 〈0|φi〉 = 0 (as a consequence of
divergent M (i) and/or zero occupancies) the best practical
strategy is to use another reference wave function instead of
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the true vacuum |0〉. The new reference HFB wave function
|φ̄〉 has to be conveniently chosen as to stay close to both
|φi〉 (for instance by taking a wave function with similar
deformation parameters as those of |φi〉). The matrices M̄ (i)

referred to |φ̄〉 can be straightforwardly computed in terms
of the previous quantities and the Bogoliubov transformation
amplitudes of the reference state. In the rare event of not finding
a convenient reference wave function |φ̄〉 a regularization
procedure to handle the divergent M̄ (i) matrix elements (or
the zero occupancies) is in order. In this case, the expressions
get more involved and a detailed account is deferred to
a forthcoming publication. Another way to deal with that
problem is presented in Ref. [6] but the resulting expressions
are rather involved.

Let me now introduce fermion coherent states |z〉, which are
parametrized in terms of the anticommuting elements zk and
z∗
k of a Grassmann algebra [15–18] and fulfilling the equations

ak|z〉 = zk|z〉 (2)

and

〈z|a+
k = z∗

k〈z|. (3)

From the above definition is clear that |z〉 is a right eigenstate
of the annihilation operator ak with eigenvalue zk whereas 〈z|
is a left eigenvector of a+

k with eigenvalue z∗
k (the notation

used for the members of the Grassmann algebra is the usual
one but can be a little misleading as z∗

k is not connected to zk

by complex conjugation). The coherent states satisfy a closure
relation

11 =
∫

dµ(z)|z〉〈z|, (4)

where the metric of the integral is given by dµ(z) =
e−z∗z ∏

k dz∗
kdzk . These and other relevant definitions and

properties of fermion coherent states can be found in many
textbook or in the original literature [15–18].

Evaluation of the overlap. To compute the overlap 〈φ0|φ1〉,
the closure relation of Eq. (4) is inserted to obtain

〈φ0|φ1〉 =
∫

dµ(z)〈0|e 1
2

∑
kk′ M

(0) ∗
kk′ ak′ak |z〉

× 〈z|e 1
2

∑
kk′ M

(1)
kk′a+

k a+
k′ |0〉.

Using now Eqs. (2) and (3) one arrives to

〈φ0|φ1〉 =
∫

dµ(z)e
1
2

∑
kk′ M

(0) ∗
kk′ zk′ zk e

1
2

∑
kk′ M

(1)
kk′ z∗

k z
∗
k′ , (5)

where the property |〈0|z〉|2 = 1 is used. The integral is of the
Gaussian type but for Grassmann variables. The techniques to
evaluate this kind of integrals can be found in many textbooks
[15–17] but its evaluation will be carried out explicitly here.
The reason is that in order to determine the sign of the norm
we have to be careful with some intermediate steps. The above
integral can be written in a more compact way by introducing
the bipartite skew-symmetric matrix

Mµ′µ =
(

M
(1)
k′k −11k′k

11k′k −M
(0) ∗
k′k

)

and the vector of Grassmann variables zµ = (z∗
k′, zk′) as

〈φ0|φ1〉 =
∫ ∏

k

(dz∗
kdzk)e

1
2

∑
µµ′ zµ′ Mµ′µzµ . (6)

The skew-symmetric matrix M can always be transformed [19]
to canonical form by means of a unitary transformation U

M = U




0 · · · 0 β1 0 0

...
. . .

... 0
. . . 0

0 · · · 0 0 0 βN

−β1 0 0 0 · · · 0

0
. . . 0

...
. . .

...

0 0 −βN 0 · · · 0




UT = UMcU
T

and the β1, . . . , βN coefficients of the “canonical form” of
the matrix M are real and positive. Introducing now the new
Grassmann variables ηµ = ∑

µ′(UT )µµ′zµ′ the exponent in the
integrand of Eq. (5) becomes

1

2

∑
µµ′

ηµMc µµ′ηµ′ =
N∑

k=1

βkη
∗
kηk,

which is straightforward to integrate. The Jacobian of the
transformation can be shown to be simply det(UT ) = det(U ).
The remaining integrals can be performed easily being the
result ∫

dη∗dηeβη∗η = −β.

The final expression for the overlap is then

〈φ0|φ1〉 = (−1)N det(U )
N∏

k=1

βk.

This expression can be cast in terms of the pfaffian of a skew-
symmetric matrix. The pfaffian of a skew-symmetric matrix
(see, for instance, [20]) is a number obtained out of the matrix
elements of the skew-symmetric matrix in a way quite similar
to the one used to define the determinant (see Appendix A
for details and properties used below). The connection between
the product of βi’s and the pfaffian is a consequence of
Eq. (A2) and reads

∏N
k=1 βk = (−1)N(N−1)/2pf(Mc) where

pf(Mc) obviously denotes the pfaffian of Mc. Using the
property (A1) pf(M) = pf(UMcU

T ) = det(U )pf(Mc) the
final result is obtained,

〈φ0|φ1〉 = sNpf(M) = sNpf

(
M (1) −11

11 −M (0) ∗

)
, (7)

where sN = (−1)N(N+1)/2. To make the connection with the
standard formula for the overlap [2] the relation pf(A)2 =
det A is used (and this is here where the sign is lost) to write

〈φ0|φ1〉 =
(

det

(
M (1) −11

11 −M (0) ∗

))1/2

. (8)
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This expression reduces, by using standard formulas for the
determinant of a bipartite matrix (see below), to

〈φ0|φ1〉 = (det(11 − M (0) ∗M (1)))1/2 (9)

which is the usual expression for the norm (Onishi formula).
Please notice that in going from Eq. (7) to Eq. (8) the sign
present in the first equation is lost as a consequence of the
writing of the square of the pfaffian as a determinant. Also signs
appearing in the manipulations needed to obtain Eq. (9) have
been neglected. We clearly see that the sign problem appears
in the standard formulas because of the wrong implicit use of
the above relation between the pfaffian and the determinant.

If both HFB wave functions |φ0〉 and |φ1〉 share a common
discrete symmetry like simplex or time reversal, then the
matrices M (i) defining them can acquire a common block
structure

M (i) =

 0 M

(i)

−M
(i)T

0




that can be used to simplify the result of Eq. (7). In this case

M =




0 M
(1) −11 0

−M
(1)T

0 0 −11

11 0 0 −M
(0)∗

0 11 M
(0)+

0


 .

By exchanging blocks 2 and 4 we obtain

pf(M) = (−1)Npf




0 0 −11 M
(1)

0 0 M
(0)+

11

11 −M
(0)∗

0 0

−M
(1)T −11 0 0




that can be evaluated using Eq. (A2) to give

〈φ0|φ1〉 = det


−11 M

(1)

M
(0)+

11


 = det(11 + M

(0)+
M

(1)
). (10)

Evaluation of statistical traces. Now I turn to the evaluation
of the trace of density operators. In the statistical HFB theory
the statistical density operator D̂ is given by the exponential
of a one-body operator D̂ = exp[ 1

2

∑
µν γµRµνγν] where γµ

is a shorthand notation for (β1, . . . , βN, β+
1 , . . . , β+

N ) and R
is a skew-symmetric matrix of dimension 2N characterizing
the density operator (see Ref. [12] for details). Another way to
characterize the density operator is to define how it transforms
quasiparticle creation and annihilation operators D̂−1γµD̂ =∑

ν Tµνγν where the matrix T = exp(σR) and σµν = {γµ, γν}.
Introducing the bipartite structure of T

T =
(

T11 T12

T21 T22

)
,

the Balian and Brezin’s decomposition [21] of D̂ is given by

D̂ = e
1
2

∑
ij β+

i Xij β
+
j e− 1

2 Tr[Y]e
∑

ij β+
i Yij βj e

1
2

∑
ij βiZij βj (11)

with X = T12T
−1

22 and Z = T −1
22 T21 skew-symmetric (as

a consequence of the relation T T σT = σ that T satis-
fies) and exp(−Y ) = T T

22. To evaluate the trace of D̂ using
fermion coherent states we have to use the formula [17]

Tr(D̂) =
∫

dµ(z)〈−z|D̂|z〉, (12)

where |z〉 are again a set of fermion coherent states but
chosen this time as eigenstates of the quasiparticle annihilation
operators βi , i.e., βi |z〉 = zi |z〉. Using Eq. (11) the evaluation
of the overlap between the fermion coherent states gives

〈−z|D̂|z〉 = e− 1
2 Tr[Y]e

1
2

∑
ij z∗

i Xij z
∗
j e

1
2

∑
ij ziZij zj

×〈−z|e
∑

ij β+
i Yij βj |z〉.

To evaluate the remaining overlap the standard result
exp(

∑
ij β+

i Yijβj )|z〉 = |eY z〉 used together with 〈−z|z′〉 =
exp(−z∗z′) (see Refs. [15–17]) gives

〈−z|D̂|z〉 = e− 1
2 Tr[Y]e

1
2

∑
ij z∗

i Xij z
∗
j e− ∑

ij z∗
i (eY )ij zj

× e
1
2

∑
ij ziZij zj .

Combining this result with Eq. (12), the following integral is
obtained:

Tr(D̂) = e− 1
2 Tr[Y]

∫ ∏
k

(dz∗
kdzk)e

1
2

∑
µµ′ zµ′ Mµ′µzµ ,

where the same notation as in Eq. (6) is used. In this case

M =
(

X −(eY + 11)

(eY + 11)T Z

)
.

Applying the same considerations as in the evaluation of the
overlap we finally arrive to

Tr(D̂) = sN exp
(− 1

2 Tr[Y]
)

pf(M),

where sN = (−1)N(N+1)/2. Taking into account the relationship
between X,Z, and Y and the blocks of the matrix T the above
result can be expressed as

Tr(D̂) = sN (det T22)1/2 pf


T12T

−1
22 −((

T T
22

)−1 + 11
)

((
T22

)−1 + 11
)

T −1
22 T21


.

The introduction of (det T22)1/2 in place of exp(− 1
2 Tr[Y]) can

lead to the (right) conclusion that a sign indeterminacy has
been introduced in the expression of the trace. The definition
of D̂ in terms of the transformation matrix T leaves a phase
open in the definition of the density operator which is also
present in the expression of Eq. (11). A way to fix the phase
is to require some condition like, for instance, the realness
and positiveness of 〈φ0|D̂|φ0〉 = (det T22)1/2 where |φ0〉 is
the vacuum of the quasiparticle operators βi entering in the
definition of D̂. This condition implies the replacement of
(det T22)1/2 by its modulus. Using property (A1) of the pfaffian
the final result is obtained

Tr(D̂) = sN

|det T22|1/2

det T22

× pf

(
T12T

−1
22 −(

T T
22 + 11

)
(T22 + 11) T21T

T
22

)
. (13)
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This result is apparently quite different from the standard
one of [11,12], but after some tedious manipulations (see
Appendix B) one can obtain the usual result.

Conclusions. I have used the technique of fermion coherent
states to compute unambiguously the sign of the overlap
of two HFB wave functions. The result given in terms of
pfaffians is simpler to implement than previous considerations
[6] based on pairwise degenerate eigenvalues of a general
matrix and it is free from the uncertainties of other methods
based on continuity arguments. Indications on how to evaluate
efficiently the pfaffian are also given. Hopefully, this new
method will help to simplify the implementation of ambitious
projects like triaxial angular momentum projection. On the
other hand, the method used is straightforwardly extended to
the evaluation of the sign of the trace of statistical density
operators which is a new result not considered previously in
the literature.

Work supported in part by MEC (FPA2007-66069) and
by the Consolider-Ingenio 2010 program CPAN (CSD2007-
00042).

APPENDIX A

Definition, basic properties, and numerical evaluation of
the pfaffian. The pfaffian of a skew-symmetric matrix R of
dimension 2N and with matrix elements rij is defined as [20]

pf(R) = 1

2n

1

n!

∑
Perm

ε(P )ri1i2ri3i4ri5i6 . . . r2n−1,2n,

where the sum extends to all possible permutations of
i1, . . . , i2n and ε(P ) is the parity of the permutation. For
matrices of odd dimension the pfaffian is by definition equal
to zero. As an example, the pfaffian of a 2 × 2 matrix R is
pf(R) = r12 and for a 4 × 4 one pf(R) = r12r34 − r13r24 +
r14r23. Similarly to the case of determinants, exchanging rows
i and j and the same time columns i and j , multiplies the
pfaffian by minus one. Other useful properties of the pfaffian
are

pf(P T RP ) = det(P )pf(R), (A1)

pf

(
0 R

−RT 0

)
= (−1)N(N−1)/2 det(R), (A2)

pf(R) = (det R)1/2 . (A3)

A useful formula to compute pfaffians of small or simple
matrices is

pf(R) =
∑

j

(−1)i+j−1rij pf(Rij ), (A4)

where Rij is the pfaffian-minor obtained by eliminating from
R the two rows and two columns i and j .

The pfaffian of a complex skew-symmetric matrix R of
dimension 2N is evaluated numerically by first reducing the
matrix to tridiagonal form RT . This reduction is accomplish
by means of a set of 2(N − 1) successive Householder
transformations Pi exactly in the same way as in the standard
reduction of a symmetric matrix to tridiagonal form [7]. We

have P2(N−1) . . . P2P1RP T
1 P T

2 . . . P T
2(N−1) = RT with

RT =




0 r1 0 0 . . . 0

−r1 0 r2 0 . . . 0

0 −r2 0
. . . . . .

...

0 0
. . . 0

. . . 0

...
... · · · . . . 0 r2N−1

0 0 · · · 0 −r2N−1 0




,

where the special structure of a skew-symmetric and tridi-
agonal matrix is evident. Using now Eq. (A1) we obtain
det(P1) . . . det(P2(N−1))pf(R) = pf(RT ). As Householder ma-
trices are Hermitian, unitary, and have determinant det(Pi) =
−1 we finally arrive to pf(R) = pf(RT ). To evaluate the
pfaffian of the tridiagonal matrix we use the minor expansion
of Eq. (A4) that gives pf(RT ) = r1r3 . . . r2N−1 = ∏N

i=1 r2i−1.

APPENDIX B

Derivation of the standard formula for the trace. In this
appendix the standard result of [12] for the trace of a density
operator is deduced from Eq. (13). I start considering

M̃ =
(

T12T
−1

22 −(
T T

22 + 11
)

(T22 + 11) T21T
T

22

)
.

Using Eq. (A3) the pfaffian of M̃ is written as the square root of
its determinant, pfM̃ = (

det M̃
)1/2

. By exchanging rows and
columns conveniently

det M̃ = (−)N
(

(T22 + 11) T21T
T

22

T12T
−1

22 −(
T T

22 + 11
)
)

and applying the formula of a bipartite determinant

det(
A B

C D
) = det A det(D − CA−1B) the following result is

obtained:

det M̃ = det T22 det(11 + T22) det(11 + (
T T

22

)−1

+ T12T
−1

22 (11 + T22)−1T21).

But T11 = (T T
22)−1 + T12T

−1
22 T21 and T −1

22 [(11 + T22)−1 − 11] =
−(11 + T22)−1 so that

det M̃ = det T22 det(11 + T22)

× det(11 + T11 − T12(11 + T22)−1T21)

= det T22 det

(
(T11 + 11) T12

T21 (T22 + 11)

)
.

When the pfaffian is written as the square of the determinant the
sign is lost and therefore phases are irrelevant in the derivation.
Taking all this into account the result

Tr(D̂) =
[

det

(
(T11 + 11) T12

T21 (T22 + 11)

)]1/2

is obtained up to a sign, which is the sought formula of
Ref. [12].
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