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Critical points in the linear σ model with quarks
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We employ a simple effective model to study the chiral dynamics of two flavors of quarks at finite temperature
and density. In particular, we determine the phase diagram in the plane of temperature and baryon chemical
potential as a function of the pion mass. An interesting phase structure occurs that results in zero, one, or two
critical points depending on the value of the vacuum pion mass.
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I. INTRODUCTION

The physical pion mass is small but not zero. In con-
sequence, the conventional wisdom is that there is no true
thermodynamic chiral phase transition at finite temperature
T and zero baryon chemical potential µ, at least when the
effects of the strange quark are neglected. Instead, there is
expected to be a curve of first-order phase transition in the
µ-T plane that terminates in a second-order phase transition
at some critical point (µc, Tc). The location of the critical
point obviously depends on the physical (vacuum) pion mass.
This topic has been under intense theoretical study using
various effective field theory models, such as the Namu
Jona-Lasinio model [1–3], a composite operator model [4],
a random matrix model [5], a linear σ model [3], an effective
potential model [6], and a hadronic bootstrap model [7],
as well as various implementations of lattice QCD [8–11].
Reviews of the subject were presented by Stephanov in the past
few years [12]. It is also of great interest because collisions
between heavy nuclei at medium to high energy, such as at
the Facility for Antiproton and Ion Research (FAIR), which
is under construction, may provide experimental information
on the phase diagram in the vicinity of a critical point.
In contrast, current experiments at the Relativistic Heavy Ion
Collider (RHIC) and future experiments at the Large Hadron
Collider (LHC) may create too much entropy and therefore
miss the high baryon densities needed to explore that region.
However, that depends on the location of the critical point. In
this paper we study the phase diagram of the linear σ model
coupled to two flavors of identical mass quarks. Whereas the σ

model is an oft-used effective model that represents some of the
essential features of the chiral dynamics of QCD, the reason to
couple the fields to quarks is less obvious. Why not couple to
nucleons, � resonances, etc. instead? One argument is based
on the existence of the critical point itself. If a critical point
exists, then one can go around it without crossing the curve
of the first order-phase transition. The effective degrees of
freedom should not change too much in following such a path.
Therefore, if quarks are considered to be reasonably useful
degrees of freedom on the higher temperature side then they
should be useful on the lower temperature side too. One could
make the same argument for using nucleons, � resonances, and
so on. Presumably one could get the same answers. However,
it would entail including all the baryons in the Particle Data
Tables and a multitude of coupling constants. For this reason

we use quarks to carry the baryon number but acknowledge
the resulting uncertainty in the results.

The present work extends that of Ref. [3] in two significant
ways. First, the Ref. [3] study involved the linear σ model with
quarks but only in the mean-field approximation. The present
work goes beyond that by including thermal fluctuations of
the meson and fermion fields, which can be important at finite
temperature when the magnitude of the fluctuations becomes
comparable to or greater than the mean values. The technique
we use was developed in several papers [13–15]. Second,
in Ref. [3] the pion mass was fixed at its vacuum physical
value, whereas in the present work we scan pion masses from
zero to over 300 MeV, which may be particularly useful for
comparison with lattice gauge theory with different quark
masses. The present work also extends that of Ref. [16] to
nonzero chemical potential; otherwise the techniques are the
same. Even when all other parameters of the model are fixed,
we find an interesting phase diagram that may have zero, one,
or two critical points depending on the value of the vacuum
pion mass.

II. THE LINEAR σ MODEL WITH QUARKS

The Lagrangian is

L = 1
2 (∂µπ )2 + 1

2 (∂µσ )2 − U (σ,π )

+ ψ̄[i �∂ − g(σ + iγ5τ · π )]ψ, (1)

where

U (σ,π ) = λ

4
(σ 2 + π2 − f 2)2 − Hσ (2)

in an obvious notation. The SU(2)L × SU(2)R chiral symmetry
is explicitly broken by the term Hσ, which gives the pion a
mass. The scalar field has a nonvanishing vacuum expectation
value v determined at the classical level by the equation

λv(v2 − f 2) = H. (3)

The scalar field is thus represented by a condensate plus a
fluctuation, σ = v + �. The quarks have no intrinsic mass
and only acquire one because of the condensate: mq = gv.
The four parameters in the Lagrangian, f,H, λ, and g, are
constrained by fixing the pion decay constant fπ = 92.4 MeV
and the σ mass mσ = 700 MeV, and the quark mass is set
to one-third of the nucleon mass, mq = 313 MeV. The last
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required piece of information is the vacuum pion mass mπ ,
which is varied from 0 to mσ/2 = 350 MeV. At the classical
level there are the simple relations

H = fπm2
π , λ = m2

σ − m2
π

2f 2
π

,

(4)

f 2 = m2
σ − 3m2

π

m2
σ − m2

π

f 2
π , g = mq

fπ

.

All of this is standard practice, with the specific choices of
fπ,mσ , and mq corresponding to those in Ref. [16]. The value
of the pion mass in Ref. [16] was fixed at its observed vacuum
value of about 138 MeV.

III. SELF-CONSISTENT METHOD FOR DETERMINING
THE EQUATION OF STATE

The grand canonical partition function is

Z =
∫

[dσ ][dπ][dψ̄][dψ]

× exp

{∫ β

0
dτ

∫
V

d3x

(
L + 1

3
µψ̄γ 0ψ

)}
, (5)

where β = 1/T is the inverse temperature, µ/3 is the quark
chemical potential, V is the volume of the system, and τ

denotes imaginary time. To create an effective mesonic model,
we integrate out the quark degrees of freedom in the usual
way [17], such that

lnZquark = ln det D, (6)

where D is the inverse quark propagator. This, of course, still
depends on the mesonic fields via an effective quark mass m,
where

m2 = g2(σ 2 + π2), (7)

which enters into the quasiparticle quark energy E =√
p2 + m2. This allows us to rewrite the grand canonical

partition function solely in terms of mesonic degrees of
freedom. It amounts to the effective Lagrangian

L = 1
2 (∂µπ )2 + 1

2 (∂µσ )2 − Ueff(σ,π ), (8)

where

Ueff(σ,π ) = U (σ,π ) − T

V
lnZquark(σ,π ) (9)

is the effective potential. The latter depends on both T and µ

as well as the mesonic fields.
The four equations of motion that follow from the effective

mesonic Lagrangian [Eq. (8)] are

∂µ∂µσ + ∂Ueff

∂σ
= 0, (10)

∂µ∂µπi + ∂Ueff

∂πi

= 0, (11)

with i = 1, 2, 3. Now we decompose the mesonic fields into a
condensate and fluctuations, as mentioned earlier. We then
write out the equations of motion in their formal series
expansion in the fields and linearize them by making the

replacement �n → n〈�n−1〉�, where the angular brackets
denote the ensemble average (see the following). We make
use of the fact that, in this approximation, the σ and pion
field fluctuations are independent of each other; that is,
〈�nπr

i 〉 = 〈�n〉〈πr
i 〉. The condition for the condensate is〈

∂Ueff

∂v

〉
= 0. (12)

The quasiparticle dispersion relations for the mesons, namely
E2

σ = p2 + m2
σ and E2

π = p2 + m2
π , involve effective masses

given by

m2
σ =

〈
∂2Ueff

∂�2

〉
, (13)

m2
π =

〈
∂2Ueff

∂π2
i

〉
. (14)

The thermodynamic potential is then computed from


 = 〈Ueff〉 − 1
2m2

σ 〈�2〉 − 1
2m2

π 〈π2〉 + 
σ + 
π, (15)

where 
σ and 
π are the independent particle contributions
from the σ and pion quasiparticles. Explicitly,


σ = T

2π2

∫ ∞

0
dpp2

[
1

2
βEσ + ln(1 − e−βEσ )

]
, (16)

with a similar expression for the pions.
In this paper we will drop the shift in the zero point energy

for simplicity. Phenomenologically it may not make sense
to keep it since it corresponds to high-energy/short-distance
contributions, which are probably not described well in this
effective model. The nontrivial issue of regularization and
renormalization in self-consistent approximations has been
discussed for the linear σ model several times [18–20].

Ensemble averaging is performed via the technique used
in Refs. [15,16], which in turn is based on the analysis in
Ref. [14]; see also Ref. [13]. Consider some arbitrary func-
tional F (σ,π2), such as lnZquark(σ,π ). Expand this functional
about the average values of the fields, namely σ = v and
π = 0, and average term by term:

〈F (σ,π )〉 =
∞∑

k,n=0

F (k,n)(v, 0)

〈
�k

k!

π2n

n!

〉
. (17)

Here

F (k,n)(a, b) = ∂k+n

∂ak∂bn
F (a, b). (18)

We then need to relate 〈�nπ k〉 to powers of 〈�2〉 and 〈π2〉.
Such relations were derived in Ref. [14]. We have 〈�n〉 = 0 for
odd n and 〈�n〉 = (n − 1)!!〈�2〉n/2 for even n. For the pions,
all the species are equivalent, so that 〈π2

1 〉 = 〈π2
2 〉 = 〈π2

3 〉 =
1
3 〈π2〉 and 〈π2k〉 = (2k + 1)!!〈 1

3π2〉k . After substituting back
into Eq. (17), one notices that the averaging is equivalent to an
integration over a Gaussian distribution, such that

〈F (σ,π2)〉 =
∫ ∞

−∞
dzPσ (z)

∫ ∞

0
dyy2Pπ (y)F (v + z, y2),

(19)

015202-2



CRITICAL POINTS IN THE LINEAR σ MODEL . . . PHYSICAL REVIEW C 79, 015202 (2009)

where

Pσ (z) = 1√
2π〈�2〉

exp

(
− z2

2〈�2〉
)

, (20)

Pπ (y) =
√

2

π

(
3

〈π2〉
) 3

2

exp

(
− 3y2

2〈π2〉
)

. (21)

Note that in the limit of vanishing mean square fluctuations
〈F (σ,π2)〉 → F (v, 0), as one would expect.

It is important to know that the approximation employed
here is thermodynamically self-consistent. There are two con-
sistency relations between the mesonic masses and fluctuations
that follow directly, namely

〈�2〉 = 2
∂
σ

∂m2
σ

= 1

2π2

∫ ∞

0
dp

p2

Eσ

1

eβEσ − 1
(22)

and

〈π2〉 = 2
∂
π

∂m2
π

= 3

2π2

∫ ∞

0
dp

p2

Eπ

1

eβEπ − 1
. (23)

It is quite helpful to make use of a generalization of an
expression in Ref. [15] for the derivative of Eq. (19) with
respect to some parameter α. After two integrations by parts,
one obtains

∂

∂α
〈F (σ,π2)〉 = ∂v

∂α

〈
∂F

∂v

〉
+ 1

2

∂〈�2〉
∂α

〈
∂2F

∂�2

〉

+ 1

2

∑
i

∂〈π2
i 〉

∂α

〈
∂2F

∂π2
i

〉
. (24)

We can use this to calculate the derivative of the thermody-
namic potential with respect to the mean field as well as the σ

and pion quasiparticle masses. This gives

∂


∂v
=

〈
∂Ueff

∂v

〉
+ 1

2

∂〈�2〉
∂v

{〈
∂2Ueff

∂�2

〉
− m2

σ

}

+ 1

2

∂〈π2
i 〉

∂v

{〈
∂2Ueff

∂π2
i

〉
− m2

π

}
= 0,

∂


∂m2
σ

= 1

2

∂〈�2〉
∂m2

σ

{〈
∂2Ueff

∂�2

〉
− m2

σ

}
= 0,

∂


∂m2
π

= 1

2

∑
i

∂〈π2
i 〉

∂m2
π

{〈
∂2Ueff

∂π2
i

〉
− m2

π

}
= 0. (25)

These three derivatives vanish because of the averaged equa-
tion of motion and the two effective mass equations. This gives
us the thermodynamic consistency we require.

Because of thermodynamic consistency, we can calculate
the energy density in the standard way, yielding

ε = 〈U 〉 − 1

2
m2

σ 〈�2〉 − 1

2
m2

π 〈π2〉

+ 1

2π2

∫ ∞

0
dp p2

[
Eσ

eβEσ − 1
+ 3

Eπ

eβEπ − 1

]

+ 6

π2

∫ ∞

0
dp p2

〈
E

eβ(E−µ) + 1
+ E

eβ(E+µ) + 1

〉
. (26)

The baryon number density can be calculated as

nB = 2

π2

∫ ∞

0
dp p2

〈
1

eβ(E−µ) + 1
− 1

eβ(E+µ) + 1

〉
. (27)

Note that in the quark terms there are pairs of angular brackets
indicating the averaging procedure of Eq. (17). This means
that the momentum integrals are evaluated for a particular
configuration of the mesonic fields with quark mass given by
Eq. (7), and then the mesonic fields are averaged over. One
may choose to define a thermally averaged effective quark
mass by the ensemble average of Eq. (7), that is,

m2 → m2
q = g2(〈σ 2〉 + 〈π2〉) = g2(v2 + 〈�2〉 + 〈π2〉). (28)

However, the quark integrals are not evaluated with this single
mass.

IV. NUMERICAL RESULTS

The equation of motion and the effective meson mass
equations must be solved self-consistently. The integrals in
the thermal averages are calculated by using an adaptive
n-point rule algorithm, and the thermodynamic integrals are
calculated by using an adaptive Simpson’s rule algorithm.
We have verified numerically in a representative sample of
combinations of T and µ that the thermodynamic identities

ε(µ, T ) = −P (µ, T ) + T
∂P (µ, T )

∂T
+ µnB(µ, T ) (29)

and

nB(µ, T ) = ∂P (µ, T )

∂µ
(30)

are satisfied. For more details on the mathematical derivations
and numerical procedures see Ref. [21].

To determine the location of a phase transition, one com-
putes the pressure as a function of temperature and chemical
potential. An example is shown in Fig. 1, where P is plotted as

FIG. 1. (Color online) Pressure vs baryon chemical potential for
two different temperatures with the physical value of the pion mass
in vacuum. At the lower temperature there is a discontinuity in the
slope at the crossing point, indicating a first-order phase transition.
The curves are extended to the limits of metastability. At the higher
temperature the pressure is smooth and there is no phase transition.
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a function of µ for two different temperatures. In this example
the vacuum pion mass is fixed at its physically observed value.
For the higher temperature of 80 MeV there is only one
self-consistent solution to the equations just described. For
the lower temperature of 50 MeV, there is a unique solution at
large µ and another unique solution at small µ. For a range of
µ centered about 900 MeV there are three solutions: One is
associated with a continuation of the low-density phase, one
is associated with a continuation with the high-density phase,
and the third solution (not shown in the figure) is an unstable
phase. The point where the two curves cross is the location of
the phase transition. In this example it is first order since there
is a discontinuity in the slope ∂P (µ, T )/∂µ ≡ nB . Where each
curve terminates is the limit of metastability for that phase. The
thermodynamically favored phase is the one with the largest
pressure. At some temperature between 50 and 80 MeV the
slopes are equal at the crossing point, there are no metastable
phases, and the second derivative is discontinuous. This is
indicative of a second-order phase transition. The location of
this point in the µ-T plane is the critical point. The critical
point has coordinates designated (µc, Tc).

Plotted in Fig. 2 is the energy density divided by T 4 versus
T , a commonly used plot in studies of the equation of state at
zero baryon chemical potential, for vacuum pion masses of 0
and 200 MeV. For zero pion mass the phase transition is first
order, whereas for a vacuum pion mass of 200 MeV there is
no thermodynamic phase transition, only a crossover from one
phase to the other. The contribution to the energy density for
a gas of massless bosons is (π2/30)T 4 per degree of freedom,
whereas massless fermions contribute 7/8 of that amount
because of the difference between Bose and Fermi statistics. If
all the degrees of freedom in this model were massless at high
temperature the ratio ε/T 4 would be about 8.22. The results
shown indicate a value of about 7.5 around a temperature of
200 MeV, a value that does not change very quickly with
increasing temperature. Obviously this is due to interactions,
in particular the quasiparticles acquiring effective masses

FIG. 2. (Color online) The energy density, normalized to T 4, vs
T at zero chemical potential. For zero vacuum pion mass there is a
first-order transition, whereas for a vacuum pion mass of 200 MeV
there is only a rapid crossover.

at high temperature from thermal fluctuations. It should be
remarked that if one considered a gas of massless quarks with
24 fermionic degrees of freedom (the same as in this model)
plus massless gluons with 16 bosonic degrees of freedom
(versus 4 in this model) one would have ε/T 4 ≈ 12.17.
Calculations with lattice QCD just above T = 200 MeV yield
a value about 3/4 as large [22]. This indicates that the number
of effective massless degrees of freedom is less, because of
interactions, which is one argument for referring to the matter
in this temperature range as strongly coupled quark-gluon
plasma. The σ model with quarks exhibits a much smaller
decrease in the effective number of degrees of freedom,
suggesting that the fewer degrees of freedom incorporated
in the σ and pion fields versus the gluon fields may be
qualitatively reasonable.

We should also remark that when the vacuum pion mass is
set to 138 MeV (curve not shown) we reproduce the numerical
results of Ref. [16], a check on our (and their) numerical
work.

The phase diagram in the µ-T plane for a sampling of
vacuum pion masses is shown in Fig. 3. For the sake of
discussion, pick one, for example mπ,vac = 138 MeV. There
is a curve of first-order phase transition starting on the µ

axis and arching to the left. This curve terminates at a
critical point of approximately Tc = 75 MeV, µc = 850 MeV.
Representative curves for mπ,vac = 50 and 200 MeV are also
shown. For mπ,vac = 0 there is no critical point; the curve
smoothly extends from the µ to the T axis. For mπ,vac =
321 MeV the critical point sits on the T = 0 axis, and for
mπ,vac > 321 MeV there is no phase transition at all. Of course
the precise numbers depend on the constants in this model,
such as the vacuum σ mass and what value one assigns to the
coupling of the quark field to the σ field, but the results are in
line with expectations [12]. In particular, the authors of Ref. [3]
found Tc = 99 MeV and µc = 621 MeV using the physically
observed pion mass. In Ref. [3] the mean-field approximation

FIG. 3. (Color online) Phase diagram of this model for illustrative
values of the vacuum pion mass. The solid curves represent a
first-order phase transition, terminating at a critical point where the
transition is second order. For zero vacuum pion mass the curve is
first order all the way from one axis to the other.
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FIG. 4. Phase diagram of this model for a vacuum pion mass of
35 MeV. The solid curves represent a first-order phase transition,
terminating at a critical point where the transition is second order.
For this value of the vacuum pion mass there are two critical points.

was used whereas in the present work we also include thermal
fluctuations in the meson and quark fields, and in addition
in that paper the vacuum σ mass was fixed at 600 MeV
compared to the present value of 700 MeV. The increase in
Tc and decrease in µc compared to our results is consistent
with a sort of universal curve, as exemplified by Fig. 3.

Something very interesting happens as the vacuum pion
mass is decreased from 50 MeV to 0. Figure 4 shows the
phase diagram for a vacuum pion mass of 35 MeV. There
are now two critical points! There is a line of first-order phase
transition beginning on the µ axis and arching to the left to end
at a critical point of µc1 ≈ 725 MeV and Tc1 ≈ 92 MeV and
there is another line of first-order phase transition beginning
on the T axis and arching to the right to end at a critical point
of µc2 ≈ 240 MeV and Tc2 ≈ 137 MeV. In the vicinity of µ =
575 MeV and T = 110 MeV the latent heat gets pinched to
zero for some critical value of the vacuum pion mass between
0 and 35 MeV. We have not attempted to pinpoint the exact
value of the vacuum pion mass since it is quite numerically
intensive and depends on all the other parameters in the model,
as well as the structure of the model itself.

The latent heat along the critical curve is plotted against T

in Fig. 5 for vacuum pion masses of 0, 35, and 138 MeV. At
T = 0, corresponding to large chemical potential, the latent
heats are on the order of 270 MeV/fm3. Where they go to zero
is a critical point. Note the nonzero latent heat in the bottom
right corner of the figure; it corresponds to the region in the
upper left corner of Fig. 4. In that region for that value of
vacuum pion mass the latent heat is very small, less than about
10 MeV/fm3. For not much larger values of the vacuum pion
mass this latent heat shrinks to zero.

The results shown in Fig. 3 illustrate the conventional view
on the nature and location of the critical point.1 The result

1The conventional point of view could mean that the transition at
µ = 0 is either first or second order for zero quark masses.

FIG. 5. (Color online) Latent heat along the critical curve for
various vacuum pion masses. The critical point corresponds to the
vanishing of the latent heat. Note that for a vacuum pion mass of
35 MeV there is a second region in the bottom right corner.

shown in Fig. 4 is unconventional or exotic. To the best of
our knowledge, this is the first time a model calculation has
resulted in such a phase diagram. It is well known that the
nature of the phase transition or crossover for two flavors
of quarks is sensitive to such details as the strength of the
axial U(1) anomaly and the value of the vacuum σ mass.
For example, see Refs. [23–25]. Even for two flavors of
massless quarks with µ = 0 the order of the transition is
not known. In particular, the authors of Ref. [26] found that
their Monte Carlo results were substantially consistent with a
first-order transition with respect to scaling of the specific heat
and the chiral condensate, but not with respect to the chiral
susceptibility. It cannot be expected that a model as simple as
the one studied here can make definitive predictions for what
actually happens in QCD with the observed values of the quark
masses. However, it can serve to illustrate the possibilities.

V. CONCLUSION

We have utilized a relatively simple yet self-consistent
model to study the curve of chiral phase transitions in the plane
of temperature and baryon chemical potential as a function of
the vacuum pion mass. For a range of vacuum pion mass
from zero to some critical value, which for the parameters
we have chosen in this paper is less than 35 MeV, there is
a continuous curve of first-order phase transition from the
T axis to the µ axis. As the vacuum pion mass increases,
two critical points emerge; this is an unconventional or exotic
picture. Further increase in the pion mass causes one critical
point to hit the T axis and disappear while the other critical
point moves to smaller T and larger µ. For a pion mass of
321 MeV this remaining critical point hits the µ axis and also
disappears. Changing the other parameters in the model, such
as the vacuum σ mass or the strength of the coupling of the
quarks to the chiral fields, will obviously change the particular
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values of the pion masses for which two, one, or no critical
points exist. The existence and behavior of the critical point at
large T and small µ is consistent with the lattice calculations
of de Forcrand and Philipsen [10]. (A recent preprint by
Fukushima [27] shows that the Nambu Jona-Lasinio model
with sufficiently strong vector coupling also supports a critical
point at large T and small µ.) The existence and behavior of
the critical point at small T and large µ is the conventional
picture. The model presented here shows that both pictures
can coexist for a range of pion masses. More details on the
numerical solutions as well as results when the aforementioned
parameters are varied will be presented elsewhere [21].

Further work with this and related models can be easily
identified. It would be interesting to extend the σ model to
include strangeness and to vary both the vacuum pion and
kaon mass using the self-consistent techniques of the present
paper. It should be straightforward to calculate shear and bulk
viscosities and thermal conductivity along the lines of Refs.
[28,29]. These transport coefficients could be used in fluid
dynamic modeling of heavy-ion collisions at FAIR and for
low-energy runs at RHIC. These projects are under current
investigation.
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APPENDIX

To solve the equations of motion one needs the derivative
of

Uquark = −(T lnZquark)/V (A1)

with respect to �,〈
∂Uquark

∂�

〉
= g2〈σA(m)〉, (A2)

where the function A is the fermionic analog of the mesonic
mean square fluctuations,

A(m) = 2
∂Uquark

∂m2

= 6

π2

∫ ∞

0
dp

p2

E

[
1

eβ(E−µ) + 1
+ 1

eβ(E+µ) + 1

]
. (A3)

Within the current approach the quark condensate can be
expressed as

〈ψ̄ψ〉 = 1

g

〈
∂Uquark

∂σ

〉
= g〈σA(m)〉. (A4)

One also needs the second derivatives〈
∂2Uquark

∂�2

〉
= g2

〈
A(m) + 2g2σ 2 ∂A

∂m2

〉

= g2

〈�2〉 〈�(v + �)A(m)〉,
〈
∂2Uquark

∂π2
i

〉
= g2

〈
A(m) + 2g2π2

i

∂A

∂m2

〉

= g2〈
π2

i

〉 〈π2
i A(m)

〉
, (A5)

where the right-hand sides are derived by using the Hartree
approximation in the series representation of the thermal
averaging process. The required derivative is

∂A

∂m2
= − 3

π2

∫ ∞

0
dp

1

E

[
1

eβ(E−µ) + 1
+ 1

eβ(E+µ) + 1

]
. (A6)

One also requires the averages of the mesonic potential and
its derivatives. For the pressure and energy density one needs
the averaged potential itself,

〈U 〉 =
〈
λ

4
(σ + π2 − f 2)2 − Hσ

〉
. (A7)

For the equation of motion one needs the first derivative of the
bare potential,〈

∂U

∂�

〉
= λv(v2 + 3〈�2〉 + 〈π2〉 − f 2) − H, (A8)

and for the mesonic masses one needs the second derivatives〈
∂2U

∂�2

〉
= λ(3v2 + 3〈�2〉 + 〈π2〉 − f 2), (A9)

〈
∂2U

∂π2
i

〉
= λ

(
v2 + 〈�2〉 + 5

3
〈π2〉 − f 2

)
. (A10)
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