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Superfluid response and the neutrino emissivity of neutron matter
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We calculate the neutrino emissivity of superfluid neutron matter in the inner crust of neutron stars. We find
that neutrino emission due to fluctuations resulting from the formation of Cooper pairs at finite temperature is
highly suppressed in nonrelativistic systems. This suppression of the pair-breaking emissivity in a simplified
model of neutron matter with interactions that conserve spin is of the order of v4

F for density fluctuations and v2
F

for spin fluctuations, where vF is the Fermi velocity of neutrons. The larger suppression of density fluctuations
arises because the dipole moment of the density distribution of a single component system does not vary in time.
For this reason, we find that the axial current response (spin fluctuations) dominates. In more realistic models of
neutron matter that include tensor interactions where the neutron spin is not conserved, neutrino radiation from
bremsstrahlung reactions occurs at order v0

F . Consequently, even with the suppression factors due to superfluidity,
this rate dominates near TC . Present calculations of the pair-breaking emissivity are incomplete because they
neglect the tensor component of the nucleon-nucleon interaction.
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I. INTRODUCTION

The long-term (105–106 yr) cooling of isolated neutron
stars and the thermal evolution of accreting neutron stars in
binary systems are sensitive to the weak interaction rates at
high density. A recent review of the theory, modeling, and
observational constraints on neutron star thermal evolution
can be found in Ref. [1]. Here, we focus on a specific neutrino
process that is expected to be relevant in superfluid neutron
matter.

In superfluids, Cooper pairs break and recombine con-
stantly at finite temperature. Such processes can dominate
the density and spin-density fluctuations. In pioneering work,
several decades earlier, Flowers, Ruderman, and Sutherland [2]
recognized that these fluctuations can couple to neutrinos
through the weak neutral current. They showed that when
the temperature was less than but comparable to the critical
temperature for superfluidity, neutrino emission due to the
Cooper pair recombination processes was important [2].
Subsequently, this process, which is now commonly referred
to as the pair-breaking and formation (PBF) process, was
recomputed in Refs. [3] and [4], and its role in the thermal
evolution of isolated neutron stars was shown to be important
[5–8].

Another context in which the PBF process plays a role
is in accreting neutron stars that exhibit x-ray bursts and
superbursts. Current models for superbursts indicate that
they arise because of unstable burning of carbon in the
ocean of accreting neutron stars [9]. Agreement between
theoretical models (for the light-curves and recurrence times)
and observation relies on the assumption that carbon is ignited
at a column depth of about 1012 g/cm2. However, to ignite
carbon at this depth the temperature there should be � 5 ×
108 K [10,11]. Consequently the ignition condition for

superbursts is sensitive to the temperature profile of the crust
in accreting systems. The temperature profile in turn depends
on the balance between heating in the crust due to electron
captures and pycnonuclear reactions [12] and cooling due to
neutrino emission [10].

The inner crust of the neutron star is expected to contain
a neutron superfluid. When the matter density exceeds the
neutron drip density (4 × 1012 g/cm3) a relatively low-density
neutron liquid coexists with a lattice of nuclei [13]. Here,
the attractive s-wave interaction between neutrons induces
superfluidity. The pairing gap rises from zero at neutron drip
to a maximum of about 1 MeV when the neutron Fermi
momentum kF ∼ 200 MeV and then decreases to zero in
the vicinity of the crust-core interface. For temperatures of
relevance to the accreting neutron stars, it was found that
the PBF process in the neutron superfluid resulted in rapid
neutrino losses and cooled the crust to temperatures below
those required for carbon ignition at the favored depth [11].
Subsequently, additional heating processes in the outer crust
due to electron captures on nuclei were shown to be relevant
but were unable to produce the necessary heating in models
that included the PBF process in the crust [14].

The preceding discussion motivates a detailed investigation
of the neutrino emissivity arising because of the PBF process
in neutron matter in the inner crust. Recently, this was
recalculated by Leinson and Perez who found that earlier
calculations violated vector current conservation [15,16]. An
improved treatment that satisfies current conservation yielded
a result that was suppressed by the factor v4

F , where vF =
kF /M is the neutron Fermi velocity, kF is the neutron Fermi
momentum, and M is the neutron mass. In the neutron
star crust, where vF ∼ 0.1, this suppression is significant.
Subsequently, Sedrakian, Muther, and Schuck also calculated
the PBF rate using an improved treatment based on Landau
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Fermi liquid theory and found that it was suppressed by
the factor ∼T/M , where T is the temperature [17]. This
suppression is parametrically different from that obtained in
Ref. [15]. The PBF rate was also recently examined in Ref. [18]
where the authors also accounted for Fermi liquid effects in
superfluid neutron matter using the Larkin-Migdal-Leggett
formalism [19,20]. They found that the vector current response
is suppressed by the factor v4

F in agreement with the finding
of Leinson and Perez [15,16].

In this article, we reexamine the nature of density and
spin-density fluctuations in superfluid neutron matter using
a simplified nuclear Hamiltonian. Our main findings are

(i) The spectrum of density fluctuations is suppressed at
order v4

F in pure neutron matter in agreement with the
findings of Leinson and Perez [15,16].

(ii) The v4
F suppression is not generic and is not a conse-

quence of vector current conservation. It is specific to
simple one component systems where all particles have
the same (weak) charge to mass ratio. In multicomponent
systems such as the neutron star crust where neutrons
coexist and interact with nuclei, the density fluctuations
of the neutron superfluid occur at order v2

F .
(iii) For the case of simple nuclear Hamiltonian with only

central interactions that conserve spin, spin-density fluc-
tuations occur at order v2

F and these fluctuation dominate
the neutrino emissivity.

(iv) For the case of realistic nuclear interactions that contain a
strong tensor component, spin is not conserved, and spin
fluctuations arise at order v0

F . This feature is well known
in the context of neutrino emission from neutron-neutron
bremsstrahlung. We find that the bremsstrahlung rate
continues to be the dominant neutrino emission mech-
anism in nonrelativistic systems even in the superfluid
state unless the temperature is much smaller than TC .

This article is organized as follows. We begin by discussing
the relation between the neutrino emissivity and the density
and spin-density response functions. This is followed by a
detailed investigation of the density-density response function
and the role of vertex corrections in the superfluid state. Here
we show that the vertex corrections required by conservation
laws strongly suppress the response relative to the predictions
of mean-field theory as suggested in earlier work. Subse-
quently we discuss the spin-density response function and
show that it dominates over the density response. Finally, we
discuss the various contributions to the neutrino emissivity
and conclude that the neutron-neutron bremsstrahlung rate is
typically larger than the PBF process even in the superfluid
phase. We conclude with a critical discussion of our study here
and related earlier work. We recognize that all calculations of
the neutrino rates from PBF are missing a key aspect of the
nuclear force, namely, the tensor interaction.

II. NEUTRINO EMISSIVITY AND RESPONSE FUNCTIONS

The neutrino emissivity is defined as the rate of energy loss
per unit volume and is given by

ενν̄ = −G2
F

4

∫
d3q1

(2π )32ω1

∫
d3q2

(2π )32ω2

×
∫

d4�k δ4(�q1 + �q2 − �k)

× ω

exp (βω) − 1
Lαβ(q1, q2) �m

[
�R

αβ(k)
]
, (1)

where GF is the Fermi weak coupling constant, k =
(ω, �k), qi=1,2 are the on-mass-shell four-momenta of neutrinos,
Lαβ(q1, q2) = Tr [γ µ(1 − γ 5) �q1γ

ν(1 − γ 5) �q2], and �R
αβ(q)

is the retarded polarization tensor [17]. Using Lenard’s identity
[21], we can simplify Eq. (1) to obtain

ενν̄ = G2
F

192 π5

∫
d3�k

∫ ∞

0
dω 
[ω2 − |�k|2] (kαkβ − k2gαβ)

× ω

exp (βω) − 1
Rαβ(−ω, |�k|), (2)

where the superfluid response function Rαβ(ω, |�k|) in general
contains both the vector and the axial-vector response func-
tions and is given by

Rαβ(−ω, |�k|) = −c2
V �m

[
�V

αβ(ω, |�k|)]
− c2

A �m
[
�A

αβ(ω, |�k|)]. (3)

In the nonrelativistic limit, we focus on density fluctuations
and ignore velocity fluctuations. In this case the vector-
polarization function �V

αβ(ω, |�k|) = δ0
α δ0

β�0(ω, |�k|), where

�0(ω, �k) is the density-density correlation function [22] given
by

�0(ω, |�k|) = −i

∫
d4x e−i(�k·�x−ωt) Tr(ρG[ρ(x, t), ρ(0, 0)]),

(4)

where ρG is the density matrix and ρ(x, t) is the density oper-
ator. Similarly the axial response in the nonrelativistic limit is
dominated by spin fluctuations and we can write �A

αβ (ω, |�k|) =
δi
α δ

j

β�ij (ω, |�k|), where i, j = 1, 2, 3 and �ij (ω, �k) is the spin
correlation function [22] given by

�ij (ω, |�k|) = −i

∫
d4x e−i(�k·�x−ωt) Tr (ρG[σi(x, t),σj (0, 0)]).

(5)

The diagonal components in Eq. (5) are equal and are denoted
by �σ , while the off-diagonal components of �ij do not
contribute to the emissivity of an isotropic medium [4]. We
can therefore write the neutrino emissivity as

ενν̄ = G2
F

192 π5

∫
d3�k k2

[
c2
V Iρ(k) + 3c2

AIσ (k)
]
, (6)

where

Iρ(k) = −
∫ ∞

k

dω
ω

exp (βω) − 1
�m[�0(ω, |�k|)], (7)

Iσ (k) = −
∫ ∞

k

dω
ω

exp (βω) − 1

×
(

ω2

k2
− 2

3

)
�m[�σ (ω, |�k|)]. (8)
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III. VECTOR RESPONSE

First, we calculate the vector current response function to
verify and understand the nature of suppression factors found
in Refs. [15] and [17]. Calculations of the superfluid density
response have a long history in condensed matter physics
and a pedagogic discussion can be found in Ref. [23]. Here
we describe neutron matter at low density with the model
Hamiltonian

H =
∑
p,spin

ξpa
†
k↑ak↑ + V

∑
p,p′

a
†
k↑a

†
−k↓ak↑a−k↓, (9)

where V is the effective four-fermion interaction. We regulate
the short-range interaction by using a momentum cutoff. The
renormalization scheme is implemented by specifying the
gap and requiring that V (�) satisfy the gap equation at zero
temperature,

� = −V (�)
∫ �

0

d3p

(2π )3

�

2Ep

. (10)

To describe neutron matter at densities of relevance to
the crust, we choose to display results at k2

F /(2m) = µ =
30 MeV and a momentum cutoff of � = 2kF . We are ulti-
mately interested in calculating the PBF rate in the temperature
range T ∼ 1 − 10 × 108 K and near kF <∼ 100 MeV, where
the gap � <∼ 0.1 MeV [24]. Although finite-range effects of
the nucleon-nucleon interaction are relevant in computing the
magnitude of the pairing gap in the neutron star crust, here
we restrict our analysis to a simple zero-range interaction but
at a strength adjusted to reproduce the pairing gap in more
sophisticated calculations [25].

We define the polarization tensor in the mean-field approx-
imation by

�V
αβ(ω, |�k|) = −i

∫
d4p

(2π )4
Tr[γαG(p + k)γβG(p)], (11)

where γα = (τ3, 1̂( �p + �k/2)/M). Here the zero-zero compo-
nent of �V

α,β corresponds to the density-density response
function defined in Eq. (4). Explicitly this is given by

�MF(ω, |�k|) = −i

∫
d4p

(2π )4
Tr [τ3G(p + k)τ3G(p)], (12)

where the quasiparticle propagator in the 1S0 superfluid state
is given by

G(p) = p01̂ + ξpτ3 + �τ1

p2
0 − E2

p + iε
(13)

and 1̂ is the unit matrix and τi=1,2,3 are the 2 × 2 Pauli matrices
(acting in the Nambu-Gorkov space). The quasiparticle energy

is Ep =
√

ξ 2
p + �2, where ξp = (p2/2m − µ) and � is the

superfluid gap [23].
The mean-field polarization tensor violates current con-

servation and the F-sum rule. This is a well-established
finding and a lucid discussion can be found in the original
articles by Anderson [26] and Nambu [27]. To restore
current conservation it is necessary to replace the bare vertex
function γα(p + q, p) by the dressed vertex �µ(p + k, p)
corresponding to the dressed quasiparticles in the superfluid.

== +

p

p+k

p p

p+k p+k

p q

q+k

V

FIG. 1. Diagrammatic representation of the RPA vertex equation.
The wavy line is the external weak current and the curly line represents
the short-range strong interaction, which in this work is simplified
to a point interaction. Solid lines represent the quasiparticles and the
dark circle is the dressed vertex.

The dressed vertex is then required to satisfy the generalized
Ward identity (GWI) given by

ω�0(p + k, p) − ki�
i(p + k, p)

= G−1(p + k)τ3 − τ3G
−1(p), (14)

where i = 1, 2, 3 and as before the four-vector k = (ω, �k).
However the GWI does not uniquely determine the vertex
function. It must be obtained explicitly as a solution to
an integral equation that describes the modification of the
vertex from the medium. This integral equation for the vertex,
obtained in the random phase approximation (RPA), is known
to satisfy the GWI and is diagrammatically represented in
Fig. 1. Explicitly this is given by

�α = γα + iV

∫
d4q

(2π )4
τ3 G(q + k)�αG(q)τ3. (15)

We are interested in the zeroth component of Eq. (15)
because it is this that affects the density response. In this case
an approximate solution has the form

�0 = 1

1 + χ
τ3 + 2κ

1 + χ
iτ2. (16)

In weak coupling, χ � V N (0) 
 1, where V is the four-
fermion coupling and N (0) ∝ MkF /π is the density of state
at the Fermi surface and can be neglected. However, κ has an
essential singularity at T = 0 corresponding to the existence
of a Goldstone excitation that couples to density fluctuations.
At T = 0 and weak coupling,

κ � �ω

ω2 − c2
s k

2
, (17)

where the speed of the Goldstone mode cs � kF /
√

3M . This
approximate form for the vertex was used in Ref. [16] to
compute the response function. It is possible to solve the vertex
equation [Eq. (15)] to obtain the exact solution in the random
phase approximation [28]. In Fig. 2 we compare the exact
solution (solid line) to the vertex equation to the approximate
expression above (dashed line). For a better approximation to
the full vertex, we can employ a shifted value of cs by shifting it
so that the approximate and full vertices diverge at exactly the
same value of q0. This “shifted” vertex is also plotted in Fig. 2
with a dotted line, but the result matches sufficiently well with
the full vertex that it is not visible. We also find that this relative
agreement between the real parts of the full and approximate
results is not strongly modified at finite temperature.

In the region where ω � 2�, where we are above the
threshold for producing quasiparticles, we can expect that
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FIG. 2. (Color online) (a) Real parts of the dressed vertex function at fixed momentum transfer. The approximate solution in Eq. (17) is in
excellent agreement with the “exact” RPA vertex especially when the speed of sound is shifted to match the pole structure. (b) The imaginary
part of the vertex function, which is finite but small. The approximate vertex assumes that the imaginary part is zero.

the vertex equation will have a nonzero imaginary part. The
approximate solution to the vertex equation in Eq. (17) neglects
this contribution. The imaginary part of the full vertex is plotted
in the right-hand panel of Fig. 2. As expected below ω = 2�,
the imaginary part of the response vanishes as required from
the delta function given by the imaginary part of the propagator
in Eq. (18). The magnitude of the imaginary part is much
smaller than the real part, but, as we discuss later, could make
an be important contribution to the response.

To help make contact with earlier results obtained in
Refs. [2] and [15] we discuss the response function in different
approximations. First, we obtain the mean-field response at
T = 0 by doing the p0 integration in Eq. (12),

�MF(ω, |�k|) =
∫

d3p

2(2π )3

(
1 − ξpξp+k − �2

EpEp+k

)
I0

I0 =
(

1

ω − Ep − Ep+k + iε

− 1

ω + Ep + Ep+k − iε

)
. (18)

In the long-wavelength limit (k → 0) this can be simplified
further and we find that

�MF(ω, |�k| → 0) =
∫

d3p

(2π )3

�2

E2
p

I0. (19)

For ω > 2� and k = 0 the mean-field result predicts a
nonvanishing response given by

�m[�MF(ω)] = −MpF

π2

(
�2

ω
√

ω2 − 4�2
+ �2

4µω

)
. (20)

As mentioned earlier a nonzero response at k = 0 violates
current conservation and the related F-sum rule given by∫ ∞

−∞
dω ω �m[�MF(ω)] = 〈[[H, ρ(k)], ρ(k)]〉, (21)

where the RHS vanishes in the k = 0 limit when ρ commutes
with the Hamiltonian. This is simply a consequence of the
well-known fact that radiation can arise only as a result
of particle acceleration for conserved charges. The vertex
correction discussed earlier remedies this problem. The RPA
response function is defined by

�RPA(ω, |�k|) = −i

∫
d4p

(2π )4
Tr[τ3G(p + k)�0G(p)], (22)

where �0 is the dressed vertex that satisfies Eq. (15). First
we use the approximate form of the vertex given in Eq. (17)
to obtain the zero-temperature density-density polarization
function. As we showed earlier the approximate vertex

�0 = τ3 + 2�ω

ω2 − c2
s k

2
iτ2 (23)

provides a very good description of the real part of the exact
result. Substituting this into Eq. (22) and performing the
integration over p0, we obtain

�RPA(ω, k) =
∫

d3p

2(2π )3

(
1 − ξpξp+k − �2 + 2ωκ�

EpEp+k

)
I0.

(24)

The response function is related to the imaginary part, which
is explicitly given by

�m[�RPA(ω,k)] = −
∫

d3p

2(2π )3
Jδ(ω − Ep − Ep+k), where

(25)

J =
(

1 − ξpξp+k − �2 + 2ωκ�

EpEp+k

)
.

It is straightforward to verify that the imaginary part of
�RPA vanishes in the limit k → 0 as required by current
conservation. At finite temperature and for the full vertex this
continues to hold and the response vanishes at k = 0 because
of the gap equation. The critical question then is to inquire
if the order k2 term also vanishes. To address this we expand
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the zero-temperature RPA response in Eq. (25) in powers of k.
Expanding the integrand in Eq. (25), we obtain

J = c2
s �

2

2E4
p

[
p2x2

m2c2
s

− 1

]
k2 + O [csk]4 , (26)

where x is the cosine of the angle between the momenta
p and k. In the long wavelength most of the support from
the energy delta function is near p = pF . Further, in this
region we can approximately replace x2 by its mean value
given x2 � 〈x2〉 = 1/3. This implies that the quadratic term
nearly vanishes because cs ≡ pF /(m

√
3). The nature of this

cancellation depends on the value of cs employed in the
approximated vertex. When we use the self-consistent RPA
vertex obtained by solving Eq. (15) we indeed find that this
cancellation is nearly exact and Eq. (26) receives contributions
at order c4

s k
4.

The imaginary parts of the response function at zero
temperature obtained in different approximate schemes are
shown in Fig. 3. The striking feature is that results obtained
using the self-consistent RPA vertex labeled “Full RPA” in
the figure are even highly suppressed because the relevant
contribution occurs at order c4

s . The result labeled “Approx.” is
obtained using cs = cs,0 = pF /(

√
3M). Here the cancellation

at order c2
s occurs to a high degree but is not exact. In

Refs. [15,16], and [29], the authors employ this approximation
for the vertex function and make a consistent approximation to
the full response function to ensure that cancellation at order c2

s

is exact. The result from Ref. [29] is included in the figure and
differs from our “Full RPA” because we include the imaginary
part of the vertex and do not employ an expansion in pF .

We also note that the density response function calculated
within RPA coincides with earlier calculations by Kundu and

2 2.5 3 3.5 4
-710

-510

-310

-110

10

)
-2

 (
fm

Π
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∆/ 
0

q

 = 1 MeV, T=0, q=1 MeV∆

Approx.

Leinson

s,0=0.50 c
s

Approx c

Full RPA

MF

FIG. 3. (Color online) Imaginary part of the density-density
polarization at T = 0 obtained using different approximations. The
vertex corrections induce a large suppression in the response relative
to the mean-field result. The result obtained using the self-consistent
RPA vertex (shown with the dotted line) is suppressed by a factor
∼10−4. See text for a discussion relating to the response obtained
using the approximate vertex.

Reddy [28]. Although our results for the response function
and RPA vertex derived here are essentially the same as those
in Kundu and Reddy, our numerical results for the response
function in the time-like region differ because of a numerical
error in the plots shown in Fig. 2 of Ref. [28]. From Fig. 3 it
is clear that the magnitude of the suppression obtained using
the approximate vertex is sensitive to cs . This is because of the
large cancellation at order c2

s k2. To understand the nature of
this cancellation we first note that vector current conservation
does not require the order v2

F k2 contribution to vanish. This
would require fine tuning the velocity of the Goldstone mode
to precisely cancel the contribution at order k2. In general,
we are aware of no mechanism that can accomplish this in a
multicomponent system.

The preceding arguments raises the following question:
what is the underlying physics responsible for the large
cancellation at order v2

F k2 occurring in the RPA calculation
of the response function for pure neutron matter? In earlier
work described in Refs. [15] and [18], the authors attribute
this cancellation to vector current conservation. However, as
we show subsequently, even in the case of a simplified nuclear
Hamiltonian where the axial current is conserved, the axial
response occurs at order v2

F k2. Hence current conservation
is not adequate to explain this cancellation. To address how
this arises we note that a similar cancellation at order v2

F k2

occurs in neutrino emission due to density fluctuations in
the bremsstrahlung reaction nn → nnνν̄ in the normal phase.
Here the square of the matrix element contributes only at order
v4

F k4 [30,31]. This result is well understood, especially in the
context of electromagnetic bremsstrahlung in proton-proton
collisions where radiation occurs due to time variation of
the quadrupole moment. In fact, the dipole moment of any
system of N identical particles with equal charge e and mass
m, irrespective of the underlying dynamics,

�d = �ie�ri = e

m
�im �ri = e

m
�im �RCM, (27)

does not vary because momentum conservation ensures that
ṘCM = 0 and there cannot be any dipole radiation at long
wavelength. The leading order radiation is quadrapole radia-
tion, which occurs at order k4 in the momentum expansion.
In our case because each power of k is accompanied by one
factor vF , we expect that radiation can occur only at order
v4

F k4. This is evident from the observation that in our simple
model, where � is independent of k, k only enters through the
expression for ξp+k , which at the Fermi surface is given by

ξp+k|| �p|=pF
= 1

2m

(
p2

F + k2 − 2pF kx
) − µ � vF kx, (28)

because k 
 pF . In the quantum mechanical calculation of
the bremsstrahlung process this arises due to the destructive
interference between the amplitudes for radiation from the two
charges. This interference ensures that the square of the matrix
element vanishes at order v2

F k2 and the leading contribution
is quadrupolar and occurs at order v4

F k4.
When the (weak) charge to mass ratio of the two particles

is different, the cancellation at order v2
F k2 would be absent.

For example bremsstrahlung from neutron-proton scattering
occurs at order v2

F k2. Hence we argue in multicomponent
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systems that there is no symmetry that requires the sensitive
cancellation at this order. In the neutron star context, where
neutrons in the crust couple to a background lattice of neutron-
rich ions, we can expect that these interactions can induce a
response at order c2

s k2. In our calculation, such interactions
can, for example, induce a shift in the superfluid velocity cs

by the polarization of the lattice. As we have seen in Fig. 3,
even a small shift leads to a relevant contribution at order c2

s k
2.

Thus we conclude that in realistic situations a nonvanishing
density response at order c2

s k2 is to expected. However, as we
show below, this response is still small compared to the axial
current response.

IV. AXIAL CURRENT RESPONSE

In the nonrelativistic limit, the diagonal part of the axial
polarization tensor defined in Eq. (5) can be written in
terms of the Nambu-Gorkov propagators [28]. To begin we
ignore vertex corrections because there is no Goldstone mode
associated with spin fluctuations in the case of singlet pairing
and discuss the one-loop mean-field polarization tensor. In this
case we can write

�σ (ω, |�k|) = −i

∫
d4p

(2π )4
Tr [1̂G(p + k)1̂G(p)]. (29)

At T = 0 we can do the p0 integration to obtain

�σ (ω, |�k|) =
∫

d3p

2(2π )3

(
1 − ξpξp+k + �2

EpEp+k

)
I0, (30)

and the imaginary part in the region ω � 0 is given by

�m[�σ (ω, |�k|)] = −
∫

d3p

2(2π )3

(
1 − ξpξp+k + �2

EpEp+k

)
× δ(ω − Ep − Ep+k). (31)

It is easily verified that the imaginary part of Eq. (31) vanishes
at k = 0. Expanding the integrand in Eq. (31) in powers of k

we find that

�m[�σ (ω, |�k|)] = − 1

32π2

∫
dp p2

∫
dx

×
(

p2

m2

�2

E4
p

x2 k2 + O[k4]

)

× δ(ω − Ep − Ep+k), (32)

where x is the angle between �k and �p. In the long-wavelength
limit the delta function provides support only in region p �
pF . Here we can further simply the result to obtain

�m[�σ (ω, |�k|)]
= − 1

48π2
v2

F k2
∫

dp p2 �2

E4
p

∫
dx δ(ω − Ep − Ep+k)

+O[k]4. (33)

In Fig. 4 we plot the axial response function. The vector
response obtained in different approximations discussed ear-
lier is also shown for comparison. The results indicate the
axial response is significantly larger because of the large
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FIG. 4. (Color online) The imaginary part of the axial response
function in the nonrelativistic limit.

cancellation in the vector response at order k2. In situations
where this cancellation does not occur, as in the case when we
set cs � 0.5cs,0, the vector and axial response functions can
become comparable.

Note that the argument for the cancellation in the vector
response for pure neutron matter at order k2 does not apply in
the case of the axial response. Neutrons have two spin states
and we can assign a plus and minus “axial” charge to the up
and down spin states. The corresponding dipole moment of the
axial charge will change during collisions and radiation can
occur at the k2.

The one-loop axial response in Eq. (29) vanishes in the
k = 0 limit. This is consistent with the F-sum rule for the spin
response associated the model Hamiltonian in Eq. (9). How-
ever it is well-known that the realistic nuclear Hamiltonian
that contains both tensor and spin-orbit interactions does not
commute with the spin operator. This implies that for realistic
nuclear interactions that include pion exchange∫ ∞

−∞
dω ω ltk→0�m[�σ (ω)]

= 〈[[H, σ (k = 0)], σ (k = 0)]〉 �= 0. (34)

Consequently, the correct axial response obtained using
realistic interactions has to be finite in the limit k = 0. From
Eq. (33) we see that the mean-field response function violates
this expectation. Corrections to the one-loop axial response
function arising due to noncentral interactions such as pion
exchange therefore will be critical in the long-wavelength
limit [32].

The importance of pion exchange in the axial response
and neutrino emissivity was already realized in the pioneering
work of Friman and Maxwell [30]. Although their calculations
were only applicable to the normal phase of neutron matter,
they showed that pion exchange was more important than
central nuclear interactions. In particular, they found that the
matrix element for neutrino emission from neutron-neutron
bremsstrahlung in the axial channel was nonzero in the
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FIG. 5. (Color online) The neutrino bremsstrahlung and pair-breaking emissivities: (a) at a neutron chemical potential of 30 MeV,
corresponding to a density slightly below nuclear saturation density, and (b) at a neutron chemical potential of 1.33 MeV corresponding
to a density just above the neutron drip density. The curves labeled “Brem” are the bremsstrahlung emissivity in non-superfluid neutron matter
and the curves labeled “Brem w/Delta” are the corresponding emissivity in superfluid neutron matter. The curves labeled “Axial” are the
axial part of the pair-breaking emissivity and the curves labeled “Full RPA” are the vector part of the pair-breaking emissivity using the full
RPA vertex. The curves labeled “Approx” are the vector pair-breaking emissivity using the approximate vertex. The solid lines are the vector
pair-breaking emissivity using the approximate vertex.

long-wavelength limit when they included one-pion exchange.
It is therefore critical to incorporate these noncentral interac-
tions in the calculation of the axial response function of the
neutron superfluid. The role of these noncentral interactions
have been studied in earlier work for the case of neutron-
neutron bremsstrahlung in the normal phase [33], but their
role in the PBF process remains to be studied. This would
require that we include both vertex corrections and two-loop
effects that include 2p-2h excitations in the superfluid.

This work is in progress and will be reported elsewhere.

V. NEUTRINO EMISSIVITY

The PBF emissivity is largest when the temperature is just
below the critical temperature. As neutron density increases
from zero at the neutron drip density, the gap increases rapidly
with the increase in the density of states at Fermi surface.
Eventually above the saturation density, the neutron-neutron
interaction becomes repulsive in the 1S0 channel and the
gap decreases with increasing density. In between these two
extremes, the largest value of the gap is typically on the
order of 1–3 MeV (for recent computations of the gap, see
Refs. [25,34–38]). The PBF neutrino emissivity in the crust
is expected to be particularly relevant for the crustal cooling
of accreting neutron stars where the temperature is <∼109 K.
Correspondingly, we can expect two regions in a neutron star
crust where T � Tc: one just above neutron drip and one near
the saturation density before the gap becomes very small due
to nucleon-nucleon repulsion. In the region just above neutron
drip where kF a (where a is the neutron-neutron scattering
length) is large and the effective range of the neutron-neutron
interaction is small, the gap can be determined quite precisely
from quantum Monte Carlo simulations that have been tested

in analogous systems in cold atom experiments involving 6Li
fermion atoms [39]. When kF a is small, the gap is given
by Gorkov’s celebrated result � � 0.5µ exp (−π/kF a). At
moderate values of kF a � 1, the gap parameter is not yet well
determined. For the purpose of obtaining numerical results
choose � = 0.1 MeV at µ = 1.33 MeV, a value inspired by
a simple interpolation between QMC results at large kF a and
Gorkov’s result at kF a 
 1. At higher densities, medium- and
finite-range effects make the computation of the gap imprecise.
We arbitrarily choose � = 0.1 MeV at µ = 30 MeV to enable
easy comparison to Ref. [28].

The neutrino emissivity for the processes discussed above is
plotted in Fig. 5, including the axial and vector contributions to
the PBF emissivity and the bremsstrahlung emissivity with and
without the suppression factors resulting from superfluidity as
obtained in Ref. [4]. The emissivity from the axial response
dominates and is larger than the full RPA vector response. As
the density decreases, the much larger decrease in the vector
part of the pair-breaking emissivity in comparison to a smaller
decrease in the axial part reflects the larger suppression of c4

s k
4

for the vector part. A shift of the speed in sound of the Cooper
pair excitations will modify the emissivity quadratically in cs

as expected from the imaginary part of the vector response.
The bremsstrahlung emissivity is larger than the pair-breaking
emissivity except at low temperatures when the suppression of
the bremsstrahlung from superfluidity is strong.

VI. CONCLUSIONS

We have studied the one-loop vector and axial current
response functions of relevance to neutrino emission in
superfluid neutron matter. Through explicit calculations we
have found that there is strong suppression of the vector
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response when vertex corrections are included. This is in close
agreement with the findings of Leinson and Perez [15]. For
pure neutron matter, the RPA vertex function does indeed
show that the supression factor is of order v4

F . However, we
have shown that this suppression arises not only because of
vector current conservation, but also because the radiation in
the vector channel for pure neutron matter occurs only due
to time variation of the quadrupole moment. In the realistic
context where neutrons interact with the background lattice
of neutron-rich ions, the suppression in the vector channel
is of order v2

F . We showed that even a small shift in the
speed of the Goldstone mode due to the lattice can make a
relevant contribution to the response at this order. Finally,
we showed that both of these emissivities are likely smaller
than the neutrino bremsstrahlung emissivity (including the
suppression factors from superfluidity) unless the temperature
is significantly smaller than the critical temperature.

The axial response function was shown to be numerically
more important because the dominant contribution occurs at
order v2

F . Although this was the relevant contribution in our
model, we demonstrated that tensor interactions arising due
to pion exchange would lead to important corrections to this
estimate. The F-sum rule in this case indicates that these
corrections would result in a nonvanishing response at order
v0

F . In the normal phase the tensor interaction is responsible
for the emissivity at long wavelength and we suspect that this
will continue to be the case in superfluid matter. We anticipate
that tensor interactions will also affect the PBF fluctuations in
the spin channel and can modify our results and the regime in
temperature where PBF can dominate over the bremsstrahlung

emissivity. This issue is currently being investigated and will
be reported elsewhere. Although it is now clear that the
neutrino emissivity due to density fluctuations arising from
PBF processes in the vicinity of the critical temperature is not
significant, our present understanding of neutrino processes in
the superfluid phase remains rather incomplete and warrants
further study.

Finally, the vector part of the pair-breaking emissivity
is unlikely to make a large contribution to the emissivity
of accreting neutron star crusts. Our results show that the
pair-breaking emissivity is smaller than the bremsstrahlung
emissivity only for T much smaller than TC , where the
contributions from both emissivities are small. This is good
news for superburst models because unlike the rapid cooling
induced by the erroneous pair-breaking emissivity of Ref. [2],
the bremsstrahlung rate is too small [11] to reduce the tem-
perature in the outer crust needed to ignite carbon. However, a
thorough investigation of how the nuclear tensor modifies the
axial response in the superfluid phase is needed to adequately
resolve this issue.
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