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Spin-dependent Fermi liquid parameters and properties of polarized quark matter
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We calculate the spin-dependent Fermi liquid parameters (FLPs), single-particle energies, and energy densities
of various spin states of polarized quark matter. The expressions for the incompressibility K and sound velocity
c1 in terms of the spin-dependent FLPs and polarization parameter ξ are derived. Estimated values of K and c1

reveal that the equation of state of the polarized matter is stiffer than the unpolarized one. Finally, we investigate
the possibility of the spin polarization (ferromagnetism) phase transition.
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I. INTRODUCTION

One of the important research areas of contemporary high-
energy physics has been the study of matter under extreme
conditions. Such matter in the laboratory can be produced by
colliding heavy ions at ultra-relativistic energies. Because of
the asymptotic freedom of quantum chromodynamics (QCD),
it is predicted that hadronic matter at high temperature and/or
density can undergo a series of phase transitions such as
confinement-deconfinement and/or chiral phase transitions
[1,2]. In the high-density regime QCD predicts the existence of
a color superconducting state [3–5]. The possibility of a spin-
polarized quark liquid (i.e., the existence of a ferromagnetic
phase in a dense quark system) has also been suggested
recently [2,6]. The properties of a dense quark system are
particularly relevant for the study of various astrophysical
phenomena.

Part of the motivation for studying the ferromagnetic phase
transition in dense quark matter (DQM), as mentioned in
Ref. [6], is provided by the discovery of “magnetars” [7], where
an extraordinarily high magnetic field (∼1015 G) exists [6,8].
In Ref. [6], it is argued that the origin of such a high magnetic
field can be attributed to the existence of spin-polarized quark
matter [9]. To examine the possibility of ferromagnetism
in DQM in Ref. [6] a variational calculation is performed
in which it is observed that there exists a critical density
below which spin-polarized quark matter is more energetically
favorable than the unpolarized state. Subsequently, various
other calculations were also performed to investigate this
issue [2,4,5,7–10]. For example, in Ref. [5] it is shown that
there is no contradiction between color superconductivity
and ferromagnetism and both of these phases can coexist. In
Ref. [10], the same problem was studied in the large-Nc and
large-Nf limit while keeping Nc/Nf fixed, where it was shown
that the spin-polarized state can exist; however, in the presence
of magnetic screening, color superconductivity or dense chiral
waves disappear. Such screening is now supported by the
lattice calculation [10,11]. In Ref. [5] it is analytically shown
that, if quarks are massless, ferromagnetism does not appear,
which is consistent with the conclusion drawn in Ref. [10].
In Ref. [8] it is shown that ferromagnetism might appear
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in quark matter with a Goldstone boson current, where the
magnetization is shown to be related to triangle anomalies.

In the present work, we apply relativistic Fermi liquid
theory (RFLT) to study the possibility of a para-ferro phase
transition in DQM. The RFLT was developed by Baym
and Chin [12], who have shown how the various physical
quantities (e.g., chemical potential µ, incompressibility K ,
and sound velocity c1) can be expressed in terms of the
Landau parameters (LPs) calculated relativistically. However,
the formalism developed in Ref. [12] is valid for unpolarized
matter and LPs calculated there are spin averaged.

In this paper we extend the formalism of RFLT and
the required LPs are calculated by retaining their explicit
spin dependencies. As a result, here various combination of
parameters such as f ++

0,1 , f +−
0,1 , f −+

0,1 , and f −−
0,1 , corresponding

to scattering involving up-up, up-down, down-up, or down-
down spins, appear [12]. Once determined, these parameters
are used to calculate quantities such as chemical potentials for
the spin-up and spin-down quarks or the total energy density of
the system as a function of ξ = (n+

q − n−
q )/nq and nq together

with various other quantities, where n+
q and n−

q correspond
to densities of spin-up and spin-down quarks, respectively,
and nq = n+

q + n−
q denotes total quark density [6]. We also

compare some of our results with those presented in Ref. [6],
where a more direct approach was adopted to calculate the
total energy density from the loop. In addition, the present
work is extended further to estimate incompressibility and
sound velocity in a dense quark system for a given fraction of
spin-up or spin-down quarks.

Furthermore, in dealing with the massless gluons, we find
that a naive series expansion fails and one has to use a hard
density loop (HDL) corrected gluon propagator to get the
finite result for the LPs involving scattering of like spins [13].
This however does not cause any problem for the calculation
of various physical quantities such as chemical potential,
exchange energy, and incompressibility. We shall see, even
though f0 and f1 (suppressing spin indices) individually
remain divergent, what appears in our case is the particular
combination of these parameters where such divergences
cancel.

The plan of the paper is as follows. In Sec. II, as mentioned
before, we extend the formalism of RFLT to include explicit
spin dependence. In Sec. III, we derive spin-dependent LPs
resulting from one-gluon exchange (OGE) for polarized quark
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matter. Subsequently, we calculate the chemical potential
and energy density. We find the density dependence of
incompressibility K and first sound velocity c1 with arbitrary
spin polarization ξ . To compare with Ref. [6], we present
ultra-relativistic and nonrelativistic results and study para-
ferro phase transition of quark matter. Section IV is devoted
to a summary and conclusion. In the Appendix, we calculate
various LPs for unlike spin states of the scatterer.

II. FORMALISM

In Fermi liquid theory the total energy density E of an
interacting system is the functional of occupation number np

of the quasiparticle states of momentum p. The excitation of
the system is equivalent to the change of occupation number
by an amount δnp. The corresponding energy density of the
system is given by [12,14]

E = E0 +
∑

s

∫
d3p

(2π )3
ε0
psδnps

+ 1

2

∑
ss ′

∫
d3p

(2π )3

d3p′

(2π )3
fps,p′s ′δnpsδnp′s ′ , (1)

where E0 is the ground-state energy density and s is the spin
index, and the quasiparticle energy can be written as

εps = ε0
ps +

∑
s ′

∫
d3p′

(2π )3
fps,p′s ′δnp′s ′ , (2)

where ε0
ps is the noninteracting single-particle energy. The

interaction between quasiparticles is given by fps,p′s ′ , which
is defined to be the second derivative of the energy functional
with respect to occupation functions,

fps,p′s ′ = δ2E

δnpsδnp′s ′
. (3)

Since the quasiparticles are well defined only near the Fermi
surface, one assumes

εps = µs + vs
f

(
p − ps

f

)
. (4)

In Fermi liquid theory, the interaction parameter, fps,p′s ′ , is
expanded on the basis of Legendre polynomials, Pl [12,14].
The coefficients of this expansion are known as Fermi liquid
parameters (FLPs), which are given by

f ss ′
l = (2l + 1)

∫
d�

4π
Pl(cos θ )fps,p′s ′ , (5)

where θ is the angle between p and p′, both taken to be on
the Fermi surface, and the integration is over all directions
of p [12]. Note that, unlike Refs. [12,14], here we retain
explicit spin indices without performing spin summation. We
restrict ourselves to l � 1 (i.e., f s

0 and f s
1 ), since any higher l

contribution decreases rapidly as the scattering is dominated by
small angles and the series converges (here, f s

l = 1
2

∑
s ′ f

ss ′
l )

[15].

The Landau Fermi liquid interaction fps,p′s ′ is related to the
two-particle forward scattering amplitude via [12,14]

fps,p′s ′ = mq

ε0
p

mq

ε0
p′
Mps,p′s ′ , (6)

where mq is the mass of the quark and the Lorentz invariant
matrix Mps,p′s ′ consists of the usual direct and exchange
amplitude, which may, therefore, be evaluated by conventional
Feynman rules. The dimensionless LPs are defined as F s

l =
Ns(0)f s

l [12], where Ns(0), the density of states at the Fermi
surface, is given by

Ns(0) =
∫

d3p

(2π )3
δ(εps − µs)

= gdegp
s2

f

2π2

(
∂p

∂εps

)
p=ps

f

� gdegp
s
f εs

f

2π2
. (7)

Here gdeg is the degeneracy factor. In our case gdeg = NcNf ,
where Nc and Nf are the color and flavor indices for quark
matter. For spin-up (+) and spin-down (−) quarks, the
density of states will change accordingly. In this expression
(∂p/∂εps)p=ps

f
is the inverse Fermi velocity (1/vs

f ), which is
related to the FLP F s

1 by

1

vs
f

= (∂p/∂εps)p=ps
f

= (
µs

/
ps

f

)(
1 + F s

1

/
3
)
. (8)

With Eq. (7) and Eq. (8) one reads the general relation
as [16]

εs
f = µs

(
1 + 1

3F s
1

)
. (9)

The compression modulus or incompressibility K of the
system is defined by the second derivative of total energy
density E with respect to the number density nq , which is
given by [16–20]

K = 9nq

∂2E

∂n2
q

. (10)

Now we introduce a polarization parameter ξ by the
equations n+

q = nq(1 + ξ )/2 and n−
q = nq(1 − ξ )/2 under the

condition 0 � ξ � 1 [6]. The Fermi momenta in the spin-
polarized quark matter then are p+

f = pf (1 + ξ )1/3 and p−
f =

pf (1 − ξ )1/3, where pf = (π2nq)1/3 is the Fermi momentum
of the unpolarized matter (ξ = 0). So, there are two Fermi
surfaces corresponding to spin-up (+) and spin-down (−)
states, such that E ≡ E(n+

q , n−
q ). We have

∂E

∂nq

= ∂E

∂n+
q

∂n+
q

∂nq

+ ∂E

∂n−
q

∂n−
q

∂nq

= 1

2
[(1 + ξ )µ+ + (1 − ξ )µ−]. (11)

Using Eq. (11), the incompressibility becomes [20]

K = 9nq

4

[
(1 + ξ )2 ∂µ+

∂n+
q

+ (1 − ξ )2 ∂µ−

∂n−
q

]

= 9nq

4

[
(1 + ξ )2

(
1 + F+

0

N+(0)

)
+ (1 − ξ )2

(
1 + F−

0

N−(0)

)]
,

(12)
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where [12]

∂µs

∂ns
q

= 1 + F s
0

Ns(0)
. (13)

Similarly, the relativistic first sound velocity is given by the
first derivative of pressure P with respect to energy density E.
Since P = ∑

sµ
sns

q − E [16,20], we have

c2
1 = ∂P

∂E
= ∂P

∂nq

∂nq

∂E
=


 (1 + ξ )n+

q
∂µ+

∂n+
q

+ (1 − ξ )n−
q

∂µ−

∂n−
q

(1 + ξ )µ+ + (1 − ξ )µ−




= nq

2[(1 + ξ )µ+ + (1 − ξ )µ−]

[
(1 + ξ )2

(
1 + F+

0

N+(0)

)

+ (1 − ξ )2

(
1 + F−

0

N−(0)

)]
. (14)

In Eqs. (12) and (14), N±(0) and F±
0 correspond to the

density of states at the Fermi surface and the dimensionless LP
for spin-up (+) and spin-down (−) quarks, respectively. For
unpolarized matter, ξ = 0, implying µ+ = µ−, F+

0 = F−
0 ,

and N+(0) = N−(0). From Eqs. (12) and (14) we have the
well-known result that K = 9nq

∂µ

∂nq
[16] and c2

1 = nq

µ

∂µ

∂nq
[12].

III. LANDAU PARAMETERS FOR POLARIZED QUARK
MATTER

In this section we calculate LPs for quark matter with
explicit spin dependencies. We choose spin s along the z

axis [i.e., s ≡ (0, 0,±1)] and represent spin-up and spin-down
states by their signs. For a four-dimensional description of
the polarization state, it is convenient to define a four-vector
aµ, which, in the rest frame of each quark, is the same as
the three-dimensional vector s; since s is an axial vector, aµ

is a four-pseudovector. This four-vector is orthogonal to the
four-momentum in the rest frame [in which aµ = (0, s), P µ =
(mq, 0)]; in any frame we therefore have aµPµ = 0 [6,21,22].

The components of the four-vector aµ in a frame in which
the particle is moving with momentum p are found by a
Lorentz transformation from the rest frame [22],

a = s + p(s · p)

mq(εp + mq)
; a0 = p · s

mq

, (15)

with εp =
√

p2 + m2
q . We can define a projection operator

P (a) on each spin polarization as P (a) = 1
2 (1 + γ 5a/). Ac-

cordingly, the polarization density matrix ρ is given by the
expression

ρ(P, s) = 1

2mq

(P/ + mq)P (a), (16)

which is normalized by the condition Tr ρ(P, s) = 1. The
mean value of the spin is then given by the quantity [22]

sav = 1

2

mq

εp

Tr (ργ0
) = 1

2

mq

εp

Tr (ργ5γ )

= 1

2

mq

εp

(
s + p(s · p)

mq(εp + mq)

)
, (17)

which is reduced to sav = 1
2 s in the nonrelativistic limit.

We consider the color-symmetric forward scattering ampli-
tude of the two quarks around the Fermi surface by the OGE
interaction. The direct term does not contribute as it involves
the trace of single color matrices such as Tr λa , which vanish.
Thus the leading contribution comes from the exchange (Fock)
term [6]:

Mex
ps,p′s ′ = −1

3

∑
i

1

3

∑
j

[Ūβ(P ′)g(ta)jiγ
µUα(P )]

×
( −gµν

(P − P ′)2

)
[Ūα(P )g(ta)ij γ

νUβ(P ′)]

= 4

9

g2

(P − P ′)2
Tr [γµρ(P, s)γ µρ(P ′, s ′)], (18)

where α, β is the flavor level, i, j is the quark color index,
ta(= λa/2) is the color matrix, and g is the coupling constant.
Since the gluon is flavor blind, the u-channel diagrams
contribute only when α = β (i.e., the scattering of quarks
with the same flavor [23]). This means that the Fermi sphere
of each flavor makes an independent contribution. Thus the
potential energy receives a factor Nf . However, the quarks with
different colors can take part in the exchange process, giving
rise to a factor N2

c . Eventually, the potential energy density is
proportional to Nf N2

c g2. For the kinetic energy density, there
arises an overall factor NcNf . Thus, the factor NcNf factors
out of the total energy density and the competition between
the kinetic and potential energies is not influenced by the
number of flavors. The number of flavors neither encourages
nor discourages ferromagnetism [10].

Without loss of generality, for the calculation of energy
density and other related quantities, we consider one-flavor
quark matter. With the help of polarization density matrices
given in Eq. (16), we have from Eq. (18) the interaction
amplitude as [6]

Mex
ps,p′s ′ = 2g2

9m2
q

1

(P − P ′)2

{
2m2

q − P.P ′ − (p · s)(p′ · s ′)

+m2
q(s · s ′) + 1

(εp + mq)(εp′ + mq)

× [mq(εp + mq)(p′ · s)(p′ · s ′) + mq(εp′ + mq)

× (p · s)(p · s ′) + (p · p′)(p · s)(p′ · s ′)]
}
. (19)

From Eq. (6) the quasiparticle interaction parameter is given
by

f ex
ps,p′s ′ = mq

εp

mq

εp′
Mex

ps,p′s ′ . (20)

Here the spin may be either parallel (s = s ′) or antiparal-
lel (s = −s ′). Thus scattering possibilities are denoted by
(+,+), (+,−), (−,−), etc. Motivated by Ref. [15], in analogy
with isospin we define the spin-dependent interaction param-
eters as f +

pp′ = 1
2 (f ++

pp′ + f +−
pp′ ) and f −

pp′ = 1
2 (f −−

pp′ + f −+
pp′ ).

Note that f +−
pp′ = f −+

pp′ .
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For (+,+) scattering the interaction parameter is given by

f ++
pp′|p=p′=p+

f

= − g2

9ε+2
f

1

p+2
f (1 − cos θ )

{
2m2

q − p+2
f (1 − cos θ )

−p+2
f cos θ1 cos θ2 + 1

(ε+
f + mq)2

× [mq(ε+
f + mq)p+2

f (cos2 θ1 + cos2 θ2)

+p+4
f cos θ cos θ1 cos θ2]

}
, (21)

where p̂ · ŝ = cos θ1, p̂′ · ŝ = cos θ2, and the Fermi energy
is ε+

f = (p+2
f + m2

q)1/2. Since spin and momentum have no
preferred direction, we have done an angular average of the
spin-dependent parameter [24]:

f ++
pp′|p=p′=p+

f
=

∫
d�1

4π

∫
d�2

4π
f ++

pp′|p=p′=p+
f

= − g2

9ε+2
f p+2

f (1 − cos θ )

×
[

2m2
q − p+2

f (1 − cos θ ) + 2mqp
+2
f

3(ε+
f + mq)

]
.

(22)

With the help of Eq. (5) along with Eq. (22) one can
find the LPs, but it is to be noted that f ++

0,1 and f −−
0,1 are

individually divergent because of the term (1 − cos θ ) in the
denominator of the interaction parameter.1 This divergence
disappears if one uses a Debye screening mass for gluons
or equivalently an HDL corrected gluon propagator while
evaluating the scattering amplitudes [13,24]. Note that the
combination (f ++(−−)

0 − 1
3f

++(−−)
1 ) is, however, finite as in

this case the divergences cancel and we do not calculate the
LPs separately. It would, however, be interesting to see how
the results are modified if HDL calculations are performed
to evaluate f

++(−−)
0,1 , f +−

0,1 and the corresponding physical
quantities. The numerical estimates suggest that, for the results
that we present here, the effect of HDL corrections are expected
to be small.

From Eq. (5),

f ++
0 − 1

3
f ++

1

= − g2

18ε+2
f p+2

f

∫ +1

−1

[
2m2

q − p+2
f (1 − cos θ )

+ 2mqp
+2
f

3(ε+
f + mq)

]
d(cos θ )

= − g2

9ε+2
f p+2

f

[
2m2

q − p+2
f + 2mqp

+2
f

3(ε+
f + mq)

]
. (23)

This combination will appear in the calculation of the
chemical potential and other relevant quantities. For (+,−)

1Denoted hereafter as fpp′ = fpp′ .

scattering, the angular averaged interaction parameter yields

f +−
∣∣∣
p=p+

f ,p′=p−
f

= g2

9ε+
f ε−

f

{
1 −

[
mqp

+2
f

3(ε+
f + mq)

+ mqp
−2
f

3(ε−
f + mq)

]

× 1(
m2

q − ε+
f ε−

f + p+
f p−

f cos θ
)
}

. (24)

It is to be noted that individual LPs for scattering of unlike
spin states are finite (i.e., free of divergences), in contrast to
the case involving scattering of like spin states. (For details
see the Appendix.)

A. Chemical potential

Now we proceed to calculate the chemical potential, which,
in principle, will be different for spin-up and spin-down quarks,
denoted by µs with s (or s ′) = +,− for matter containing
unequal densities of up and down quarks. To determine the
chemical potential with arbitrary polarization ξ , we take the
distribution function with explicit spin index (s or s ′), so that
variation of the distribution function gives [14,20,25]

δns
q = −Ns(0)

[∑
s ′

f ss ′
0 δns ′

q − δµs

]
, (25)

where Ns(0) is given by Eq. (7). Equation (25) yields

∂µs

∂ns
q

= 1

Ns(0)
+

∑
s ′

f ss ′
0

∂ns ′
q

∂ns
q

. (26)

Separately for spin-up and spin-down states we have(
∂µ+
∂µ−

)
=

(
1

N+(0) + f ++
0 f +−

0

f −+
0

1
N−(0) + f −−

0

)(
∂n+

q

∂n−
q

)
, (27)

where the superscripts ++ and +− denote scattering of quasi-
particle with up-up and up-down spin states. For unpolarized
matter the upper and lower components become equal, which
gives rise to the well-known result [12]

µdµ =
[
pf + gdegµp2

f

2π2

(
f0 − 1

3
f1

)]
dpf . (28)

In general the chemical potential (both for spin-up and
spin-down) is the combination of like and unlike spin states.
By adjusting the constant of integration [12], the chemical
potential of spin-up quark turns out to be

µ+ = ε+
f − g2

6π2ε+
f

[
11

6
m2

q ln

(
p+

f + ε+
f

mq

)
+ 2

3
p+

f mq

− p+
f ε+

f

2

]
+ g2

72π2ε+
f

{
− 2m3

q

p+
f

ln

(
p+

f + p−
f

p+
f − p−

f

)

+ 4m2
qε

+
f

p+
f

[
ln

(
p+

f + p−
f

p+
f − p−

f

)
+ ln

(
p+

f ε−
f + p−

f ε+
f

p+
f ε−

f − p−
f ε+

f

)]
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FIG. 1. Density dependence of chemical potential of spin-up and
spin-down quarks denoted by solid and dashed curves, respectively.

− 14m2
q ln

(
p−

f + ε−
f

mq

)
+ 2mqp

−
f

− 3mqp
−
f ln

(
p+

f + p−
f

p+
f − p−

f

)
− mq

p+
f

(
2m2

q + 3p+2
f

)

× ln

(
p+

f ε−
f + p−

f ε+
f

p+
f ε−

f − p−
f ε+

f

)
+ 6mqε

+
f ln

(
p−

f + ε−
f

mq

)

+ mq

p+
f

[
2ε−

f

(
2mq − ε+

f

) − p−2
f

]

× ln

(
ε−
f ε+

f − m2
q − p−

f p+
f

ε−
f ε+

f − m2
q + p−

f p+
f

)
+ 6p−

f ε−
f

}
. (29)

In this equation the term in the first set of square brackets arises
from the scattering of like spin states (++), and the term in
curly braces comes from the scattering of unlike spin states
(+−).

Similarly, for the spin-down quark, one may determine µ−
by replacing p±

f with p∓
f and ε±

f with ε∓
f in Eq. (29).

For the numerical estimation of these quantities, following
Refs. [6,26], we take αc = g2/4π = 2.2 as the fine structure
constant of QCD and mq = 300 MeV. In Fig. 1 we plot the
chemical potential for spin-up and spin-down quarks as a
function of density with order parameter ξ = 0.5. In real astro-
physical calculations, the chemical potentials are determined
by the β-equilibrium conditions, where the condition of charge
neutrality is also imposed. In Fig. 1, however, we use density
nq and polarization parameter ξ as input parameters and
Eq. (29) is used to determine µ for a system with one flavor.

B. Energy density

Once the value of µ is determined, one can readily calculate
the exchange energy density by evaluating [12,17,25]

Eex =
∫

dnq(µ − εf ). (30)

After summing over the color degrees of freedom and
evaluating over the Fermi surfaces, we have the exchange
energy density. The latter, consisting of all types of scattering
amplitudes, can be written as

Eex = E++
ex + E−−

ex + E+−
ex , (31)

0 0.1 0.2 0.3 0.4 0.5

n
q
(fm

-3
)

0

200

400

600

800

1000

1200

K
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M
eV

)

ξ=0.1
ξ=0.5
ξ=0.9

FIG. 2. Incompressibility K in quark matter as a function of
density for different polarization parameters.

which we evaluate numerically. The total kinetic energy
density for spin-up and spin-down quarks is given by

Ekin = 3

16π2

∑
s=±

[
ps

f εs
f

(
εs2

f + ps2

f

) − m4
q ln

(
εs
f + ps

f

mq

)]
,

(32)

where εs
f = (ps2

f + m2
q)1/2. The total energy is given by the

sum of the kinetic energy and the interaction energy Eex, that
is,

Etot = Ekin + Eex. (33)

Now we calculate the incompressibility and the sound
velocity by using Eqs. (12) and (14). In Figs. 2 and 3 we
plot the density dependencies of the incompressibility and
the sound velocity. This shows that, for higher values of the
order parameter ξ , the incompressibility and the sound velocity
become higher for the same value of density. Thus the equation
of state for polarized quark matter is found to be stiffer than
the unpolarized one.

C. Phase transition

Bloch first pointed out the possibility of ferromagnetism
of an electron gas where the Fock exchange interaction
induces spontaneous spin polarization [27]. Consider a spin-
polarized electron gas interacting by the Coulomb interaction
in a background of positively charged ions. Since the direct
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FIG. 3. First sound velocity c1 in quark matter as a function of
density for different polarization parameters.
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interaction gives no contribution because of charge neutrality,
the Fock exchange interaction gives the leading contribution
as the interaction energy. For spontaneous ferromagnetism, the
interaction energy dominates over the kinetic energy [6,21,28].
Therefore, if the exchange energy from the OGE interaction is
negative and becomes greater than the kinetic energy at some
density, the quark matter becomes polarized, giving rise to
ferromagnetism [6].

To check whether our results for the total energy density
are consistent with Ref. [6], we consider two limiting cases,
corresponding to the ultra-relativistic (UR) and nonrelativistic
(NR) regimes. In the UR limit, ps

f � mq , then using Eq. (29)
we have

µ+,ur = p+
f + αc

3π

[
p+

f + p−2
f

p+
f

]
. (34)

Similarly one can find µ−,ur by replacing p±
f with p∓

f .
One can arrive at the same expression µ±,ur by taking the

UR limit of the scattering amplitude. For (+,+) scattering one
gets the interaction parameter as

f
++,ur
pp′ = g2

9pp′ (1 + cos θ1 cos θ2) . (35)

After taking the angular average of the interaction parameter
and with the help of Eq. (5), we find that f ++

1 vanishes. Thus
we have

f
++,ur
pp′

∣∣∣
p=p′=p+

f

= f
++,ur
0 = g2

9p+2
f

. (36)

Similarly, for (+,−) scattering, the interaction parameter
yields

f
+−,ur
pp′ = g2

9pp′ (1 − cos θ1 cos θ2) . (37)

The only existing LP is f +−
0 and other higher order LPs do

not contribute. Hence we get

f
+−,ur
pp′

∣∣∣
p=p+

f ,p′=p−
f

= f
+−,ur
0 = g2

9p+
f p−

f

. (38)

It is observed that, in the UR limit, all the LPs are finite. Now
the chemical potential for the spin-up quark is found to be

µ+,ur = p+
f + αc

3π

[
p+

f + p−2
f

p+
f

]
. (39)

The chemical potential µ−,ur can be obtained by replacing p±
f

with p∓
f in Eq. (39).

Using Eqs. (30) and (31), the exchange energy densities are
given by

E++,ur
ex = αc

8π3 p
+4
f ,

E−−,ur
ex = αc

8π3 p
−4
f ,

E+−,ur
ex = αc

4π3 p
+2
f p−2

f .


 (40)

Thus the final expression for the exchange energy density in
the UR limit is found to be

Eur
ex = αc

8π3
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3 + 2(1 − ξ 2)2/3]. (41)

This result is the same as in Ref. [6].
Similarly, from Eq. (32), the kinetic energy density in the

UR limit takes the following form [6]:

Eur
kin = 3p4

f

8π2
[(1 + ξ )4/3 + (1 − ξ )4/3]. (42)

In the NR limit, p (or p′) � mq , the interaction parameter
reduces to a simple form

f nr
ps,p′s ′ = − g2

9pp′

[
1 + s · s ′

(1 − cos θ )

]
. (43)

For a spin antiparallel interaction s = −s ′, then f nr
ps,p′s ′ = 0.

Thus the contribution from the scattering of quarks with unlike
spin states vanishes and the dominant contribution to the
energy density comes from the parallel spin states (s = s ′).
For (s, s) scattering, the interaction parameter yields

f
nr,s
pp′

∣∣∣
p=p′=ps

f

= − 2g2

9ps2

f (1 − cos θ )
, (44)

where s = + or − according to the scattering process. In the
NR limit one gets (

f s
0 − 1

3
f s

1

)
= − 2g2

9ps2

f

. (45)

The NR chemical potential µnr is given by

µnr,s = mq − g2

3π2
ps

f . (46)

Using Eq. (30), the exchange energy density for (+,+)
scattering is given by

E++,nr
ex = − g2

8π4
p4

f (1 + ξ )4/3. (47)

Similarly, for (−,−) scattering, we have

E−−,nr
ex = − g2

8π4
p4

f (1 − ξ )4/3. (48)

As in the NR limit, E+−
ex = E−+

ex = 0 as mentioned before, so
from Eq. (31) the exchange energy density yields

Enr
ex = − αc

2π3
p4

f [(1 + ξ )4/3 + (1 − ξ )4/3]. (49)

Thus the energy density, in this limit, becomes negative.
The kinetic energy density turns out to be [6]

Enr
kin = 3p5

f

20π2mq

[(1 + ξ )5/3 + (1 − ξ )5/3]. (50)

In the NR limit, ferromagnetism can appear as a consequence
of competition between the kinetic energy and the Coulomb
potential energy [10]. The latter favors spin alignment owing
to quantum effects. When the energy gain from the spin
alignment dominates over the increase in the kinetic energy
at some density, the unpolarized state suddenly turns into the
completely polarized state [29]. In contrast, in the UR limit,
the contribution to the energy density comes not only from
the like spin states but also from the unlike spin states of the
scatterer (see Ref. [6] for a detailed discussion).
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FIG. 4. The total energy of a quark liquid as a function of
polarization parameter at nq = 0.1 fm−3, nq = 0.14 fm−3, and nq =
0.2 fm−3. The critical density is found to be nc

q = 0.14 fm−3 in this
case.

To check the consistency we compare our result derived
in the RFLT approach with that of Ref. [6] derived from two
loop ring diagrams. In Fig. 4 we plot Etot/nq as a function
of polarization parameter ξ . The results clearly show that, for
lower density (<0.14 fm−3), total energy favors ξ = 1, which
indicates a completely polarized state, whereas, at higher
density, the system becomes unpolarized (ξ = 0). Thus the
polarization parameter suddenly changes from ξ = 1 to ξ = 0
as one increases the number density of the system. So the
phase transition is first order and the critical density nc

q is
around 0.14 fm−3.

In Fig. 5 we show the total energy as a function of the
polarization parameter for different densities. In every plot,
there is a minima, which corresponds to a possible metastable
state. We notice that when density increases metastable state
arises for lower values of polarization parameter ξ . For
example, at a density of ∼0.2 fm−3 a minima arises at
ξ = 0.1 whereas at a density of ∼0.35 fm−3 a minima arises

at ξ = 0.03. Thus the metastable state shows a tendency to
disappear as the density increases.

IV. SUMMARY AND CONCLUSION

In this work we have applied RFLT to study the properties
of dense quark matter. Accordingly, we calculate the FLPs
by retaining their explicit spin dependencies. We also show
how the physical quantities such as the chemical potential
of spin-up and spin-down states, their energy densities, and
incompressibility and sound velocity for polarized quark
matter can be expressed in terms of these spin-dependent
RFLPs. For scattering involving like spin states, the LPs f ++

0,1

and f −−
0,1 are found to diverge. However, we show that for

the combination in which they appear in the calculation of
the physical quantities such divergences cancel. For scattering
involving unlike spin states no such divergence appears. The
appearance of such divergences is related to the unscreened
gluonic interaction between the quarks, and invoking a hard
dense loop corrected gluon propagator may eliminate these
divergences. We do not perform such a calculation here and
postpone this for a future investigation. As far as the equation
of state is concerned, in the present model we find that the
equation of state for polarized quark matter is stiffer than
that for unpolarized matter. In addition, we also show that
there exists a metastable state that disappears at higher density,
although it seems that the effect is tiny.

We reconfirm that DQM can exhibit ferromagnetism at low
density, as was originally suggested in Ref. [6]. However, the
density at which the spin-polarized ferromagnetic state in the
present model might appear depends strongly on the quark
mass. The critical density increases with increasing mass.
In Fig. 4, we observe that states with ξ appear only below
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magnetic state as a function of
polarization parameter for different
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or around normal nuclear density where deconfined quark
matter is not likely to exist. We cannot, however, ascertain the
critical density from the present analysis in which we restrict
ourselves only to OGE diagrams and a one-flavor system. In
this regime, multigluon exchange processes [10] might play
an important role. Furthermore, the correlations as given by
the ring diagrams can also change the conclusion. Further
work therefore is necessary to understand the existence of
ferromagnetic quark matter in real multiflavor systems that
might appear in astrophysics.
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APPENDIX

In the text the interaction parameter f +−
pp′ for unlike spin

states was calculated. Here we give a detailed expression of
the Landau parameters. With the help of Eq. (5), the LPs are
given by

f +−
0 = g2

18ε+
f ε−

f

×
[

2 + mq

[
ε−
f p+2

f + mq

(
p+2

f + p−2
f

) + ε+
f p−2

f

]
3p+

f p−
f (mq + ε+

f )(mq + ε−
f )

× ln

(
m2

q − p+
f p−

f − ε+
f ε−

f

m2
q + p+

f p−
f − ε+

f ε−
f

)]
(A1)

and

f +−
1 = g2

18ε+
f ε−

f

[
6 − 2mq

[
ε−
f p+2

f + mq

(
p+2

f + p−2
f

) + ε+
f p−2

f

]
p+

f p−
f (mq + ε+

f )(mq + ε−
f )

+
(

mq

(
m2

q − ε+
f ε−

f

)[
ε−
f p+2

f + mq

(
p+2

f + p−2
f

) + ε+
f p−2

f

]
p+2

f p−2
f (mq + ε+

f )(mq + ε−
f )

)
ln

(
m2

q + p+
f p−

f − ε+
f ε−

f

m2
q − p+

f p−
f − ε+

f ε−
f

)]
. (A2)

Using Eqs. (A1) and (A2) we have

f +−
0 − 1

3
f +−

1

= g2

18ε+
f ε−

f

{
2 −

[
mqp

+2
f

3(ε+
f + mq)

+ mqp
−2
f

3(ε−
f + mq)

]
×

[
− 2

p+
f p−

f

+
(
p+

f p−
f + m2

q − ε+
f ε−

f

)
(
p+2

f p−2
f

)

× ln

(
m2

q + p+
f p−

f − ε+
f ε−

f

m2
q − p+

f p−
f − ε+

f ε−
f

)]}
. (A3)
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