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Microscopic model analysis of 11Li + p elastic scattering at 62, 68.4, and 75 MeV/nucleon
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11Li + p elastic scattering data at three energies, 62, 68.4, and 75 MeV/nucleon, are analyzed with density-
dependent M3Y and KH effective nucleon-nucleon (NN ) interactions in the framework of the single folding
model. The parameters of the density-dependent term are adjusted to fulfill saturation of nuclear matter. The optical
potentials (OP’s) and cross sections are calculated using four model densities of 11Li, G (one-parameter Gaussian),
GG (Gaussian-Gaussian), GO (Gaussian- oscillator), and the COSMA (cluster orbital shell model approximation).
Comparative studies are performed for real, imaginary, and spin-orbit potentials with the phenomenological and
microscopic forms. The microscopic volume and surface imaginary potentials are constructed from both the
renormalized folded potentials and their derivatives. The sensitivity of the differential cross section to the four
densities is tested. It is found that the 11Li + p elastic scattering cross sections depend strongly upon the
behavior of the corresponding potentials. The GG and GO densities obtained from analyzing the data, using
Glauber multiple scattering theory at high energies, give good results at energies below 100 MeV/nucleon in the
framework of the folding model. The OP’s calculated in the microscopic form using few parameters give good
agreement with the data. Thus, it is not necessary to introduce a large number of arbitrary fitting parameters as
done in the phenomenological and semimicroscopic OP’s. The KH effective interaction successfully describes
11Li + p elastic scattering as the popular M3Y interaction. The obtained results of the reaction cross section are
in good agreement with previous calculations.
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I. INTRODUCTION

The 11Li nucleus is a neutron-rich radioactive nucleus,
which is assumed to be composed of core (9Li) plus two
neutrons in the p orbital state at large distance. The dineutron
has a small separation energy of 0.247 MeV [1], so it is
extremely loosely bound to the 9Li core. The 11Li has a
long tail in its wave function leading to the so-called halo
structures [1,2]. The halo of the nucleus extends its matter
distribution to a large radius. The 11Li nucleus is so short
lived that it cannot be used as a target. Instead, direct
reactions with a radioactive nuclear beam can be performed
in inverse kinematics, where the role of the beam and target
are interchanged. To understand the formation of a halo
around the core of radioactive nuclei, it is useful to study the
differential and reaction cross sections of the proton elastic
scattering on exotic nuclei in inverse kinematics. 11Li + p

elastic scattering angular distributions were measured at
intermediate incident energies, 62 [3], 68.4 [4], and 75 MeV/
nucleon [5]. These distributions were then studied using
different phenomenological and microscopic optical potential
models (see, e.g., Refs. [3,5–18]).

The elastic scattering cross sections of 11Li + p at 62 MeV/
nucleon have been measured and analyzed using a phenomeno-
logical optical potential model [3], the best fit with experi-
mental data was obtained with a combination of a shallow real
potential and an imaginary potential with a long tail. Kanungo
and Samanta [7] studied this reaction at 62, 68.4, and 75 MeV/
nucleon and concluded that the phenomenological form of
the potential gives a generalized description and does not
include explicitly any structure information of the interacting
nuclei.

At an incident energy range of 62–75 MeV/nucleon, the
eikonal approach using proton and neutron density distribu-
tions has been used [5,8,13–15]. In Ref. [13], the eikonal and
adiabatic approximations were employed to derive the optical
potential that includes the breakup effect of halo neutrons to
continuum states; it was shown that both the breakup of 11Li
and the exchange force of the p-n interaction are important
to obtaining a good agrement with experimental data. Also in
Ref. [15], it was found that the breakup effect of halo neutrons
is essential to understanding the 11Li + p elastic scattering
cross sections at 62 MeV/nucleon.

The Glauber multiple scattering theory has been used
to study charge and matter distributions from the measured
11Li + p elastic scattering cross sections at high energies near
energy 700 MeV/nucleon [16,17]. These studies found that
the densities that do not distinguish between neutrons and
protons, i.e., where the nucleus is taken as a whole such
as one-parameter Gaussian (G) and symmetrized Fermi (SF)
densities, failed to describe the data. Whereas the densities
that assume the nucleus to consist of core (9Li) and halo
(two neutrons) with different spatial distributions, such as
Gaussian-Gaussian (GG) and Gaussian-oscillator (GO), give
good descriptions of the data.

Crespo et al. [10,19] evaluated 11Li elastic scattering at
62 and 800 MeV/nucleon using the optical model of both
the single scattering approximation to mean field Kerman-
McManus-Thaler (KMT) [20] and the few-body multiple scat-
tering expansion of the total transition amplitude (MST) [21].
They found that the calculated elastic scattering observable
may not be very sensitive to details of the structure input but
depends on the scattering theory.
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A successful tool for the analysis of the elastic scattering
data at relatively low incident energies is the folding model.
The basic inputs to folding calculations are the effective
nucleon-nucleon (NN ) interaction and the nuclear densities.
The calculation of OP’s using the folding approach for
11Li + p elastic scattering has been considered in Refs.
[6,7,9,11,12]. The real part of the OP’s of 11Li + p elastic
scattering have been calculated in the framework of the single
folding model using the density-independent M3Y [7,12];
the isospin-, density-, and momentum-dependent modified
Seyler-Blanchard (SBM) [6,7]; and the Jeukenne, Lejeune,
and Mahaux (JLM) effective NN interactions [9]. 11Li + p

elastic differential cross sections at 62 MeV/nucleon have been
calculated using the M3Y-Reid effective NN interaction by
Chaudhari [12]. He used the harmonic oscillator density for
9Li and determined the density of the two halo neutrons by
Fourier-Bessel analysis. This density gives a good description
of the elastic scattering data. Kanungo and Samanta studied
this reaction at 62, 68.4, and 75 MeV/nucleon using the density
independent M3Y-Reid and SBM effective NN interactions
with two densities [7], the first is composed of a harmonic
oscillator (HO) density of a core and Gaussian density of two
halo neutrons, and the second is the cluster orbital shell model
(COSM) which mixes many j orbits [22]. The same reaction
has been studied using the SBM effective NN interaction
which was folded with the COSM density [6] and the JLM
interaction with Hartree-Fock densities [9]. These studies
found that the real part of folded 11Li + p potentials needs
a reduction factor indicating the possible effect of a strong
breakup channel [6,7,9].

In the present work, the real part of the OP is calculated in
the framework of the single folding model using two different
types of density-dependent effective NN interactions, namely,
M3Y and Knyazkov and Hefter (KH), with four different forms
of 11Li density distributions at 62, 68.4, and 75 MeV/nucleon.
The elastic scattering data are analyzed in microscopic
and semimicroscopic analyses. The density-dependent term,
whose parameters are adjusted to fulfill saturation of nuclear
matter, is introduced [23]. The effect of different nucleon-
nucleon interactions is studied. In addition, the ability of the
four different target densities to describe the nuclear reaction
considered is tested. Also, the role of the spin-orbit term
is discussed. The imaginary part of the OP is studied with
phenomenological and microscopic forms. One of the aims of
the present work is to calculate 11Li + p elastic scattering
cross sections that describe the experimental data using a
minimal number of fitting parameters. The detailed formalism
is given in Sec. II. The results and calculations are presented in
Sec. III, while the discussion and conclusions are given in
Sec. IV.

II. FORMALISM

A. Folded potential

The nucleon-nucleus potential can be obtained by single
folding the density distribution of the nucleus with the nucleon-
nucleon effective interaction [24]

VF (r) =
∫

ρ(ŕ)νnn(s) d ŕ, (1)

where s = |r − ŕ| is the distance between the two nucleons,
ρ(ŕ) is the density of the nucleus at r , and νnn(s) is the effective
NN interaction between two nucleons.

B. Nucleon-nucleon effective interactions

The effective NN interaction is taken in two forms: M3Y
and Knyazkov and Hefter (KH) interactions.

1. M3Y interaction

The popular M3Y potential derived by Bertsch et al. [25]
was obtained from the fitting of the G-matrix element of the
Reid-Elliot NN interaction. The parametrized form of the
M3Y interaction introduced by Satchler and Love [24] is

νnn(s) = 7999
exp(−4s)

4s
− 2134

exp(−2.5s)

2.5s
+ J00(E)δ(s),

(2)

where s is the distance between the two nucleons. The term
J00(E)δ(s) is the zero-range pseudopotential with the knock-
on strength J00(E), which depends weakly on the bombarding
energy E and is given by

J00(E) = −276(1 − 0.005E/A) MeV fm3, (3)

where E is the incident energy and A the mass number of
the projectile. Taking into consideration the density-dependent
effect, the NN interaction νnn(s) in Eq. (2) is given by νnn(s, ρ)
as

νnn(s, ρ) = νnn(s)F (ρ), (4)

where F (ρ) is the density-dependent factor and is given as
[23,26]

F (ρ) = c(1 − βρ), (5)

where c and β are the parameters of the density-dependent
factor. The M3Y NN interaction with this density-dependent
term F (ρ) is labeled as BDM3Y1 [26].

2. Knyazkov and Hefter (KH) interaction

Knyazkov and Hefter considered the effective NN interac-
tion in the form [27]

νnn(s) =
2∑

k=1

νk exp
( −s2/a2

k

) + J00(E)δ(s), (6)

where the parameters νk and ak are taken from Ref. [27] and
given in Table I. The KH Gaussian effective NN interaction
has been used to successfully construct an OP to reproduce the
elastic scattering cross section (see, e.g., Ref. [28]). Also, the

TABLE I. Parameters of KH interaction.

a1 (fm) a2 (fm) ν1 (MeV) ν2 (MeV)

0.8 0.5 −601.99 2256.4
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density-dependent term is introduced into the KH interaction
as in the M3Y interaction.

C. Nuclear matter calculations

The two parameters c and β in the density-dependent factor
F (ρ) in Eq. (5) have been fitted to reproduce the saturation
conditions [23]

ρ0 = 0.17 fm−3, (E/A)ρ=ρ0 = −16.0 MeV,
(7)

∂

∂ρ
(E/A)ρ=ρ0 = 0.

The energy per nucleon ε = E/A is obtained using the
effective NN interaction νnn(s) for the spin and isospin
symmetric cold infinite nuclear matter and is given by [23]

ε = 3h̄2k2
f

10m
+ F (ρ)ρ

Jν

2
, (8)

where m is the nucleon mass, and the Fermi momentum kf is
given by

k3
f = 3

2π2ρ. (9)

ρ is the nucleon density while ρ0 is the saturation density
for the spin and isospin symmetric cold infinite nuclear matter,
and Jν represents the volume integral of the NN interaction
supplemented by the zero-range pseudopotential having the
form

Jν =
∫

νnn(s) d3s. (10)

The density-dependent parameters c and β are obtained
from Ref. [23] by

β = 1 − p

ρ(4 − 2p)
, (11)

and

c = − 2h̄2k2
f0

5mJνρ0(1 − 2βρ0)
, (12)

where

p = 10mε0

h̄2k2
f0

, (13)

and

kf0 =
(

3

2
π2ρ0

)1/3

. (14)

The incompressibility K0 of the spin and isospin symmetric
cold infinite nuclear matter is given by [23]

K0 = −3h̄2k2
f0

5m
− 9Jνcβρ2

0 . (15)

The obtained parameters of density dependence, c and β,
and the incompressibility K0 are listed in Table II.

TABLE II. Incompressibility and parameters of density-
dependent part F (ρ) = c(1 − βρ) for M3Y and KH NN

effective interactions at saturation conditions.

Interaction β (fm2) c K0 (MeV)

M3Y-Reid 2.2185 1.6674 380.755
KH 2.2185 1.6679 380.755

D. Nuclear density distributions

The 11Li nucleus is assumed to be composed of a 9Li core
and dineutron cluster [2]. Thus the density distribution of 11Li
nucleus can be written as

ρ11Li = ρ9Li + ρ2n. (16)

The rms radius of 11Li is quite large compared to that of 9Li,
and 11Li is known to be a Borromean nucleus [29], which is a
three-body system that falls apart when one of the particles is
removed [30]. The deduced core size of 11Li slightly exceeds
the measured radius of 9Li, which is assumed to be the core
in 11Li. This may be explained by the fact that the motion of
the center of mass of the core around the center of mass of the
whole nucleus increases the effective core size. Also, this may
be due to the core polarization [17].

Different matter density distributions have been obtained
from the measured 11Li + p elastic scattering cross sections
at high incident energy using the Glauber multiple scattering
theory [16,17,31]. It is found that the densities that do not
distinguish between neutrons and protons fail to describe the
data, while the densities that assume the nucleus to consist
of core (9Li) and halo (two neutrons) with different spatial
distributions give good descriptions of the data.

To test the sensitivity to the radial shape of the nuclear
matter distribution, four different nuclear matter density
distributions are considered in the present work.

1. One-parameter Gaussian (G) density

The one-parameter Gaussian density does not make a
difference between core and valence nucleons, it is given as

ρ(r) = Aρ0 exp

(
− r2

b2

)
, (17)

where, A is the mass number of the 11Li nucleus, ρ0 =
(1/πb2)3/2, b2 = 2R2

m/3, and the rms radius of the 11Li nucleus
is Rm = 3.10 fm [32].

2. Gaussian-Gaussian (GG) density

In this type of density, the core (9Li) and halo (2n) density
distributions are described by Gaussian form [16,17,33]. The
GG density can be written as

ρ(r) = Ncρ0c exp

(
− r2

b2
c

)
+ Nhρ0h exp

(
− r2

b2
h

)
, (18)

where ρ0j = (1/πb2
j )3/2 and b2

j = 2R2
j /3 with j = c, h, and

Rc and Rh denote the rms radii of the core and halo nucleon
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distributions ρc and ρh, respectively. Nc and Nh are the number
of nucleons in the core and halo, respectively, and are given
as Nc = 9 and Nh = 2 for 11Li nucleus. The matter radius is
given by [33]

Rm =
[

9R2
c + 2R2

h

11

]1/2

. (19)

Rc and Rh are given in Ref. [17] as Rc = 2.56, Rh = 6.31, and
Rm = 3.55 fm.

3. The Gaussian-oscillator (GO) density

Here the core density distribution is a Gaussian as in
Eq. (18), while the two valence neutrons are assumed to have
a 1p-shell harmonic oscillator distribution [10,31,33], that is,

ρ(r) = Ncρ0c exp

(
− r2

b2
c

)
+ Nhρ0h

(
r2

b2
h

)
exp

(
− r2

b2
h

)
,

(20)

where, ρ0c and b2
c are as in Eq. (18), ρ0h = (2/3)(1/πb2

h)3/2,
and b2

h = 2R2
h/5; also, Nc = 9 and Nh = 2 for the 11Li nucleus.

The values of Rc and Rh are given in Ref. [17] as Rc = 2.50,
Rh = 5.86, and Rm = 3.37 fm.

4. Cluster orbital shell model approximation (COSMA) density

In the COSMA density, the valence neutron density is taken
for four extreme cases, in which the valence neutrons are in
the 1p, 2s, 1d, and 1s states [8,29]. These densities are given
by the following formulas:

ρ1p = 2
3ρ0x

2 exp(−x2), (21)

ρ2s = 2
3ρ0(x2 − 1.5)2 exp(−x2), (22)

ρ1d = 4
15ρ0x

4 exp(−x2), (23)

ρ1s = ρ0 exp(−x2), (24)

where ρ0 = (1/πb2)3/2, x = r/b, and b corresponds to the
radius of the nucleus. For the 11Li nucleus, the two valence
neutrons are put into a mixture of the 1p and 2s orbitals;
this mixture allows one to reproduce the experimental data on
transverse momentum distributions of 9Li from fragmentation
of 11Li [29]. Then, the COSMA density of 11Li is given by
[8,29]

ρi(r) = Nci

exp(−r2/a2)

π3/2a3
+ Nvi

2 exp(−r2/b2)

3π3/2b5

×
[
Ar2 + B

b2

(
r2 − 3

2
b2

)2
]

, i = n, p, (25)

where Ncp = 3, Ncn = 6, Nvp = 0, Nvn = 2, a = 1.89 fm,
b = 3.68 fm, A = 0.81, B = 0.19, and Rm = 3.21 fm.

The shape of the different cases of the density distributions
of 11Li are shown in Fig. 1, in linear and logarithmic scale.
One can see that COSMA density is the largest at distance
(r < 3 fm), while the G density is the smallest one. For large
r (r > 6 fm), the G density, which describes the nucleus as a
whole, is the smallest because it does not have a tail, whereas
the densities that are formed from a core and two valence

FIG. 1. Densities of 11Li used in this work.

neutrons have tails. The GO density has the longest tail, so it
best describes the large radius of 11Li.

E. Method of calculation

We start with the calculation of 11Li + p elastic cross
sections using the real part of OP calculated within the
single folding approach VF ; we introduce the renormalization
factor NR , while the other parts are given in the usual
phenomenological form. The total optical potential can be
written as

Uopt(r) = NRVF (r) + iWI (r) + Uc(r) + Uso(r), (26)

where NR is the renormalization factor of the folded potential
VF (r), WI is the imaginary part, Uc(r) is the Coulomb potential
of a uniformly charged sphere of radius 1.29A1/3 [3], and
Uso is the spin-orbit potential. The folded potentials using
M3Y interaction are purely real, so the imaginary part is
either constructed independently or, as done most frequently,
treated phenomenologically [34,35]. They are independent of
the density of the nuclear matter in which the two nucleons
are embedded and also independent of energy except for the
weak dependence of knock-on exchange [34,35].

In the present work, we use the imaginary potential with
phenomenological and microscopic forms, so we introduce the
renormalization factors NIV and NIS for the volume and surface
imaginary microscopic potentials, respectively. To study the
effect of these different forms of the imaginary parts, three
types of OP’s are considered:
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(A) The phenomenological imaginary and spin-orbit poten-
tials are used in the forms [6,7,36]

WI (r) = −Wvfv(r) + 4asWs

d

dr
fs(r), (27)

and

Uso(r) = λ2
πVso

1

r

d

dr
fso(r)L.S, (28)

where fx(r) = [1 + exp ( r−Rx

ax
)]−1, Rx = rxA

1/3, and λ2
π =

( h̄
2mπ c

)2 = 2 fm2. The subscripts x = v, s, and ‘so’ denote
volume imaginary, surface imaginary, and spin orbit, re-
spectively, and Wv(Ws) and Vso are the strengths of the
volume (surface) imaginary and the spin-orbit potentials. The
parameters of the above parts of the optical potential are
obtained after slight adjustment starting from the parameters
of the phenomenological best fit at Ref. [12].

(B) In this case, the phenomenological volume imaginary
part of the OP is replaced by a part of the folded potential, see
Refs. [4,6]:

WI (r) = NIVVF (r) + 4asWs

d

dr
fs(r). (29)

The phenomenological spin-orbit term is taken as in Eq. (28).
(C) Here, the derivative (−r d

dr
VF ) of the folded potential

is added as the surface potential [37,38] as

WI (r) = NIVVF (r) + NISr
d

dr
VF (r). (30)

The phenomenological spin-orbit term is again taken as in
Eq. (28).

Let us denote the total 11Li + p potential as M3Y-A,
M3Y-B, and M3Y-C for potentials based upon the the real
folded potential using the M3Y effective NN interaction, and
the imaginary part of the optical potential is calculated with
methods (A), (B), and (C), respectively. While the spin-orbit
potential is taken phenomenologically as in Eq. (28). Similarly,
we denote the potentials using the KH effective NN interaction
as KH-A, KH-B, and KH-C.

To study the effect of spin-orbit potential with a different
form from the standard form, fso(r) in Eq. (28) is replaced by
a microscopic real folding potential VF . Then the spin-orbit
term is taken as

Uso(r) = Nsoλ
2
π

1

r

d

dr
VF (r)L.S, (31)

where the factor Nso corresponds to the strength Vso.
A search on the renormalization factors and the phe-

nomenological potential parameters are carried out to achieve
minimum χ2 given by [24]

χ2 = 1

N

N∑
k=1

[
σth(θk) − σex(θk)

�σex(θk)

]2

, (32)

where σth(θk) and σex(θk) are the theoretical and experimental
cross sections, respectively, at angle θk , �σex(θk) is the
experimental error, and N is the number of data points.
The experimental data of 11Li + p elastic scattering cross
sections and related errors are taken for 62 [3], 68.4 [4], and
75 MeV/nucleon [5].

The volume integrals and the rms radii of the folded
11Li + p potentials are calculated for the two interactions and
the four densities at the three energies; these are defined by [36]

J = 4π

AP AT

∫
VF (r)r2dr. (33)

〈r〉1/2 =
[∫

r2VF (r)r2dr∫
VF (r)r2 dr

]1/2

. (34)

III. RESULTS AND DISCUSSION

A. Real optical potentials

The real part of the optical 11Li + p potentials are calcu-
lated using the single folding model [Eq. (1)] with the two ef-
fective NN interactions, M3Y and KH, and the four densities,
G, GG, GO, and COSMA, at the three energies, 62, 68.4, and
75 MeV/nucleon. The results of these calculations at the energy
62 MeV/nucleon are shown in Fig. 2. They are given without
the renormalization factor NR (i.e., NR = 1). It is seen that
the depths of the potentials using M3Y and KH effective
NN interactions are approximately similar to each other. It
is seen that the potential using the COSMA density has a
larger depth than that using the GG and GO densities, while
the potential depth for the G density is shallower than that
for other densities; this holds in a small distance (r < 3 fm).
At a large distance, the folded potential using the G density
falls more rapidly than the potentials using the other densities,
which have longer ranges. This is due to the type of density
used. The folded potentials at the two other energies (68.4 and
75 MeV/nucleon) have similar behavior as the folded potential
at 62 MeV/nucleon but with different depths, where the depths
of the potentials decrease with increasing the energy.

The respective volume integrals and rms radii of the
folded optical potentials, using the two density-dependent
effective NN interactions, M3Y and KH, for the G, GG,
GO, and COSMA densities at the three energies 62, 68.4 and
75 MeV/nucleon, are listed in Table III. The volume integral of

TABLE III. Volume integrals and rms radii of the folded
11Li + p potentials including in-medium effect at the four densities
and the M3Y and KH interactions for the three energies studied.

Energy Density −J (MeV fm3) Rrms (fm)
(MeV/nucleon)

M3Y KH M3Y KH

62 G 507.895 508.127 3.831 3.853
GG 492.307 492.531 4.289 4.310
GO 489.595 489.818 4.124 4.145

COSMA 470.436 470.650 4.128 4.148

68.4 G 494.549 494.777 3.847 3.869
GG 479.371 479.591 4.303 4.324
GO 476.729 476.948 4.139 4.160

COSMA 458.074 458.285 4.143 4.163

75 G 480.786 481.009 3.864 3.887
GG 466.03 466.246 4.319 4.340
GO 463.462 463.677 4.155 4.177

COSMA 445.326 445.533 4.158 4.180
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FIG. 2. Real folded 11Li + p potentials with
M3Y and KH interactions using G, GG,
GO, and COSMA densities at energy E =
62 MeV/nucleon.

the the real folded potential using the G density is larger than
that for the other densities at the different energies while that
using the COSMA density is the smallest one, this is due to the
shape of the potential. The rms radius of the folding potential
using the G density is the smallest one, because this density
does not consider the halo structure. One can easily notice that
the volume integrals decrease and the rms radii increase as the
energy increases for all densities; this result is also found in
Ref. [7]. One also notices that the volume integral and rms
radius of the folded potential using M3Y and KH interactions
have approximately the same behavior.

B. Effect of density distributions on the differential cross section

The differential cross sections of 11Li + p elastic scattering
at the three energies 62, 68.4, and 75 MeV/nucleon are
calculated using M3Y-A and KH-A potentials (with real folded
potential and phenomenological imaginary and spin-orbit
potentials) for the four types of densities. The obtained results
are shown in Fig. 3. The renormalization factors NR , strength
parameters of the phenomenological potentials which give
good agreement with the experimental data, and total reaction
cross sections for the four densities G, GG, GO, and COSMA,
using the two effective NN interactions, M3Y and KH, at the
three energies are listed in Table IV. The phenomenological
imaginary and spin-orbit potentials are obtained after a slight
enlargement starting with the parameters in Ref. [12]. To
reduce the number of free parameters, the best radii and
diffuseness parameters of volume and surface imaginary and
spin-orbit phenomenological potentials are fixed at the three

energies for all densities. These parameters are listed in
Table V. One can see from Fig. 3 and the values of χ2 from
Table IV that the densities GG, GO, and COSMA, which allow
for different distributions for the core and halo nucleons, give
very good fitting with data, better than the G density. Then, the
distribution form of two valence neutrons has a small effect on
the obtained cross sections as mentioned in Refs. [17,33]. For
the high energy around 700 MeV/nucleon [16,31], the cross
section data of 11Li + p elastic scattering using Glauber theory
do not give a good description. However, in the present work,
the G density gives acceptable fitting with data with our results
in the framework of the single folding model at energies below
100 MeV/nucleon. The cross sections depend on the folded
potential depths, where the differential cross section values
increase as the potential depth decreases at the large angles
(θc.m. > 40◦), see Figs. 2 and 3. The GG and GO densities that
were obtained from analyzing the measured 11Li + p elastic
scattering cross sections near energy 700 MeV/nucleon in the
framework of Glauber multiple scattering theory [16,17,31]
are used in the present work within the folding model at
energies below 100 MeV/nucleon and give good results.

The renormalization factor NR is found to be approximately
the same for the two effective NN interactions M3Y and
KH, and it decreases with increasing incident energy. These
renormalization factors give an estimation of the 11Li →
9Li + 2n breakup channel effects on the elastic channel [6,7];
this is true for the stable isotopes 6,7Li [6,24,37].

From Table IV, it is easily noted that with increasing
incident energy, the strength of the spin-orbit potential Vso and
the surface imaginary potential Ws are reduced. This is satisfied
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TABLE IV. Renormalization factors NR , strengths of the phenomenological potentials Wv , Ws , and Vso, and reaction
cross sections σR obtained by fitting the elastic scattering data for 11Li + p which were calculated using using M3Y-A and
KH-A potentials with the four densities at the three energies studied.

Energy (MeV/nucleon) Pot. Case NR Wv (MeV) Ws (MeV) Vso (MeV) σR (mb) χ 2

62 M3Y G 0.61 13.7 3.7 9.9 367.2 2.95
GG 0.64 12.9 3.7 9.5 359.3 0.85
GO 0.65 13.2 3.7 9.6 362.2 0.75

COSMA 0.63 13.5 3.7 9.8 363.8 0.70
KH G 0.62 12.7 3.7 9.3 355.7 4.13

GG 0.64 12.7 3.7 8.9 351.0 1.52
GO 0.65 12.7 3.7 8.9 353.1 1.18

COSMA 0.63 12.7 3.7 9.1 353.7 0.88

68.4 M3Y G 0.58 15.5 2.6 6.5 312.6 0.26
GG 0.55 11.5 2.6 6.0 310.6 0.18
GO 0.56 12.0 2.6 6.0 310.8 0.16

COSMA 0.53 14.1 2.6 6.2 310.1 0.38
KH G 0.59 16.5 2.2 6.4 301.6 0.37

GG 0.57 12.5 2.2 6.0 300.0 0.14
GO 0.57 12.5 2.2 6.0 300.2 0.11

COSMA 0.55 13.6 2.2 6.0 299.4 0.24

75 M3Y G 0.56 8.7 1.5 5.9 201.3 0.97
GG 0.53 7.0 1.5 5.5 200.5 0.17
GO 0.54 7.2 1.5 5.5 200.7 0.14

COSMA 0.51 7.9 1.5 5.5 200.5 0.15
KH G 0.56 8.0 1.2 5.8 185.1 1.24

GG 0.54 6.5 1.2 5.4 184.6 0.30
GO 0.55 7.0 1.2 5.4 184.6 0.28

COSMA 0.52 7.5 1.2 5.5 184.4 0.16

for both M3Y and KH interactions. Also, we note that the
spin-orbit strength depends somewhat on the renormalization
factor of real OP (NR increases with increasing Vso).

One can find that the change of the value of the total
reaction cross section σR for the different densities used does
not exceed 3%. Also, the total reaction cross section decreases
with increasing projectile incident energy; this is agrees with
that found in Ref. [7].

C. Comparative study between M3Y and KH interactions

A comparison between the phenomenological and micro-
scopic real potentials and their corresponding differential
cross sections is presented in Fig. 4. The real 11Li + p

optical potentials at 62 MeV/nucleon using Woods-Saxon
form, whose parameters are given in Ref. [3], and the folding
potentials (with renormalization factor NR = 0.65) using

TABLE V. Parameters of volume and surface imaginary and spin-
orbit potentials.

Energy
(MeV/nucleon)

rv

(fm)
av

(fm)
rs

(fm)
as

(fm)
rso

(fm)
aso

(fm)

62 0.99 0.70 0.99 0.70 0.54 0.36
68.4 0.99 0.70 0.99 0.70 0.54 0.40
75 0.99 0.70 0.99 0.70 0.54 0.52

M3Y and KH interactions with GO density are shown in
Figs. 4(a) and 4(b). One can see that the Woods-Saxon
potential is shallower (at small distance) than the two folded
potentials using density-dependent M3Y and KH interactions
which have similar behavior and have longer ranges than the
phenomenological potential. Figure 4(c) presents the corre-
sponding differential cross sections using the phenomeno-
logical and semimicroscopic methods of calculation, M3Y-A
and KH-A. One can notice that the differential cross sections
using the phenomenological and microscopic methods give
the same quality of fit with the experimental data. The real
phenomenological potential has a smaller range than the
folded potentials. The results lead to the necessity of the same
renormalization factor NR in describing the elastic angular
distribution as shown in Table IV. At 62 MeV/nucleon, the
total reaction cross sections obtained for the M3Y and KH
interactions are close to the value (σR ∼ 361 mb) in Ref. [12],
and that of Moon et al. (σR = 388 mb) [3]. One can see that
the σR for the KH interaction is relatively smaller than that
for the M3Y interaction. The similarity between the M3Y and
KH interactions at 62 MeV/nucleon is also found at the other
two energies, 68.4 and 75 MeV/nucleon, for both the folded
potential and the corresponding cross sections.

D. Effect of using different forms of imaginary optical potentials

The importance of the surface imaginary potential is tested
in Fig. 5. The elastic 11Li + p scattering cross section at energy
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FIG. 3. Elastic 11Li + p scattering cross sections calculated using
M3Y-A and KH-A potentials with the four densities for the three
energies studied.

E = 62 MeV/nucleon, for example, are calculated using M3Y-
A potential with GO density with and without the surface
imaginary term. It is shown that the surface term is effective
on the differential cross section at large angles (θc.m. > 50◦).

The elastic 11Li + p cross sections using M3Y and KH
effective NN interactions with GO density at the energies 62,
68.4, and 75 MeV/nucleon using three methods of calculating
OP [(A), (B), and (C)] are presented in Fig. 6. Table VI gives
the values of the renormalization factors NR , NIV, and NIS and
the phenomenological optical potential strengths Wv , Ws , and
Vso obtained by fitting the experimental data for the three types
of imaginary potentials with the two interactions using GO
density. The results of the renormalization factors are NR ∼
0.55–0.65 for the real folded potentials, NIV ∼ 0.11–0.20 for
the volume imaginary potentials, and NIS ∼ 0.01–0.04 for the
surface imaginary potentials. One notices that both NIS and Ws

decrease with increasing energy where the projectile protons
are more penetrated, so the surface absorption decreases as
in normal nuclei. This result is in agreement with that found
in Refs. [6,7]. At 62 MeV/nucleon, NIS = 0.04 is close to
the value for 11Li + 12C at 60 MeV/nucleon, which equals
0.05 [38]. The imaginary potential decreases as the energy
increases and the most decrease is at 75 MeV/nucleon; this is
mentioned in previous studies of halo nuclei elastic scattering
where the reduction factor of the microscopic imaginary part
of the OP is small and gives good results [6,39]. The strength
of the spin-orbit potential Vso used with the microscopic
imaginary potential [method (C)] is found to be smaller than
that used with phenomenological one [method (A)]. In general,
we found that the three methods give good results. But, we
notice from Fig. 6 and the values of χ2 in Table VI that
using OP’s calculated in microscopic form with only three free
parameters (NR , NIV, and NIS) and a minimal number of fitting

TABLE VI. Values of the optical potential parameters Wv , Wv , and Vso, the renormalization parameters NR , NIV, and NIS, and the reaction
cross sections, obtained by fitting the experimental data for the elastic 11Li + p cross sections at the energies 62, 68.4, and 75 MeV/nucleon
using three methods of calculations (see II E for these methods). The folded potential is calculated with M3Y and KH effective NN interactions
and the GO density; the other parameters of phenomenological potentials are given in Table V.

Energy (MeV/nucleon) Pot. Case NR NIV NIS Wv (MeV) Ws (MeV) Vso (MeV) σR (mb) χ 2

62 M3Y A 0.65 13.2 3.7 9.6 362.2 0.75
B 0.66 0.20 3.2 8.0 354.4 0.85
C 0.67 0.20 0.04 6.7 364.4 1.09

KH A 0.65 13.6 3.2 8.9 353.1 1.18
B 0.67 0.17 2.9 7.0 329.3 1.14
C 0.68 0.17 0.04 6.3 351.6 2.23

68.4 M3Y A 0.56 12.0 2.6 6.0 304.1 0.16
B 0.59 0.20 2.3 5.6 307.4 0.09
C 0.61 0.20 0.03 4.9 314.0 0.10

KH A 0.57 12.5 2.2 6.0 298.4 0.11
B 0.59 0.14 2.2 5.1 262.2 0.11
C 0.60 0.14 0.03 5.1 272.7 0.18

75 M3Y A 0.54 7.2 1.5 5.5 201.0 0.14
B 0.55 0.16 0.9 5.4 211.4 0.20
C 0.55 0.16 0.01 5.1 205.4 0.22

KH A 0.55 7.0 1.1 5.4 187.1 0.28
B 0.55 0.11 0.8 5.1 166.4 0.34
C 0.55 0.11 0.01 5.1 164.4 0.42
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(a) (b) (c)

FIG. 4. Real 11Li + p optical potentials at energy E = 62 MeV/nucleon using the Woods-Saxon phenomenological form [3] and the folding
potential using M3Y and KH interactions with the GO density, shown in (a) linear form and (b) logarithmic scale. (c) Corresponding differential
cross sections.

parameters gives good agreement with the available data. Thus,
it is not necessary to introduce the large number of arbitrary
fitting parameters that were used in the phenomenological and
semimicroscopic OP’s.

Also, the total reaction cross sections σR are listed in
Table VI. One can find that the change of the values of σR

for the different forms of the imaginary potentials does not
exceed 10%. Moreover, the total reaction cross sections for
the KH interaction are slightly smaller than those for the
M3Y interaction, and they decrease with increasing projectile
incident energy.

The relation between the renormalization factors of real
NR , volume imaginary NIV, and surface imaginary NIS are
shown in Fig. 7. We fixed NR , then at any value of NIS, the
value of NIV is tested to give the smallest χ2. This procedure
is repeated for different values of NR . We notice from Fig. 7
that NIV decreases linearly with increasing NIS, with a slope
∼3; this relation is true at different values of NR .

FIG. 5. Elastic 11Li + p scattering cross section at energy E =
62 MeV/nucleon calculated using the M3Y-A potential with and
without the surface imaginary term.

FIG. 6. Elastic 11Li + p scattering cross sections calculated at
the energies 62, 68.4, and 75 MeV/nucleon using methods (A), (B),
and (C) for calculating the total OP (see II E for these methods).
The folded potential is calculated with M3Y and KH effective NN

interactions and the GO density.
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FIG. 7. Relation between the renormalization factors of the
volume and surface microscopic imaginary potentials.

The imaginary 11Li + p optical potentials at
62 MeV/nucleon are presented in Fig. 8(a) using the
Woods-Saxon form (dash-dotted line) Ref. [3] and the
microscopic form using M3Y (solid line) and KH (dashed
line) interactions with GO density. (The renormalization
factors NIV and NIS of these interactions are listed in Table VI.)
The corresponding differential cross sections using the
phenomenological method and microscopic method (C) of
calculation are shown in Fig. 8(b). The results indicate that

FIG. 8. (a) Imaginary 11Li + p optical potentials at E =
62 MeV/nucleon using Woods-Saxon form (dash-dotted line) in
Ref. [3] and the microscopic form using M3Y (solid line) and
KH (dashed line) interactions with GO density. (b) Corresponding
differential cross sections calculated using the phenomenological
method and microscopic method (C).

FIG. 9. Elastic 11Li + p scattering cross section at E =
62 MeV/nucleon calculated using M3Y-A and KH-A potentials
with GO density with the Woods-Saxon and microscopic forms and
without the spin-orbit term.

the imaginary potentials must have a long range to give a
good description of the data.

E. Effect of the shape of spin-orbit potential

The effect of the spin-orbit interaction on the cross sections
of 11Li + p elastic scattering, using real folded potential and
phenomenological imaginary potential with M3Y and KH NN

interactions and GO density, is presented in Fig. 9. The solid
lines show the results using Woods-Saxon form of the spin-
orbit term [see Eq. (28)], while the dashed lines show those
using the microscopic form as in Eq. (31); the dotted lines show
the results without using the spin-orbit term. We notice that the
Woods-Saxon form gives very good fitting with experimental
data and is only slightly better than the results obtained with
the microscopic form and those obtained without using the
spin-orbit term, both of which also give accepted results with
both M3Y and KH NN interactions. The results differ slightly
at large angles (>60◦). So the effect of the shape of the spin-
orbit term is not strong. This result agrees with that obtained
in Refs. [6,39].

IV. CONCLUSIONS

The optical potentials and cross sections of 11Li + p elastic
scattering are calculated at three energies (62, 68.4, and
75 MeV/nucleon) within the framework of the single folding
model. The real part of the optical potential is constructed by
folding two different nucleon-nucleon interactions, namely,
M3Y and KH, with 11Li density, which is assumed to be
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composed of two parts: a 9Li core and two halo neutrons.
Different types of density distributions (G, GG, GO, and
COSMA) are used. The density-dependent term is introduced
in the folding potentials, whose parameters are adjusted
to fulfill the saturation of nuclear matter. The microscopic
potentials are constructed from both the renormalized folded
potentials and their derivatives. The renormalization factors
NR , NIV, and NIS for the real, volume imaginary, and
surface imaginary microscopic potentials, respectively, are
introduced. Three different forms of imaginary potential are
used. These are obtained from combinations of Woods-Saxon
and microscopic forms.

The results of the calculations of 11Li + p elastic scattering
show that the G density gives accepted fit with data in this
work, whereas in previous studies [16,17,31], it does not fit the
data for the considered reaction at high energy using Glauber
theory. The GG and GO densities obtained from analyzing
the measured 11Li + p elastic scattering cross sections, using
Glauber multiple scattering theory at high energies, give good
results with our work at energies below 100 MeV/nucleon in
the framework of the folding model. The form of the density
of the two valence neutrons has a small effect on the obtained
cross sections.

The obtained renormalization factor of the real folding
potential NR decreases from ∼0.65 to 0.55 with increasing
incident energy for both interactions. This value of NR gives
an estimation of the breakup channel effects on the elastic
scattering channel.

The renormalization factors (NR,NIV, and NIS), the phe-
nomenological parameters (Ws and Vso), the volume integrals,
and the rms radii of the folded potentials are slightly energy
dependent.

The shapes of both imaginary and spin-orbit potentials do
not play a significant role in describing the considered nuclear
reaction. The strength of the spin-orbit potential Vso used with
the microscopic imaginary potential was found to be smaller
than that used with phenomenological one.

The real and imaginary microscopic potentials using only
three free parameters NR , NIV, and NIS give results of the
same quality as phenomenological potentials with more free
parameters. There are two advantages in our work. First, we
have only a few fitting parameters, so it is not necessary to
introduce the large number of arbitrary fitting parameters used
in the phenomenological and semimicroscopic OP’s. Second,
the microscopic study gives information about the structure,
whereas the phenomenological potential is a generalized
description and does not include any structure information
of the interacting nuclei.

The renormalization factor of microscopic surface imag-
inary potentials decreases with increasing energy; it has the
value NIS ∼ 0.01–0.04. An interesting linear relation was
found between NIV and NIS at constant NR , namely, NIV

decreases linearly with an increase of NIS with slope ∼3 for
the three energies.

A comparative study of the two interactions, M3Y and
KH, for 11Li + p elastic scattering reveals that the KH
interaction, which has no singularity, leads to as good an
agreement with the data as the famous M3Y interaction. The
two interactions show the necessity of the same renormal-
ization factor NR . Also, the reaction cross section for the
KH interaction is relatively smaller than that for the M3Y
interaction. The reaction cross section decreases as energy
increases, and these results are close to those of previous work
[3,12].
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