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Stability of nuclei in peripheral collisions in the JAERI quantum molecular dynamics model
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The JAERI quantum molecular dynamics (JQMD) model has been successfully used for a long time now to
describe many different aspects of nuclear reactions in a unified way. In some cases, however, the JQMD model
cannot produce consistent results: First, it lacks a fully relativistically covariant approach to the problem of
molecular dynamics; second, the quantum-mechanical ground state of nuclei cannot be faithfully reproduced in
a semiclassical framework. Therefore, we introduce R-JQMD, an improved version of JQMD that also features
a new ground-state initialization algorithm for nuclei. We compare the structure of the two codes and discuss
whether R-JQMD can be adjusted to improve JQMD’s agreement with measured heavy-ion fragmentation cross
sections.
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I. INTRODUCTION

The relevance of intermediate-energy heavy-ion reactions
(between a few hundred and a few thousand A MeV) for
radiation-transport problems has always motivated, at least
partly, the study of such processes. Besides the exciting
theoretical puzzles (such as the determination of the param-
eters of the nuclear equation of state [1,2], the nature of the
multifragmentation phenomenon [3,4], and the flow of nuclear
matter [1]) that have driven research since intermediate-energy
heavy-ion beams became available, applications in other fields
of physics, such as the propagation of the galactic cosmic rays
(GCRs) [5], have always motivated the development of reliable
models.

More recently, the advent of the International Space
Station and the prospect of long-term manned interplanetary
missions have introduced yet another challenging context for
the problem of the transport of energetic cosmic rays in matter
and, more specifically, for the improvement of nuclear-reaction
models. Heavy ions in GCRs are in fact responsible for
the delivery of a considerable share of the radiation dose
outside the protective influence of Earth’s atmosphere and
magnetic field, in spite of their relatively low abundance [6].
Presently, the only feasible countermeasure to GCR exposure
is represented by shielding, which can soften the composition
of the radiation field and reduce exposure risks; however,
quantitative risk estimates must rely on the detailed knowledge
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of the radiation spectra inside the spacecraft, which requires
the employment of an accurate nuclear-reaction model.

The JAERI quantum molecular dynamics (JQMD) model
[7] was developed in the beginning of the 1990s with the intent
to provide a unified description of various aspects of nuclear
reactions; it belongs to the family of quantum molecular
dynamics (QMD) models [2]. By feeding the output of JQMD
to a statistical decay code such as the statistical decay model
(SDM) [7] or the generalized evaporation model (GEM) [8],
one obtains a hybrid model that can describe accurately both
the fast dynamical stage and the slow statistical stage of the
reaction and, thus, can reproduce measured double-differential
cross sections for the production of protons and neutrons in
proton-nucleus and nucleus-nucleus collisions [7].

There are other observables, however, that JQMD does not
reproduce as accurately as double-differential cross sections
for nucleon production; for example, fragment yields in
heavy-ion reactions are sometimes in sensible discrepancy
with the experimental data [9], especially for soft, peripheral
reactions that only entail stripping of a small number of
nucleons. The cause of these shortcomings can be traced
back to a small intrinsic instability of the ground state of the
JQMD nucleus, which in fact can emit nucleons spontaneously
because of potential-energy fluctuations and alter significantly
the final yields of soft, peripheral reactions (since hard, central
collisions are not very sensitive to the details of the initial
configuration).

These instabilities arise for two main reasons: First, the
JQMD formalism is not completely relativistically covariant,
which implies that the dynamics of a nucleus is somehow
dependent on the frame of reference used. Second, the
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ground state in which JQMD nuclei are initialized is only
an approximation; in all QMD models, it is conceptually
impossible to create the “real” ground state, that is, the
lowest-energy eigenstate of the quantum-mechanical n-body
Hamiltonian operator, which is influenced by Pauli’s exclusion
principle. (In a semiclassical n-body theory, such as QMD
models, Pauli’s principle is not taken into account and particles
are thus allowed to move closer to each other.) Thus, if
we want to describe peripheral nucleus-nucleus reactions
consistently in the JQMD framework, it is necessary to switch
to a relativistically covariant formalism and to improve the
ground-state initialization algorithm, to suppress spurious
potential-energy fluctuations and particle decays.

This paper describes R-JQMD, a new version of the
JQMD model that includes a covariant treatment of two-body
interaction and scattering and that incorporates an improved
ground-state initialization algorithm. Other relativistic QMD
models have already been described [10,11]. Section II will
summarize briefly the structure of the JQMD model and point
out some of its limitations; Sec. III describes the R-JQMD
model; Sec. IV presents some results of calculations with
R-JQMD; in Sec. V we discuss the possibility of improving the
accuracy of heavy-ion fragmentation cross sections by tuning
the impact-parameter distribution; finally, in Sec. VI, we draw
some conclusions.

II. STRUCTURE AND LIMITATIONS OF THE JQMD CODE

Let us summarize here briefly the main assumptions of the
JQMD model.

A. Generic assumptions

Nucleons are assumed to be described by coherent states of
fixed width:

ϕi(r) ≡ 1

(2πL)3/4 exp

(
− (r − r i)2

4L
+ ı

h̄
r · pi

)
, (1)

where r i and pi are the centroids of the configuration-space
and momentum-space distributions of the ith nucleon. The
total wave function is taken to be the direct product of the
single-particle wave functions,

ψ(r1, r2, . . . , rN ) ≡
∏

i

ϕi(r i), (2)

which is equivalent to assuming that the particles are distin-
guishable. Of course, nucleons are actually indistinguishable,
but it is assumed that their fermionic nature can be mimicked
by a suitable choice of the two-body potential.

B. Dynamics

The dynamical evolution of the system alternates a transport
step and a collision step. In the transport step, each particle
moves (semiclassically) under the influence of the two-body
potentials generated by all the other particles; in the collision
step, particles scatter on each other and/or decay, producing
new particles or resonances.

1. Equations of motion

All the transport is described by the phase-space trajectories
[r i(t), pi(t)] of the particles; the equations of motion for the
evolution of these trajectories are derived from a generalized
Ritz variational principle, since a wave function of the form
of Eq. (2) (e.g., with fixed packet widths) cannot solve
Schrödinger’s equation exactly. If a Hamiltonian operator of
the form

Ĥ ≡
∑

i

(√
p̂2

i + mi
2
)

+ V̂ (3)

is assumed, the equations of motion for the centroids r i and
pi have the form of Hamilton’s equations and read

ṙ i = pi

m
+ ∂〈V̂ 〉

∂ pi

, (4a)

ṗi = −∂〈V̂ 〉
∂ r i

. (4b)

The effective potential V̂ is assumed to include a Skyrme-
type interaction, a Coulomb interaction, and a symmetry term.
Since all these two-body interactions depend on the distance
r ij between the centroids of the particles i and j in configura-
tion space, which is not a Lorentz scalar, the potential will not
be a Lorentz scalar, either. Relativistic covariance is partially
restored by substituting r2

ij with a Lorentz scalar such as

r̃2
ij ≡ −qij

2 + (qij · pij )2

pij
2

, (5)

where qij ≡ qi − qj is the four-dimensional distance and
pij ≡ pi + pj is the total four-momentum. The scalar
r̃2

ij reduces to the square of the normal distance in the
center-of-mass frame of particles i and j , which is acceptable
because this is the only frame where the two particles are
treated on the same footing. The substitution, however, makes
the effective potential momentum dependent.

2. Two-body collisions

Stochastic collisions are introduced phenomenologically,
similarly to the BUU/VUU approach, respecting energy and
momentum conservation. Particles are assumed to collide if
their (covariantly defined) impact parameter is smaller than
a given value determined by their cross section. Presently,
JQMD includes production of �(1232) and N∗(1440) res-
onances and their decays into baryons and pions. Since no
essential modifications have been made to the collision step
in the R-JQMD code, we refer the reader to Ref. [7] for more
details about how cross sections are parametrized in JQMD.

C. Initialization

Before the dynamics of a heavy-ion reaction can be
simulated, it is necessary to initialize the nuclei in a suitable
state. In nature, the two colliding nuclei are usually in their
ground states; however, as we have anticipated in Sec. I,
there is an intrinsic, conceptual difficulty in the definition of
ground state in a semiclassical model such as JQMD. The
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lowest energy state in JQMD is more tightly bound than the
quantum-mechanical ground state, because the kinetic energy
of the nucleons can be reduced without violating Pauli’s
principle (which does not apply to JQMD). Thus, the state
in which JQMD nuclei are actually initialized is not the lowest
energy state of the model, but rather an adjusted configuration
that is optimized to approximate some characteristics of the
quantum-mechanical ground state.

In particular, particle positions are drawn randomly from
a Woods-Saxon-type distribution, whereas momenta are uni-
formly sampled in a sphere of radius equal to the local Fermi
momentum; the single-nucleon wave packet width is ignored
at this stage—it influences the dynamics only through the
equations of motion. A minimum distance is imposed between
particle positions, to reduce density fluctuations. The state
so obtained is rejected if any of the particles has a positive
total energy or if the Pauli principle is violated; this condition
is checked by calculating the phase-space overlap of each
nucleon with all the others [12].

If the state created has been accepted, its binding energy
is adjusted to reproduce the value provided by a simple
liquid-drop formula [13] by “heating up” or “cooling down”
the nucleus: One lets the nucleons evolve according to their
equations of motion (as described in Sec. II B1) with the
addition of a (positive or negative) frictional term, which
provides or subtracts the necessary amount of energy over
a few time steps.

Once the optimal ground-state energy is attained, the
nucleus is Lorentz-boosted to the center-of-mass frame of the
reaction.

D. Reaction and cluster identification

The initialization procedure is performed for both projectile
and target nuclei, which are then boosted against each other
in their center-of-mass frame. We interrupt the evolution of
the system after 100–150 fm/c; at this point we identify
the prefragments, we calculate their excitation energies, and
we input this information into a statistical decay code,
which handles the de-excitation of the prefragments and the
production of the final fragments. The exact switching time
between the dynamical stage and the decay stage is not very
important as long as it is chosen in the interval indicated [7].

The identification of prefragments is done by a simple
chain cluster rule: Two nucleons are assumed to belong to
the same cluster if their phase-space distance is small enough.
The excitation energy of the prefragments is calculated by
subtracting the ground-state energy (according to the liquid-
drop formula) from the prefragment total energy.

E. Limitations

Although the JQMD model has been used with great
success in the past to reproduce numerous measurable aspects
of nuclear reactions, it was not until recently [9,14] that a thor-
ough benchmark of fragment yields in heavy-ion reactions was
attempted. The first results are encouraging but, at the same
time, they unveiled a fundamental ambiguity in the model.

Impact parameter (fm)
0 2 4 6 8 10 12

E
la

st
ic

-c
o

lli
si

o
n

 p
ro

b
ab

ili
ty

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

JQMD

R-JQMD

Sum of geometrical radii

FIG. 1. Elastic-collision probability as a function of impact
parameter for 1 A GeV 40Ca + 40Ca.

We can illustrate this problem with Fig. 1, where the dashed
line shows the probability of having an elastic collision as a
function of the impact parameter, for a 40Ca + 40Ca reaction
at 1 A GeV, calculated with JQMD. A collision is judged to be
elastic if no new particles are emitted (in either reaction step).
(Here, the GEM code was used for the decay step.) Since the
nuclear force has a very short range, we should expect that the
probability for elastic collisions approach one as the impact
parameter increases; however, Fig. 1 shows that this does not
happen. Even at impact parameters much larger than the sum of
the radii of the nuclei involved, inelastic collisions are still very
likely. The nuclei considered here are also light enough that any
other inelastic channel (such as electromagnetic dissociation)
can safely be neglected.

This result (whose validity is not restricted to the system
discussed here) demonstrates that most peripheral collisions
are spuriously labeled as inelastic because of spontaneous
emission of nucleons or other particles. There are two
mechanisms that could be responsible for this: Either nucleons
are spontaneously emitted during the dynamical step of the
reaction or nuclei accumulate in the dynamical step some
unphysical excitation energy that is released in the decay step
by emission of nucleons or γ rays.

Why do we see these fluctuations between potential and
kinetic energy? One reason is that, even though the effective
potential 〈V̂ 〉 is defined to be a Lorentz scalar [owing to
the prescription defined by Eq. (5)], the equations of motion
[Eqs. (4)] are not Lorentz-covariant since the Hamiltonian
[Eq. (3)] is written noncovariantly as the sum of kinetic energy
and potential energy; the covariant version of Eq. (3) is

H =
∑

i

√
pi

2 + mi
2 + 2miVi, (6)

where Vi is the effective potential felt by the ith particle.
Equation (6) also shows how particles pick up an effective mass
m∗

i ≡
√

mi
2 + 2miVi as an effect of the interaction with the

other particles. The noncovariance of the equations of motion
of JQMD means that the dynamics will be different depending
on the frame of reference; hence, when nuclei are boosted to
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the reaction frame, spurious fluctuations can arise and cause
emission of particles in the dynamical step or in the decay step.

It is possible to modify the equations of motion by
substituting the covariant Hamiltonian Eq. (6) into Eq. (3);
formal justification for this will be given in Sec. III. However,
it is important to remark here that the equations of motion
are not the only source of fluctuations; the initial condition
also plays an important role. Recall (see Sec. II C) that the
initial condition is not the classical ground state of the system,
but a configuration optimized to reproduce some known
properties of the quantum-mechanical ground state. How this
configuration is realized in practice is at least as important
as the equations of motion for the stability of the system. In
fact, it is always possible that one of the particles is ejected
while the remaining bind together more closely. Furthermore,
we should always keep in mind that any QMD model is
a semiclassical n-body theory and, as such, exhibits chaos:
thus, even if we knew exactly how to produce “stable” initial
conditions, the evolution of the system would soon drift away
from the trajectory we planned because (at least) of numerical
noise. For all these reasons, we anticipate here that the problem
of the ground-state instability cannot be solved solely by
the implementation of a relativistically covariant formalism;
however, as we will discuss in the following section, it is
possible and necessary to approach the problem empirically.

III. DESCRIPTION OF THE R-JQMD CODE

The R-JQMD code is a relativistically covariant version
of JQMD that includes an empirically improved initialization
procedure for nuclei. A similar but simpler model is described
in Ref. [15].

A. Dynamics

1. Equations of motion

Currie, Jordan, and Sudarshan proved in the beginning
of the 1960s [16] that the only dynamical system on a 6N -
dimensional phase space that admits a covariant Hamiltonian
description is a collection of N noninteracting particles (the
no-interaction theorem); thus, if one wants to construct a
relativistically covariant Hamiltonian formalism for a system
of N interacting particles, one needs to introduce additional
degrees of freedom.

A covariant Hamiltonian for the N -particle system can be
expressed in terms of 8N variables, 4N positional coordinates
qiµ, and 4N momentum coordinates piµ, which satisfy the
four-dimensional Poisson brackets:

[piµ, qjν] = gµνδij ,

[qiµ, qjν] = [piµ, pjν] = 0.

Since we want to describe physical trajectories as world
lines in the 8N -dimensional phase space 	(8N ), we have to
eliminate 2N − 1 extra degrees of freedom and define a global
time parameter t . This can be achieved with the help of 2N

constraints

φi = 0(i = 1, . . . , 2N ).

According to Dirac’s formulation of the constrained Hamil-
tonian system [17,18], the “Hamiltonian” is constructed as a
linear combination of 2N − 1 constraints

Hc =
2N−1∑
i=1

uiφi,

with unknown Lagrange multipliers ui(t). Note that the 2N th
constraint is a definition of the time parameter t .

Since the constraints must be fulfilled for all times, their
time derivatives with respect to the global time parameter t

must be zero; thus, one obtains the relations

dφi

dt
= ∂φi

∂t
+ [Hc, φi] ≈ 0, (7)

where the symbol ≈ indicates that the equality has to be
satisfied on the physical phase space [i.e., the 6N -dimensional
hypersurface 	(6N ) defined by the constraints]. Equation (7)
is rewritten as

2N−1∑
j=1

Sijuj ≈ −∂φ2n

∂t
δi,2N

with

Sij ≡ −[φi, φj ] = −
N∑

k=1

(
∂φi

∂pk

∂φj

∂qk

− ∂φi

∂qk

∂φj

∂pk

)
. (8)

Here we should observe that the matrix S is not freely
dependent on the momenta pi and positions qi . It is defined
along the physical trajectory of the particles and the Lagrange
multipliers ui depend only on t , not on pi and qi . The equation
of motion are given by

dqi

dt
= ∂Hc

∂pi

=
2N−1∑

j

uj

∂φj

∂pi

, (9a)

dpi

dt
= −∂Hc

∂pi

= −
2N−1∑

j

uj

∂φj

∂qi

. (9b)

Following Refs. [10,11], we choose the on-mass-shell condi-
tion as follows:

φi ≡ p2
i − m2

i − 2miṼi (i = 1, . . . , n), (10)

where mi and Ṽi are the mass and the quasipotential of the ith
particle, respectively. The total energy is given by

ET =
∑

i

(pi0 − mi) =
∑

i

(√
p2

i + m2
i + 2miṼi − mi

)
;

in the nonrelativistic limit, this becomes

ET �
∑

i

{
p2

i

2mi

+ Ṽi

}
.

By choosing the quasipotential under the condition
∑

i Ṽi =
V NR

int , we can get a relativistic formulation consistent to the
nonrelativistic framework.

In the nonrelativistic framework the interaction potential
depends on the square of the two-particle distance. In the rel-
ativistic framework we make this argument Lorentz-invariant
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by operating the substitution

r ij → r̃ ij = −q2
T ij = −q2

ij + (qij · pij )/pij 2

with

qij = qi − qj , pij = pi + pj .

The squared transverse four-distance q2
T ij is a Lorentz scalar

and reduces to the usual squared distance r2
ij in the center-of-

mass frame of particles i and j [10,11]. This prescription gives
the JQMD potential, which reads [7]

V = A

2ρ0

∑
i

〈ρi〉 + B

(1 + τ )ρ0
τ

∑
i

〈ρi〉τ

+ 1

2

∑
i

∑
j �=i

cicj

e2

|r̃ ij | erf(|r̃ ij |/
√

4L)

+ Cs

2ρ0

∑
i

∑
j �=i

(1 − 2|ci − cj |)〈ρij 〉,

where

〈ρi〉 =
∑
j �=i

〈ρij 〉,

〈ρij 〉 = (4πL)−3/2 exp(−r̃2
ij /4L),

the variable ci is one for protons and zero for neutrons, e is
the elementary charge, and erf is the error function (for the
numerical values of the free parameters, see Ref. [7]). The
one-particle potentials are thus defined as

Ṽi ≡ A

2ρ0
〈ρi〉 + B

(1 + τ )ρ0
τ
〈ρi〉τ

+ 1

2

∑
j �=i

cicj

e2

|r̃ ij | erf(|r̃ ij |/
√

4L)

+ Cs

2ρ0

∑
j �=i

(1 − 2|ci − cj |)〈ρij 〉. (11)

To obtain the equations of motion we need to introduce
N further constrains, called “time fixations,” to determine the
time coordinates q0i . In the full relativistic QMD formulation
[10,11], time fixations are chosen in a rather involved way
and make it necessary to invert the 2N -dimensional matrix Sij

[Eq. (8)] at all time steps, consuming a great deal of CPU time.
In high-energy reactions, two-body collisions are dominant;

the purpose of the Lorentz-covariant formalism is only to
describe relatively low energy phenomena between particles in
a fast-moving medium. Therefore, we assume a simpler form
for the time fixations, namely we set the time coordinates of all
the particles to be the same. Explicitly, we use the following
constraints:

φi+N ≡ a · (qi − qN ) (i = 1, . . . , N − 1), (12a)

φ2N ≡ a · qN − t. (12b)

If we choose the four-vector a as (1; 0) in the calculation
frame, we explicitly break Lorentz covariance and all the
time coordinates become equal to t (q0i = t). The zeroth
components of the positional coordinates, q0i , have the
meaning of time only in the calculation frame.

In the Skyrme-type interaction [Eq. (11)], the mean field is
much smaller than the mass plus the kinetic energy; that is,

p2
i + m2

i 
 2miṼi . (13)

We can then take the energy coordinate p0i to be equal to mass
plus kinetic energy in the argument of the quasipotential Ṽi .
Under this approximation, the constrains satisfy

∂φi

∂p0j

= 2δijp0i (i = 1, . . . , N ),

∂φi+N

∂qj

= 2a(δij − δjN ) (i �= N ),

∂φ2N

∂qj

= 2aδjN .

Then Sij given by

Si+N,j = 2
(
p0

i − p0
N

)
δij (1 − δiN ) + 2p0

i δij δiN ,

Si+N,j+N = 0,

and the Lagrange multipliers ui are the solutions of the
following equations:

N∑
j=1

Si+N,juj = 2p0
i ui − 2p0

NuN = 0 (i �= N ),

N∑
j=1

S2N,juj = 2p0
NuN = 1,

namely

ui = 1

2p0
i

= 1√
p2

i + m2
i + 2miṼi

(i = 1, . . . , N).

Substituting these ui into Eqs. (9), we get the equation of
motions with respect to r i and pi as

d r i

dt
= pi

2p0
i

+
∑

j

2mj

2p0
j

∂Ṽj

∂ pi

= ∂

∂ pi

∑
j

√
p2

j + m2
j + 2mj Ṽ , (14a)

d pi

dt
= −

∑
j

2mj

2p0
j

∂Ṽi

∂ r i

= ∂

∂ r i

∑
j

√
p2

j + m2
j + 2mj Ṽ . (14b)

2. Cluster separability and world-line invariance

Our new formalism satisfies the properties of cluster sepa-
rability and world-line invariance. Cluster separability means
that if the system splits into clusters whose four-distances
are spacelike and tend to infinity, then the dynamics of each
of the clusters must be independent of the others. The proof
that constraints of the form of Eqs. (10) and (12) satisfy this
natural requirement has been given by Balachandran et al. [19];
therefore, we only need to consider world-line invariance.
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The physical phase space 	(6N ) defined by our constraints
Eqs. (10) and (12) is not Poincaré-invariant; however, it is
possible to construct a natural representation of the Poincaré
group in the physical phase space. Consider an element G

of the Lie algebra of the Poincaré group; in general, the
subgroup of canonical transformations generated by G breaks
the constraints since

[G,φi] �= 0

for some i. Define the modified generator

G∗ ≡ G −
2N∑

r,s=1

[G,φr ]Crsφs, (15)

where C = −S−1. It can be easily proven [10] that, for
arbitrary G and Ḡ,

[G∗, Ḡ∗] ≈ [G, Ḡ],

which means that the starred Lie algebra is isomorphic to the
nonstarred one. Moreover,

[G∗, φi] ≈ 0 ∀i.

Thus, the starred generators G∗ generate a canonical repre-
sentation of the Poincaré group that respects the constraints;
we will refer to transformations in this group as “starred” for
simplicity.

Consider now the single-particle Minkowski subspace of
the spatial coordinates of one of the particles that can be
obtained by projection of the complete phase space 	(8N ).
In principle, we have two natural ways of defining Poincaré
transformations on this space:

(i) Poincaré transformations are the projections of the orbits
of the starred Poincaré group onto the Minkowski
subspace of spatial coordinates.

(ii) Poincaré transformations are the affine transformations

q ′µ ≡ µ
νq

ν + kµ.

The requirement of world-line invariance is that these two
definitions should be compatible, in the following sense: Given
a particle world line, application of the two definitions of
Poincaré transformations must produce the same set of events.
It is allowed that a given point q is transformed into different
points q∗ and q†, as long as q∗ and q† belong to the same world
line.

It is sufficient to show world-line invariance for infinites-
imal transformations, and for simplicity of notation we
assume that G∗ is an element of the Lorentz group (i.e.,
we do not consider translations). The infinitesimal canonical
transformation generated by G∗ is(

δq
µ

k

)
canonical = [

G∗, qµ

k

]
δλ,

where δλ is a small parameter. The corresponding infinitesimal
linear transformation is(

δq
µ

k

)
geometrical = ωµ

νq
ν
k δλ,

with ωµν = −ωνµ.

World-line invariance amounts to requesting that
(δqµ

k )canonical and (δqµ

k )geometrical belong to the same world line;
that is,(

δq
µ

k

)
canonical − (

δq
µ

k

)
geometrical = [

H, q
µ

k

]
fkδλ, (16)

for some phase-space function fk . Using Eq. (15) and
remembering that [

G, q
µ

k

] = ωµ
νq

ν
k ,

we can rewrite Eq. (16) as

2N∑
r,s=1

[G,φr ]Crs

[
φs, q

µ

k

] ≈ [
H, q

µ

k

]
fk (k = 1, . . . , N ). (17)

This is the world-line invariance condition.
To show that R-JQMD satisfies Eq. (17), we observe that

Cij = 0, Ci+N,j+N � 0 (i, j = 1, . . . , N );

Eq. (17) becomes

N∑
r,s=1

[G,φr ]Cr+N,s

[
φs, q

µ

k

] ≈ [
H, q

µ

k

]
fk (k = 1, . . . , N ).

However, for s = 1, . . . , N ,

[
φs, q

µ

k

] = δsk

[
φk, q

µ

k

] = 2δsk

[
φk

2p0,k

p0,k, q
µ

k

]

= 2δsk

(
p0,k

[
φk

2p0,k

, q
µ

k

]
+ φk

2p0,k

[
p0,k, q

µ

k

])

= 2δsk

(
p0,k

[
H, q

µ

k

] + φk

2p0,k

δ
µ

0

)
≈ 2δskp0,k

[
H, q

µ

k

]
;

thus,

N∑
r,s=1

[G,φr ]Cr+N,s

[
φs, q

µ

k

]

≈ [
H, q

µ

k

] (
2p0,k

N∑
r=1

[G,φr ]Cr+N,k

)
,

which is of the form of Eq. (17) and proves world-line
invariance.

3. Collisions

The treatment of two-body collisions has been left substan-
tially unaltered in R-JQMD: production and decay of �(1232)
and N∗(1440) resonances are included, as well as production
and absorption of pions. The production of resonances of
higher mass has not been included yet: Thus, neither JQMD nor
R-JQMD can be applied to reactions with energy higher than
4–5 A GeV. Extension of the higher hadron-hadron collisional
processes is now in progress by introducing the cross sections
generated by the JAM code [20].

Although no new collision channel has been included in
R-JQMD, relativistic covariance introduces one important
difference about the way energy and momentum conservation
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are ensured, which we will illustrate by discussing elastic
nucleon-nucleon scattering (the idea being the same for all
collisions). The angular distribution of the scattering process is
assumed to be known and is computed according to Cugnon’s
parametrization [21–23]; a random angle is drawn from this
distribution, so the only quantity that must be determined
is the energy of the outgoing particles. In nonrelativistic
JQMD, this is done easily by applying energy and momentum
conservation. In relativistic JQMD, however, the ith particle
has an effective mass

m∗
i =

√
mi

2 + 2miVi (18)

that depends on the one-particle effective potential Vi and,
thus, on the momenta of all the particles. Since the collision
changes the particle momenta, it will also change all the
effective masses, which then must be determined iteratively
and self-consistently:

(i) start with the assumption that the outgoing particles keep
the same effective masses as before the collision;

(ii) use energy and momentum conservation to calculate the
particle energies after the collision;

(iii) recalculate the effective potentials Vi and effective
masses [according to Eq. (18)] for all the particles;

(iv) recalculate the total energy of the system;
(v) if the fractional change in total energy is smaller than

10−4, exit the loop; otherwise, go to step 2.

This procedure guarantees energy conservation for the
whole system, but at the same time it lengthens the time needed
for the calculation. In any case, the increase is not dramatic (of
the order of 10%–20%), since Eq. (13) ensures that more than
a couple of iterations are seldom necessary for convergence.

B. Initialization

As we have anticipated, the implementation of a relativisti-
cally covariant dynamics does not guarantee the stability of two
boosted nuclei in a very peripheral collision over the desired
time span. Since it is difficult to formulate an initialization
recipe that ensures stability, we decided to take a very simple
empirical approach.

The initial state of a nucleus is created in the same way as
in JQMD (Sec. II C), but an additional criterion is imposed:
The state is boosted in the reaction center-of-mass frame and
is let to evolve according to Eqs. (14) for the time span of the
reaction; the initial state is then accepted only if no nucleons
were emitted and potential-energy fluctuations are smaller than
the threshold for particle evaporation.

The new initialization criterion obviously slows down the
initialization procedure. For heavy nuclei the impact can be
quite large, because the integration of the equation of motion is
more time consuming and because it is more difficult to create
stable configurations. However, the additional criterion does
not have to be applied always; if the collision is sufficiently
central, chances are high that the collision would be inelastic
anyway. It is important to use the new initialization criterion
only for those impact parameters for which there is a non-
negligible probability of elastic collision. This simplification

speeds up the initialization procedure sensibly, since the
probability distribution of impact parameters must anyway
be cut at some maximum value: Thus, the additional criterion
needs to be applied only to a small fraction of all reactions.
Motivated by these considerations, we have chosen to apply the
additional initialization criterion only if the impact parameter
(in femtometers) is greater than A

1/3
P + A

1/3
T , where AP and

AT are the mass numbers of projectile and target.

IV. VALIDATION

We present in this section a comparison between the results
of calculations performed with R-JQMD and with JQMD.

A. Consistence of boosted wave packets

We begin by showing the relevance of a relativistic
treatment of nucleon-nucleon interactions. First, we want
to quantify the importance of the new equations of motion
[Eqs. (14)] for the dynamics of fast heavy ions. Ideally,
the time evolution of the system should be compatible with
transformations of the Lorentz group, in the following sense:
Given an initial condition, one must obtain the same final state
by letting the system evolve and then performing a Lorentz
transformation, or by performing the Lorentz transformation
first and then letting the system evolve.

The degree to which this is realized in JQMD/R-JQMD
can be expressed quantitatively in the following way: Let r i(t)
and pi(t) represent the trajectories of a system of nucleons
with respect to a center-of-mass observer and let r ′

i(t
′) and

p′
i(t

′) represent the same trajectories with respect to a boosted
observer. Note that we have to satisfy the requirement of equal
time for all particles, Eqs. (15); thus, we use the following
boost [24]:

rx,i(t) = r ′
x,i(t

′), ry,i(t) = r ′
y,i(t

′),
(19a)

rz,i(t) = γ [r ′
z,i(t

′) − βt ′],

px,i(t) = p′
x,i(t

′), py,i(t) = p′
y,i(t

′),
(19b)

pz,i(t) = [p′
z,i(t

′) − Pz]/γ,

t ′ = γ t, (19c)

where β is the boost velocity in units of c, γ is the correspond-
ing Lorentz factor, and Pz is the center-of-mass momentum
of the system. Given an initial condition [r i(0), pi(0)] in the
center-of-mass system, we derive boosted initial conditions
using Eqs. (19); then we integrate numerically the equations
of motion for both cases. The boosted phase-space coordinates
[r ′(t), p′(t)] can then be transformed back and compared with
the evolution of the center-of-mass system.

The comparison is carried out quantitatively by calculating
the phase-space overlap of center-of-mass and boosted wave
packets. Let |ϕ(r i , pi)〉i represent the wave packet of the ith
nucleon with position r i and momentum pi , as described by
Eq. (1). The overlap of two different states is given by

|〈ϕ(r ′, p′)|ϕ(r, p)〉i |2 = exp

[
− (r − r ′)2

4L
− L( p − p′)2

h̄2

]
.
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FIG. 2. Evolution of the average overlap [Eq. (20)] as a function
of the proper time of a 40Ca nucleus boosted at γ � 1.24.

The total wave function |ψ〉 is the direct product of the single-
particle wave functions:

|ψ〉 =
A⊗

i=1

|ϕ(r i , pi)〉i .

Thus, we define the average overlap � as

� ≡ |〈ψ ′|ψ〉|2/A =
(

A∏
i=1

|〈ϕ(r ′
i , p′

i)|ϕ(r i , pi)〉i |2
)1/A

= exp

[
−

A∑
i=1

(
(r i − r ′

i)
2

4L
+ L( pi − p′

i)
2

h̄2

)/
A

]
. (20)

Figure 2 shows the evolution of the average overlap of
a 40Ca nucleus boosted at γ � 1.24 as a function of the
proper time of the nucleus; the value of the Lorentz factor
corresponds to a 40Ca-40Ca collision in the center-of-mass
system, at 1 GeV/nucleon laboratory energy. The dynamics of
heavy-ion collisions is typically followed for about 100 fm/c
in the collision center-of-mass system, which corresponds
to (100 fm/c)/γ � 81 fm/c proper time. It is apparent that
R-JQMD’s equations of motion are much more stable than
JQMD’s over this time span.

B. Directed transverse momentum

We turn now to the effect of the new equations of motion
on measurable quantities. Not all observables in heavy-ion
collisions are sensitive to relativistic corrections; Danielewicz
and Odyniec [25] have identified transverse flow as a good
candidate to emphasize the effect of a relativistic treatment.
Therefore, as a measure of transverse flow, we show in Fig. 3 a
plot of the time evolution of the directed transverse momentum
p⊥,dir for a 40Ca + 40Ca reaction at 1 A GeV laboratory energy

0 10 20 30 40

−5

0

5

10

15

Time (fm/c)

P
⊥

,d
ir  (

M
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/c
)

R-JQMD

JQMD

FIG. 3. Time evolution of the directed transverse momentum
p⊥,dir for a 40Ca + 40Ca reaction at 1 A GeV laboratory energy and
impact parameter b = 4.0 fm. The R-JQMD results are qualitatively
consistent with the results of other relativistic QMD models [11,26].

and impact parameter b = 4.0 fm. The directed transverse
momentum is defined as

p⊥,dir ≡
∑

i

p⊥
i sign

(
p

‖
i

)
,

where the sum runs on all particles in the system, p‖
i represents

the momentum component parallel to the beam axis in the
center-of-mass frame, and p⊥

i is the momentum component
perpendicular to the beam direction and lying in the reaction
plane. Figure 3 demonstrates that R-JQMD predicts about
1.5 times larger directed transverse momentum than JQMD,
in qualitative agreement with the results obtained by other
relativistic QMD-like codes [11,26].

Observables other than those mentioned here are not as
sensitive to relativistic effects; thus, one should not expect large
differences in the results from R-JQMD and JQMD. We have
verified this by computing double-differential energy-angle
cross sections for production of neutrons in proton-nucleus
collisions (Figs. 4 and 5). The JQMD results are taken from
Ref. [7], and the experimental data are from Refs. [27] and [28].
It is clear that R-JQMD and JQMD do not differ very much as
far as neutron spectra are concerned.

Finally, we checked the efficiency of the new ground-
state initialization prescription by running nucleus-nucleus
collisions at impact parameter equal to a few nuclear radii.
We found that more than 90% of such collisions are judged as
elastic by R-JQMD, which shows that the new initialization is
quite effective. (See also Fig. 1, where the solid line depicts
the elastic-collision probability for R-JQMD.) Spontaneous
particle emission is almost never observed; the small, re-
maining fraction of spurious inelastic events is usually due
to potential-energy fluctuations.

V. HEAVY-ION FRAGMENTATION CROSS SECTIONS

In nuclear physics experiments, for example in measure-
ment of heavy-ion fragmentation, the impact parameter of the
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FIG. 4. Double-differential energy-
angle cross sections for the production
of neutrons in the reaction between
113-MeV protons and iron, with data
taken from Ref. [27], on a log scale
(left) and on a linear scale (right). No
significant difference can be observed
between JQMD and R-JQMD.

reaction remains always unobserved.1 Thus, it is only possible
to measure impact-parameter-integrated quantities, such as
fragmentation cross sections, which can subsequently be used
to validate nuclear-reaction and statistical-decay models such
as JQMD/R-JQMD. To do this, it is necessary to impose a
cutoff value for the impact parameter in the calculation, above
which no collision is considered. The distribution of impact
parameters below the cutoff value bmax is usually taken to be
triangular; that is, the probability p(b)db of collisions with

1It is nevertheless possible to operate a gross discrimination between
central and peripheral collisions by looking, for example, at the
reaction multiplicity.

impact parameter between b and b + db is given by

f (b) =
{

2b
/
b2

max if b � bmax,

0 if b > bmax.
(21)

However, if ground-state instabilities affect fragmentation
yields in peripheral collisions (as happens in JQMD), different
choices of bmax will produce different fragmentation cross
sections. The effect can be sizable; in previous JQMD
calculations [9,29], in fact, the bmax value had been fixed
to fit measured total charge-changing cross sections. Ideally,
nonetheless, one would like to keep the number of free
parameters in the code to a minimum and eliminate the
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FIG. 5. Double-differential energy-
angle cross sections for the production of
neutrons in the reaction between 3-GeV
protons and lead, with data taken from
Ref. [28], on a log scale (left) and on
a linear scale (right). No significant
difference can be observed between
JQMD and R-JQMD.
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FIG. 6. Fragmentation cross sections for 1 A GeV 56Fe on Al, cal-
culated with different impact-parameter distributions. Experimental
data are taken from Ref. [30].

dependency of the fragmentation cross sections on the value
of bmax.

It would seem that this program is now feasible with
R-JQMD. As long as bmax is larger than a certain threshold,
in fact, the cross sections will exhibit little sensitivity to the
exact cutoff; for example, for 1 A GeV 40Ca + 40Ca this
threshold lies around 11 fm, as Fig. 1 suggests. Unfortunately,
“asymptotic” cross sections (i.e., those calculated with a very
large impact parameter value) agree very poorly with the
measurements, as Fig. 6 shows. The cross sections for heavy
fragments are largely overestimated and the cross sections for
lighter fragments are underestimated (but the reaction cross
section is kept constant); that is, too many peripheral collisions
occur. This is probably caused by the large width of wave
packets (see Sec. II A): The nucleon wave packets, in fact, have
a fixed width L = 2 fm2 that is responsible for a wide nuclear
skin thickness that enhances very soft, peripheral reactions.

A. Optimization of the impact-parameter distribution

This negative result indicates that very accurate prediction
of heavy-ion fragmentation cross sections is beyond the
capabilities of JQMD/R-JQMD (but the accuracy that one can
achieve is nonetheless sufficient for several applications; see,
e.g., Ref. [9]). Some semiempirical tuning parameter (such
as bmax) must be introduced if one wants to improve the
agreement with the experimental data.

One idea is the following. Since the peripheral-collision
yields in JQMD are distorted by the very broad nuclear surface
thickness, one could try to suppress peripheral collisions
by modifying the impact-parameter distribution. However,
optimizing the impact-parameter distribution can be very time
consuming if one intends to run a different calculation for each

set of parameters in each impact-parameter distribution. This
is not necessary, as we will illustrate in the following.

We need to make a clarification first. In principle, all QMD
models are also able to calculate reaction cross sections for
nucleus-nucleus reactions; in practice, however, the accuracy
of the result is seldom sufficient for certain applications,
notably radioprotection. Radiation-transport codes thus rely
on separate models to calculate reaction cross sections and
decide when (and where) a reaction should take place (see
Ref. [31] for example); when this happens, collision events are
repeated in the nuclear-reaction model (i.e., JQMD/R-JQMD)
until an inelastic process occurs. This method has an important
consequence; namely, the effective distribution of inelastic
collisions, as a function of the impact parameter, will not be the
same as the assumed distribution. For example, let us assume
that we sample an impact parameter from the distribution
of Eq. (21) and we run a collision; if the latter proves to
be elastic, we have to resample the impact parameter and
rerun the collision, according to what we have just described.
But this means that the effective fraction of collisions with
impact parameter [b, b + db] will not be simply proportional
to f (b), but rather to the product f (b)pinel(b), where pinel(b)
is the probability of having an inelastic collision at impact
parameter b.

Now we can turn to our method to optimize impact-
parameter distributions. It is actually sufficient to run only
one calculation for each projectile-target combination and
to calculate the probability pZ(b) that a collision at impact
parameter b produces a leading fragment with charge Z;
the sum

∑
Z pZ(b) is actually nothing but the inelastic-

collision probability pinel(b) previously defined. By knowing
these quantities and the reaction cross section σreaction, it
is possible to calculate fragmentation cross sections for
any impact-parameter distribution f (b). One considers the
effective distribution

feff(b) ≡ f (b)pinel(b)

/∫ ∞

0
f (b)pinel(b) db;

the probability of producing a fragment with charge Z is then

pZ =
∫ ∞

0
feff(b)pZ(b) db,

and the fragmentation cross section is simply

σZ = σreactionpZ.

Therefore, our method allows us to calculate fragmentation
cross sections for any impact-parameter distribution by run-
ning only one calculation.

As a test, we have modified Eq. (21) and introduced a
Woods-Saxon-like shape, as follows:

f (b) = N
b

1 + exp[(b − c1)/c2]
; (22)

here N is a normalization factor and c1 and c2 are two
adjustable parameters. In the limit c2 → 0, Eq. (22) tends to
Eq. (21), if one identifies c1 with bmax; for generic values of
c2, however, Eq. (22) describes a distribution that has a tail
extending beyond c1 and that favors central collisions with
respect to Eq. (21). We optimized the parameters c1 and c2 by
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minimizing a χ2 merit function. The resulting fragmentation
cross sections (for the 1A GeV 56Fe + Al system) are plotted
in Fig. 6; the optimal parameter values are c1 = (6.98 ± 0.02)
fm and c2 = (0.35 ± 0.03) fm (to be compared with the default
bmax = 7.45 fm). The Woods-Saxon-like cross sections agree
better with the experimental data than the default triangular
distribution, but the improvement is not dramatic; in other
words, the fragmentation cross sections are quite stable with
respect to the impact-parameter distribution. This conclusion
has been confirmed by the analysis of other projectile-target
combinations.

One can therefore conclude that no significant breakthrough
in the accuracy of fragmentation cross sections can be achieved
by tuning the impact-parameter distribution. It is possible
that other distribution shapes give better agreement than the
default triangular distribution or than the Woods-Saxon-like
distribution, but, overall, cross sections appear to be quite
insensitive to the detailed shape of the assumed impact-
parameter distribution.

VI. CONCLUSIONS

We have described the R-JQMD model, a relativistically
covariant version of JQMD that features an improved ground-
state initialization algorithm. We have outlined the main

differences between the two models and we have compared
the predictions of the new model with some experimental data.

We have shown that the R-JQMD model produces reason-
ably stable nuclei even in boosted frames of reference; even
though the formalism is not explicitly covariant, we have seen
that boosted and nonboosted equations of motion evolve with
a much higher degree of coherence than in the old JQMD
model. In view of these results, we claim that the R-JQMD
model represents an excellent compromise between physical
accuracy and calculation speed: it can produce accurate
predictions of heavy-ion collisions at relativistic energies
without calling for the full relativistic QMD machinery.

We have also investigated how easy it would be to improve
heavy-ion fragmentation cross sections by tuning the impact-
parameter distribution of collisions. The results are negative:
on the one hand, JQMD/R-JQMD’s broad nuclear surface
thickness leads to overestimation of heavy-fragment yields
and prevents the use of large cutoffs for the impact-parameter
distribution; on the other hand, changing the shape of the
impact-parameter distribution to enhance central collisions
does not modify the cross sections dramatically.
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