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Correlation between eigenvalues and sorted diagonal elements of a large dimensional matrix
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We show the functional dependence of eigenvalues in terms of sorted diagonal elements of a Hamiltonian
matrix in the nuclear shell model (NSM), a matrix with uniform distribution and that with normal distribution.
For a realistic two-body interaction, its relation is approximately expressed by a linear function, especially for the
most elements in the intermediate region. We also derive their functional dependences for the uniform distribution
and the normal distribution analytically. As a special case, the functional relation for the normal distribution turns
out to be approximated by a hyperbolic-tangent function.
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Introduction. In many-body theories most problems are
reduced to such problems how to solve eigenenergies of a large
dimensional Hamiltonian matrix. However, eigenvalues of a
large matrix are difficult to obtain. There are various ways to
obtain eigenvalues either exactly or approximately. One is the
exact diagonalization of a matrix. Usually, the Lanczos method
is efficient and practical to obtain a few lowest eigenvalues in
the nuclear shell model, but the dimension of the matrix is
limited up to 109 even using big computers [1]. The Monte
Carlo shell model method is one of the promising methods
and attracts considerable attention, although it takes a lot of
computational time [2,3].

Another method to tackle the problem is to make the
original hamiltonian simpler without spoiling the important
feature of the Hamiltonian. In this respect the random matrix
theory [4] is useful to study the Hamiltonian with strong
chaotic properties. Especially, the Gaussian orthogonal ensem-
ble (GOE) deals with systems of the time-reversal symmetry.
There have been also many efforts to obtain eigenvalues by
using the energy centroid and spectral moments, and typical
works along this line can be found in, e.g., Refs. [5–10].

Recently, Shen et al. showed that eigenvalues have a strong
linear relation with diagonal matrix elements for individual
runs of the two-body random ensemble or Gaussian orthogonal
random matrices, if both eigenvalues and diagonal matrix
elements are sorted from smaller values to larger ones [11].
They exemplified these correlations for various cases starting
from the realistic shell model interactions to random matrices.

In this Brief Report we give a mathematical background
for the correlation between sorted eigenvalues and sorted
diagonal elements, which was exemplified in various cases in
our previous paper [11]. We first show that eigenvalues have a
strong linear dependence on the sorted diagonal elements for a
realistic nuclear shell model Hamiltonian. Next we investigate
their functional dependences in the case of the random
Hamiltonians with the uniform and normal distributions. We
will give their functional relations between the sorted diagonal
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elements of a matrix and its sorted eigenenergies for realistic
shell model Hamiltonian, the GOE distribution and the uniform
distributions.

Functional relations between eigenvalues and diagonal
matrix elements. Let us consider a real symmetric matrix H

with dimension d. First we sort the matrix elements hij such
that the diagonal elements are sorted from smaller values to
larger ones hii(h11 � h22 � · · · � hdd ) by changing the order
of the basis states. The eigenvalues Ei (i = 1, . . . , d) of
the original matrix are not changed by this operation. We
assume a functional dependence of the sorted eigenvalues
Ei(E1 � E2 � · · · � Ed ) in terms of sorted diagonal elements
hii , namely, we assume that Ei = f (hii). Since the number
of states for a given energy interval is the same for both
eigenvalues and diagonal elements, we have the relation

P(Ei) dEi = ρ(hii) dhii, (1)

where P(Ei) and ρ(hii) are the density of states for Ei and hii ,
respectively. Then we have the differential equation

P(Ei)f
′(hii) = ρ(hii), (2)

where f ′(hii) = dEi

dhii
. Once P(Ei) and ρ(hii) are given, Eq. (2)

can be solved to give the functional relation Ei = f (hii).
Realistic two-body interactions. The eigenenergies for a

realistic two-body shell model interaction follow the Gaussian
distribution [12–14]. As seen in Ref. [11], each distribution
is well described by a Gaussian curve although Gaussian
approximation is not so good as compared with the case for
eigenenergies.

Let us obtain the functional dependence of the eigenvalues
of a GOE matrix in terms of the sorted diagonal elements.
Through numerical studies it is natural to assume that we
approximately have for the distribution of eigenenergies Ei

P(E) = d√
2π�

exp

[
−

(
E − Ē

)2

2�2

]
(3)

and for the distribution of diagonal matrix elements hii

ρ(h) = d√
2πσ

exp

[
− (h − h̄)2

2σ 2

]
. (4)
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TABLE I. Correlation factors R2 and matrix dimensions for
various spin states in 24Mg and 28Si nuclei.

Nucleus SpinParity Dimension R2

24Mg 0+ 1161 0.9985
2+ 4518 0.9995
3+ 4968 0.9996
4+ 4734 0.9995
5+ 3843 0.9992
6+ 2799 0.9992

28Si 0+ 3372 0.9985
2+ 13562 0.9992
3+ 15385 0.9994
4+ 15089 0.9994
5+ 12876 0.9995
6+ 9900 0.9995

Then Eq. (2) is easily solved to give a linear function,

Ei = ahii + b, (5)

where a = �/σ, b = −�h̄/σ + Ē. We can estimate the coef-
ficients a and b in Eq. (5) without knowing the width � and
mean Ē for Ei , the width σ and mean h̄ for hii . Using relations,∑d

i=1 Ei = Tr(H ) = ∑d
i=1 hii and

∑d
i=1(Ei)2 = Tr(H 2), we

have b = h̄(1 − a) and a =
√

(H 2 − h
2
)/(h2 − h

2
) where h̄ =

Tr(H )/d, h2 = ∑d
i=1(hii)2/d and H 2 = Tr(H 2)/d. In order

to obtain the coefficients a and b, we need to calculate
Tr(H 2), Tr(H ), and h2. However, it is much easier than
diagonalizing the original Hamiltonian.

We define the correlation factor R between two d-
dimensional vectors �A and �B as the cosine of the angle between
two vectors: R ≡ cos θ = �A· �B

| �A|| �B| . If both vectors are parallel,
R = 1, while R = −1 if both are antiparallel. In our case we
define the components of vectors �A and �B as Ai = hii − h̄ and
Bi = Ei − h̄.

The values of the factor R2 for various spin states in 24Mg
and 28Si nuclei are listed in Table I. All factors are found to

be nearly equal to one, showing the linearity relation between
eigenvalues and diagonal elements.

Uniform distribution. In the uniform distribution the distri-
bution of diagonal matrix elements is given as

ρ(h) = d, (6)

for −0.5 < h < 0.5 and ρ(h) = 0 for otherwise. The distri-
butions of eigenvalues are shown in Fig. 1(a) and (b) for the
dimension d = 3, 000 and d = 5, 000, respectively. As seen in
the figure each distribution of eigenvalues is well approximated
as a semicircle

P(E) = B
√

A2 − E2, (7)

where numerically we know A = √
d/3 for a large d. The

lowest eigenvalue is thus given by E1 = −A = −√
d/3. The

constant B is determined later.
Assuming the functional dependence Ei = f (hii), Eq. (2)

now becomes

d = B
√

A2 − [f (h)]2f ′(h). (8)

By integrating, we have

d

∫ h0

−1/2
dh = B

∫ f0

−A

√
A2 − f 2df, (9)

where h0 and f0 are the upper limits for the variables h and
f , respectively. This integration can be carried out exactly to
give

(h0 + 1/2)d = A2B

2




[
arcsin

(
f0

A

)
+ π

2

]

+f0

A

√
1 −

(
f0

A

)2

 . (10)

With h0 = 1
2 and f0 = A, we have d = A2B

2 π , which deter-
mines the constant B(B = 6/π ). Replacing h0 and f0 by hii

and Ei , we finally get the relation between eigenenergies and
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FIG. 1. (Color online) Distribution of eigenvalues for the matrix with the uniform distribution: (a) d = 3, 000, (b) d = 5, 000.
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diagonal elements as

hii = 1

π


arcsin

(
Ei

A

)
+ Ei

A

√
1 −

(
Ei

A

)2

 . (11)

This gives the exact functional relation between the diagonal
elements hii and the eigenvalues Ei for a uniform distribution.
Around the origin hii ∼ Ei ∼ 0, we have the linear expression

Ei = πA
2 hii = π

2

√
d
3 hii , where we have used A = √

d/3. This
relation indicates that the linearity holds around the origin.
Although the functional relation in Eq. (11) is not further
simplified analytically, it is approximately expressed as

Ei =
√

d

3
tan

(π

2
hii

)
, (12)

for a whole range of hii .
Figure 2 shows eigenvalues as a function of diagonal ele-

ments for d = 3000 and d = 5000 for the uniform distribution.
The functional relation given by Eq. (11) is also shown in the
figure.

Gaussian distribution. The distribution of diagonal matrix
elements h of dimension d for the normal distribution with
width σ centered at origin is given as

ρ(h) = d√
2πσ

exp

(
− h2

2σ 2

)
. (13)

The distribution of eigenvalues E for a large dimension d is
known to be a semicircle

P(E) = B
√

A2 − E2, (14)

where A = √
2d for a large d. The lowest eigenvalue is given

by E1 = −A = −√
2d . The constant B is determined later

by considering normalization.
Assuming the functional dependence Ei = f (hii) with

width σ = 1, Eq. (2) now becomes

d√
2π

exp

(
−h2

2

)
= B

√
A2 − [f (h)]2f ′(h). (15)

By integrating, we have

d√
2π

∫ h0

−∞
exp

(
−h2

2

)
dh

= A2B

2




[
arcsin

(
f0

A

)
+ π

2

]
+ f0

A

√
1 −

(
f0

A

)2

 , (16)

where h0 and f0 are the upper limits for the variables h

and f , respectively. The normalization condition d = A2B
2 π is

obtained by considering the case when h0 = +∞ and f0 = A.
By replacing h0 and f0 by hii and Ei , and using the

normalization condition, we have

Err(hii) = 1

π


arcsin

(
Ei

A

)
+ Ei

A

√
1 −

(
Ei

A

)2

 , (17)

where the error function is defined as Err(x) =
1√
2π

∫ x

0 exp(− t2

2 )dt . Around the origin hii ∼ Ei ∼ 0, we have

Ei = πA

2
√

2π
hii =

√
dπ

2
hii, (18)

where we have used A = √
2d . As suggested in Ref. [11],

the functional relation is well approximated by a hyperbolic
tangent function,

Ei =
√

2d tanh
( c

2
hii

)
. (19)

By comparing Eq. (19) with Eq. (18) around hii ∼ Ei ∼ 0, we
have c = √

π
2 ∼ 1.25.

Figure 3 shows eigenvalues as a function of diagonal ele-
ments for d = 3000 and d = 5000 for the normal distribution.
The functional relations given by Eqs. (17) and (19) are also
shown in the figure. If one uses Eq. (19), one observes small
deviations around Emin = −√

2d and Emax = √
2d .

Summary and conclusions. In this Brief Report we showed
the functional dependences of eigenvalues as functions of
sorted diagonal elements for realistic nuclear shell model
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FIG. 2. (Color online) Functional dependence between eigenvalues and diagonal matrix elements (eigen vs diag) for the uniform distribution.
The functional relation given by Eq. (11) is denoted by the solid line (Differential EQ): (a) d = 3, 000, (b) d = 5, 000.
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FIG. 3. (Color online) Functional dependence between eigenvalues and diagonal matrix elements (eigen vs diag) for the normal distribution.
The functional relation (Differential EQ) given by Eq. (17) is denoted by the solid line in addition with its approximate solution [tanh(x)] in
Eq. (19): (a) d = 3, 000, (b) d = 5, 000.

(NSM) Hamiltonian matrix, the matrices for the uniform
distribution and the normal distribution. In the NSM case,
the dependence is approximately observed as a linear func-
tion since both eigenenergies and diagonal elements obey
approximately gaussian distributions. For the cases of 24Mg,
26Mg, and 28Si, using the USD interactions, we showed that
those energies are actually predicted using linear functions
whose curvatures and constants are determined by the first
and the second moments of the original Hamiltonian [Tr(H )
and Tr(H 2)] and the second moment of the diagonal elements
h2. For the uniform and normal distributions we obtained
their analytical functional dependences explicitly by solving
differential equations. Their functional dependences are shown
to be approximately expressed as tangential and hyperbolic-
tangent functions.

In summary we discovered the functional dependences
between eigenvalues and sorted diagonal elements for three
classes of large real symmetric matrices. In many-body

theories most problems are reduced to those problems how
to solve eigenenergies of a large dimensional Hamiltonian
matrix. Although eigenvalues obtained here are not exact, they
are reasonable approximations to exact values. We therefore
believe that the functional relations between exact eigenvalues
and diagonal matrix elements is very useful in studying many-
body problems, for which one needs approximate eigenvalues
while other methods are not feasible.
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