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Spectroscopy of unbound states under quasifree scattering conditions:
One-neutron knockout reaction of 14Be
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Full Faddeev-type calculations are performed for one-neutron knockout reaction of 14Be on proton target at
69 MeV/nucleon incident energy. Inclusive transverse momentum distributions for the outgoing (12Be + n)
system and semi-inclusive cross sections are presented. A significant proton-core single scattering contribution
emerges where the valence neutron has nonzero angular momentum relative to the core. This indicates that
distorted-wave impulse approximation is inadequate and the complete multiple scattering series must be taken
into account for the considered reaction. The magnitude of the semi-inclusive cross section at quasifree scattering
conditions is a clear signature of the angular momentum of the valence nucleon.
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I. INTRODUCTION

Knockout-reactions constitute a sensitive tool to investigate
the single-particle or cluster structure of nuclei. In the case of
one-neutron knockout, the measurement of the momentum
distribution of the neutron and the A-1 system allows to
identify, through the shape of the distributions, the orbital
angular momentum of the struck particle.

Recently one-neutron knockout in the 14Be scattering from
a proton target at 69 MeV/nucleon was measured at RIKEN
in order to obtain information on the unbound 13Be [1] and
the data analyzed through the invariant mass method. This is
a very powerful tool to study unbound nuclear states where
the invariant mass is determined by the momentum vectors
of the outgoing particles [2]; the advantage of the method
is a very good energy resolution. Nevertheless, very little
is known about the 13Be system and contradictory results
have been found both from the theoretical and experimental
sides. Although it would be more appropriate to describe
14Be-p scattering in a four-body model (12Be, n, n, p), the
exact four-body scattering equations at present can only be
solved for the four nucleon system below breakup threshold.
Therefore in this paper we use the three-body Faddeev/Alt,
Grassberger, and Sandhas (AGS) scattering formalism [3–5].
We explore a number of 13Be configurations and calculate
the breakup observables to shed light on the structure of the
unbound system and to stimulate further experimental work.

In the absence of exact many-body reaction calculations,
distorted wave impulse approximation (DWIA) methods have
been applied to study such reactions [6]. In this approach one
assumes that the incoming particle collides with the struck
nucleon as if it was free and the relative motion of the particles
in the entrance and exit channels is described by distorted
waves. Moreover further approximations are usually made in
standard applications of DWIA when evaluating the transition
amplitude for the knockout scattering process A(a, ab)B such
as (i) the potential approximation in the entrance channel
VaA − Vab ∼ VaB(raA); (ii) the factorization approximation,
which is only exact in the plane wave impulse approximation

(PWIA); (iii) the on-shell approximation of the transition
amplitude. Although the validity of some of these approxi-
mations has not been properly investigated yet, it has been
shown [7] that DWIA leads to an incomplete and truncated
multiple scattering expansion that is responsible for inaccurate
results of 11Be-p breakup observables at intermediate energies.
The work in Refs. [7–9] is based on exact Faddeev/AGS
theory [3–5] and provides not only a benchmark to study
approximate methods commonly used in nuclear reactions,
but also a means to obtain a better description of the dynamics
that drives knockout reactions involving light bound systems.

II. THE FADDEEV/AGS EQUATIONS

Let us consider three different particles denoted 1,2,3, in-
teracting by means of two-body potentials. The Faddeev/AGS
multiple scattering framework is a three-body scattering
formalism that treats all open channels (elastic, inelastic,
transfer, and breakup) on equal footing. It is therefore adequate
to describe the scattering of light bound systems such as halo
nuclei where breakup thresholds are close to the ground state.
In the Faddeev/AGS framework the full scattering amplitude
may be expressed as a multiple scattering expansion in terms of
the two-body transition operators for each interacting pair. We
summarize here the main expressions of the formalism, using
the odd man out notation appropriate for three-body problems
which means, for example, that the interaction between the
pair (23) is denoted as v1. Assuming that the system is
nonrelativistic, one writes the total Hamiltonian as

H = H0 +
∑

γ

vγ , (1)

with the kinetic energy operator H0 and the interaction vγ for
the pair γ . The Hamiltonian can be rewritten as

H = Hα + V α, (2)
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where Hα is the Hamiltonian for channel α

Hα = H0 + vα, (3)

and V α represents the sum of interactions external to partition
α

V α =
∑
γ �=α

vγ . (4)

The α = 0 partition corresponds to three free particles in the
continuum where V 0 is the sum of all pair interactions. Let us
consider the scattering from the initial state α to the final state
β. The operators Uβα , whose on-shell matrix elements are the
transition amplitudes, are obtained by solving the three-body
AGS integral equation [4,5] that reads

Uβα = δ̄βαG−1
0 +

∑
γ

Uβγ G0tγ δ̄γ α (5)

or

Uβα = δ̄βαG−1
0 +

∑
γ

δ̄βγ tγ G0U
γα, (6)

where δ̄βα = 1 − δβα . The pair transition operator is

tγ = vγ + vγ G0tγ , (7)

where G0 is the free resolvent

G0 = (E + i0 − H0)−1, (8)

and E the total energy of the three-particle system in the center
of mass (c.m.) frame. For breakup (β = 0 in the final state)
one has

U 0α = G−1
0 +

∑
γ

tγ G0U
γα, (9)

where Uγα is obtained from the solution of Eq. (6) with
α, β, γ = (1, 2, 3). The scattering amplitudes are the matrix
elements of Uβα calculated between initial and final states
that are eigenstates of the corresponding channel Hamiltonian
Hα(Hβ) with the same energy eigenvalue E. For breakup the
final state is the product of two plane waves corresponding to
the relative motion of three free particles that may be expressed
in any of the relative Jacobi variables. In the latter case the
contribution of the G−1

0 term is zero.
The solution of the Faddeev/AGS equations can be found

by iteration leading to

U 0α =
∑

γ

tγ δ̄γ α +
∑

γ

tγ
∑

ξ

G0δ̄γ ξ tξ δ̄ξα

+
∑

γ

tγ
∑

ξ

G0δ̄γ ξ tξ
∑

η

G0δ̄ξηtηδ̄ηα + · · · , (10)

where the series is summed up by the Padé method [10]. The
successive terms of this series can be considered as first order
(single scattering), second order (double scattering) and so
on in the transition operators. For the breakup process where
particle 1 scatters from pair (23) into the breakup channel
(1,2,3), the breakup series in single scattering is represented
diagrammatically in Fig. 1 where the upper particle is taken as
particle 1.

In our calculations, Eqs. (6)–(10) are solved exactly
in momentum space after partial wave decomposition and

+

FIG. 1. Single scattering diagrams for breakup in the
Faddeev/AGS scattering framework.

discretization of all momentum variables. We include the
nuclear interaction between all three pairs, and the Coulomb
interaction between the proton and 13Be, following the
technical developments implemented in Refs. [11,12] for
proton-deuteron and α-deuteron elastic scattering and breakup
that were also used in Refs. [8,9] to study p-11Be elastic
scattering and breakup.

III. THE PHYSICAL CONTENT OF THE SINGLE
SCATTERING TERM AT NP QFS

Let us consider a reaction where the proton (particle 1)
scatters from a bound pair of particles (23) into the breakup
channel (1, 2, 3); particle 2 is a valence neutron and particle 3
the 13Be core. Actual experiments involving halo nuclei
are performed in inverse kinematics with the scattering of
a radioactive halo beam from a stable target. The results
discussed here are however independent of the kinematics that
is used.

We have shown [7] that at sufficiently high energies and for
some suitable kinematics configurations the single scattering
term provides a reasonable approximation to the multiple
scattering series. In addition, the single scattering component
where the projectile strikes the valence particle (first diagram
in Fig. 1) is dominant in the case of p(11Be,10Be n)p [7].
Therefore, we analyze here in detail the physical content of
the two components of the single scattering term involving
both the scattering from the struck neutron and the 13Be core.

In this section we shall use capital letters for momenta in
the lab frame and lower case letters for the c.m. frame.

In the case of the single scattering from the struck neutron,
the transition amplitude from an initial state |ψ1〉 = |k1φ23〉 to
a final state |k′

1k′
2k′

3〉 is given by the matrix elements of the
transition operator t3 = t12(ω12) with relative pair (1,2) energy
ω12. As usual k1 is the initial relative momentum between
particle 1 and the c.m. of pair (23). In the final state, k′

1, k′
2,

and k′
3 are the final momenta for the three free particles in the

three-body c.m. frame where k′
1 + k′

2 + k′
3 = 0.

The breakup transition amplitude, corresponding to the
single scattering approximation (SSA), may be written as

〈k′
1k′

2k′
3|t3|ψ1〉 = 〈q′

12|t12(ω12)|q12〉φ23(q23), (11)
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where

q′
12 = k′

1 + m1

M12
k′

3, (12)

q12 = k1 + m1

M12
k′

3, (13)

q23 = −k′
3 − m3

M23
k1, (14)

ω12 = E − k′2
3

2µ3(12)
= q ′2

12

2µ12
, (15)

with Mij = mi + mj,µij = mimj

Mij
, µi(jk) = miMjk

M
, and M =

mi + mj + mk . Therefore the two-body t-matrix t12 is cal-
culated at half the energy shell.

At the np quasifree scattering (QFS) kinematical condition
particle 3 (the 13Be core) acts as a spectator which means that
in the lab frame K3 = 0 corresponding to k′

3 = − m3
M23

k1 in the
c.m. frame. Therefore, according to Eq. (14)

[q23]QFS = 0, (16)

and

[ω12]QFS = E
M m2

M23 M12
=

[
q2

12

]QFS

2µ12
(17)

in the limit of zero binding energy for the pair 23 as demon-
strated in Appendix A. Only in such zero binding limit and in
the QFS kinematical condition does the t-matrix t12(ω12) gets
calculated on the energy shell. Away from the QFS kinematical
condition the t12(ω12) matrix elements become half-on-shell
and the total transition amplitude probes the nonzero relative
momentum components of the bound pair. Higher order
multiple scattering terms necessarily probe off-energy-shell
effects and higher relative momentum components, even at
the QFS conditions.

We now consider the SSA component where the proton
scatters from the core. The transition amplitude is then
given by

〈k′
1k′

2k′
3|t2|ψ1〉 = 〈q′

31|t13(ω13)|q31〉φ23(q23), (18)

with q′
31 = − m1

M13
k′

2 − k′
1, q31 = − m1

M13
k′

2 − k1, q23 = k′
2 +

m2
M23

k1, and ω13 = E − k′2
2

2µ2(13)
.

In the np QFS limit where k′
3 = −k′

1 − k′
2 = − m3

M23
k1 we

get

k′
2 = −k′

1 + m3

M23
k1, (19)

leading to

[q23]QFS = k1 − k′
1 = k̄,

where k̄ is the momentum transfer of particle 1, the projectile.
Therefore, in the case of the projectile scattering from the core,
the wave function of the target nucleus is probed at nonzero
relative momentum. For the case of the reaction p(11Be,10Be
n)p studied in [7], the valence neutron is bound to 10Be in S-
wave whose wave function momentum distribution is sharply

peaked around zero momentum. Thus, in this case, the wave
function, when probed at larger momentum q23, is already
very small, leading to a scattering contribution from the core
that is relatively small. For other orbital angular momentum
states such as P- or D-waves, the wave function becomes non-
negligible at larger q23 and the contribution from projectile-
core scattering may become significant. Therefore standard
DWIA calculations which only take into account the contri-
bution from the scattering of the struck particle may become
inadequate in the case of struck particles bound with nonzero
orbital angular momentum. We shall return to this point later.

IV. THE BREAKUP OBSERVABLES IN INVERSE
KINEMATICS

We now consider the breakup of a radioactive beam
involving a two-body halo nucleus assumed to be well
described by a core and a valence neutron; the halo nucleus
collides with a proton target leading to three free particles in
the final state. This final state is described in terms of nine
kinematical variables. Momentum and energy conservation
reduces this number to five independent variables. With the
recent developments at the radioactive beam facilities it is now
possible to measure fivefold fully exclusive observables. By
further integration upon the variables of the emitted particles
semi-inclusive as well as inclusive breakup observables can be
measured although with loss of physical information.

In actual experiments performed in inverse kinematics it
is the halo core which is measured either directly or by
reconstruction from the other emitted fragments. We therefore
chose the Jacobi momenta

p = mnKp − mpKn

mp + mn

,

(20)

q = (mp + mn)KC − mC(Kp + Kn)

M
,

with Kp, Kn, KC (mp,mn,mC) being the lab momenta
(masses) of the proton, valence neutron and core in the exit
system, and M = mp + mn + mC . The breakup differential
cross section is calculated from the on-shell matrix elements of
the AGS operators, T 0α = 〈qp|U 0α|ψα〉 where particle α is the
spectator in the initial state (in our case α is the proton) and the
Jacobi momenta in the final state satisfy the on-shell relations

E − p2

2µ
− q2

2µ
= 0, (21)

with the reduced masses

µ = mnmp

mn + mp

,

(22)

µ = mC(mn + mp)

M
.

A. Fully exclusive observables

The fully exclusive breakup observables are measured in
the lab system. The kinematic configuration of three-body
breakup is characterized by the polar and azimuthal angles
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FIG. 2. (Color online) Kinematic angles for breakup in inverse
kinematics in the lab frame.


i = (θi, φi) of the two detected particles as in Fig. 2 which
we assume to be the core C and the valence neutron n.

In order to calculate this observable we begin by writing
the general expression in terms of the on-shell matrix elements
of the AGS operators an including momentum and energy
conservation

d5σ

dK̂ndKC

= (2π )4 mn + mC

KLAB

∫
dKpK2

ndKn|T 0α|2

× δ(KLAB − Kn − Kp − KC)

× δ

(
ELAB + ε − K2

p

2mp

− K2
n

2mn

− K2
C

2mC

)

= (2π )4 mn + mC

KLAB

∫
K2

ndKn|T 0α|2

× δ

(
ELAB + ε − (KLAB − Kn − KC)2

2mp

− K2
n

2mn

− K2
C

2mC

)

= (2π )4 mn + mC

KLAB
mpmn

∑
i

×
[
|T 0α|2 K2

n

|(mn + mp)Kn − mn(KLAB − KC) · K̂n|

]
i

.

(23)

The sum on i involves the momenta Kn given by the zeros of
the argument of the energy conserving δ-function

ELAB + ε − (KLAB − Kn − KC)2

2mp

− K2
n

2mn

− K2
C

2mC

= 0,

(24)

KLAB is the beam momentum in the lab frame and ELAB

the corresponding energy. To arrive to Eq. (23) we used the

property of the δ-function,

δ(g(x)) =
∑

i

δ(x − xi)

|g′(xi)| , (25)

where the xi s are the zeros of the function g(x).
Equation (24) defines an ellipse in the Kn − KC plane. The
points lying on that ellipse or on the corresponding curve in the
En − EC plane comprise the kinematically allowed S-curve
on which the physically accessible events have to lie [5]. The
phase space factor in Eq. (23) has the disadvantage that it
diverges at the KC values at which the ellipse has an infinite
derivative. As a result one often replaces the dependence on
the energy EC by the arc-length S related to the lab energies
En and EC of the two detected particles as S = ∫ S

0 dS [13]
with

dS =
√

dE2
n + dE2

C = dEC

√
1 +

(
dEn

dEC

)2

= dEC

√
1 +

(
mCKn

mnKC

dKn

dKC

)2

. (26)

By differentiating the argument of the energy conserving
δ-function with respect to KC and taking Kn = Kn(KC) we
obtain

dKn

dKC

= − (mp + mC)KC − mC(KLAB − Kn) · K̂C

(mp + mn)Kn − mn(KLAB − KC) · K̂n

mn

mC

. (27)

Therefore one can measure the fully exclusive fivefold dif-
ferential breakup cross section d5σ/d
nd
CdS where, from
Eq. (23), we get

d5σ

d
nd
CdS

= (2π )4 mn + mC

KLAB
mpmnmCKC

×

|T 0α|2 K2

n

|(mn + mp)Kn − mn(KLAB − KC) · K̂n|

×
[

1 +
(

mCKn

mnKC

dKn

dKC

)2
]− 1

2




i

, (28)

with dKn/dKC given by Eq. (27). The sum on i disappears
in Eq. (28) relative to Eq. (23), because there is a one to
one correspondence between En and S which may not exist
between En and EC .

B. Semi-inclusive observables

The semi-indusive differential cross section d3σ/d
CdEC

may be obtained from the fivefold differential cross section
(23) by integrating over the angles of the emitted valence
neutron. However, it is more convenient to start from the
fivefold differential cross section in the c.m. frame

d5σ

d2p̂ d3q
= (2π )4 mn + mC

KLAB

×
∫

|T 0α|2δ
(

E − p2

2µ
− q2

2µ

)
p2dp. (29)
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Using the property (25) of the δ-function one gets

d5σ

d2p̂ d3q
= (2π )4 mn + mC

KLAB
|T 0α|2µ

√
2µE − µ

µ
q2. (30)

From Eq. (20), using KTOT = Kn + Kp + KC and remem-
bering that in the chosen Jacobi set q = KC − mC

M
KTOT one

gets

d3σ

d
CdEC

= (2π )4 mn + mC

KLAB
mCKC

∫
d2p̂|T 0α|2

×µ

√
2µE − µ

µ

(
K2

C + m2
C

M2
K2

TOT − 2
mC

M
KC · KTOT

)
,

(31)

where the calligraphic momenta may be lab or c.m. momenta
depending on KTOT = KLAB or KTOT = 0. Clearly in the
integrand of this equation the square root must be positive
definite and, therefore, when the lab energy of the emitted
core exceeds a certain limit, ELAB

C (max), which depends on
the angle of the emitted core, then the semi-indusive cross
section should vanish. In order to find the rate at which
the cross section vanishes one should take the derivative
of the differential cross section with respect to the energy
of the core. It follows that at ELAB

C (max) this derivative is
infinite and therefore the semi-inclusive cross section should
exhibit almost a sharp cutoff at the maximum value of the core
laboratory energy unless the breakup amplitude is very small
close to the maximum energy. Hence the energy behavior of
the semi-inclusive cross section at high energies follows from
a delicate interplay between the phase space and the scattering
amplitude which should thus be accurately calculated.

C. Inclusive observables

As shown in Appendix B, from this semi-inclusive cross
section one can calculate the inclusive perpendicular momen-
tum distribution for one of the detected particles, say the core,
as

dσ

dK
p

C

= 2πK
p

C

∫ +∞

−∞

d3σ

d3KC

dKz
C (32)

and the inclusive transverse momentum distribution as

dσ

dKx
C

= 2
∫ +∞

−∞

∫ +∞

0

d3σ

d3KC

dKz
CdK

y

C (33)

with

d3σ

d3KC

= 1

mCKC

d3σ

d
CdEC

. (34)

V. THE PAIR INTERACTIONS

In this work we address the scattering of the (13Be + n)
system by a proton target. Before solving Faddeev/AGS
equations we need to define each pair interaction, that is, the
p-n, p-13Be, and n-13Be interactions.

For the p-n we take the realistic nucleon-nucleon CD
Bonn potential [14]. For the potential between the proton and
13Be core we use a phenomenological optical model with
parameters taken from the Watson global optical potential
parametrization [8,15]. The energy dependent parameters of
the optical potential are taken at the proton laboratory energy
of the p-14Be reaction in direct kinematics.

The interaction between the valence neutron and the 13Be
core in 14Be depends on the orbital angular configuration of the
valence nucleon for the 13Be + n cluster system. Since the total
angular momentum of the core and valence neutron are coupled
to 14Be(0+), it means that the the total angular momentum of
the valence nucleon is identical to the 13Be core. Little is
known about this system with exception of a possible 5/2+
(D-wave) resonance with a relative energy Erel(12Be + n)∼
2 MeV above the neutron breakup threshold.

In this work we take the spectroscopic study of 13Be
obtained from the proton-induced reaction on 14Be at
69 MeV/nucleon in inverse kinematics performed by the
invariant mass method at RIKEN [1]. The 13Be resonances
of 1/2− (P-wave) with Erel = 0.45 MeV, 1/2+ (S-wave) with
Erel = 1.17 MeV, and 5/2+ (D-wave) with Erel = 2.34 MeV
were assigned through the analysis of the transverse momen-
tum distributions of the outgoing 13Be system. Following this
work we take three possible single-particle configurations for
14Be(0+):

|14Be〉 = |13Be(1/2−) ⊗ n(1p1/2)〉, (35)

|14Be〉 = |13Be(1/2+) ⊗ n(2s1/2)〉, (36)

|14Be〉 = |13Be(5/2+) ⊗ n(1d5/2)〉, (37)

with binding energy ε = Erel + S2n, S2n = 1.26 MeV being
the two neutron separation energy of 14Be.

The interaction between the valence neutron and the 13Be
core is taken to be of the form

V (r) = −Vcf (r, R0, a0), (38)

where f (r, R, a) is the usual Woods-Saxon form factor

f (r, R, a) = 1/{1 + exp[(r − R)/a]}, (39)

and Ri = riA
1
3 . The potential parameters for each single-

particle configuration are listed in Table I and the correspond-
ing wave functions shown in Fig. 3.

In order to access the contribution of other partial waves
in the n-13Be interaction beyond the one that is responsible
for the single particle configuration leading to the 0+ ground
state of 14Be, we take in those partial waves the potential
corresponding to Vc = 32.922 MeV in Table I. Therefore 0+
partial waves are driven by the potentials in Table I, depending

TABLE I. Parameters of the n-13Be
interaction plus r0 = 1.2 fm and a0 =
0.6 fm.

State Vc (MeV)

1p1/2 32.922
2s1/2 61.667
1d5/2 68.980
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FIG. 3. (Color online) Relative wave function of the valence
neutron and 13Be core in momentum space for S- (dark solid line), P-
(dark dashed line), and D-wave bound states (light solid line).

on the choice of 13Be resonance we consider; all other partial
waves are driven by the weakest potential of all three for no
other reason than lack of a more enlightened choice.

VI. RESULTS

In the solution of the Faddeev/AGS equations we include
n-p partial waves with relative orbital angular momentum
�np � 8, and p-13Be with L � 10. For the n-13Be, we start
by including just the 0+ partial wave using the interactions in
Table I depending on the specific choice of spin and parity we
consider for 13Be, that is, 1/2−, 1/2+, or 5/2+. Three-body
total angular momentum is included up to 100 and in all
calculations unphysical bound states are properly removed [9]
keeping a single bound state of 14Be in 0+ partial wave.

We present in this section the calculated semi-inclusive
breakup observables around QFS and the inclusive momentum
distributions of the 13Be system.

In inverse kinematics the exact np QFS kinematic con-
ditions correspond to a 13Be lab momentum of KC =
mC

MCn
KCn , that is, taking 14Be in the ZZ direction we have

(ELAB
C , θLAB

C , φLAB
C )QFS = ( mC

MCn
ECn, 0, 0), where the index C

denotes 13Be, Cn denotes 14Be and MCn = mC + mn. For 14Be
scattering from a proton at 69 MeV/nucleon this corresponds
to (897 MeV, 0, 0).

In Fig. 4 we show the semi-inclusive cross section for
the breakup p(14Be,13Be)np at 69 MeV/nucleon using the
SSA. We separately consider the scattering from the valence
neutron, the scattering from the core, and the scattering from
both the valence and the core. As shown in Sec. III, the cross
section calculated using SSA from the struck particle probes
the bound state wave function at relative momentum q23 = 0
in the np QFS kinematic condition. As shown in Fig. 3 this
corresponds to the point where the relative wave function is
sharply peaked in the case of S-wave, but zero in the case
of P- or D-waves. At EC = 897 MeV, as one moves away
from the QFS point, that is, when θC increases from zero, the
cross section starts to probe the wave function at larger relative
momentum. For the S-wave case where the wave function is

0
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FIG. 4. (Color online) Semi-inclusive cross section for the
breakup p(14Be,13Be)np at 69 MeV/nucleon using the SSA con-
tribution for θC = 0◦ (dark thick solid line), θC = 0.4◦ (dashed line),
θC = 0.8◦ (dark thin solid line), θC = 1.2◦ (dashed dotted line), and
θC = 1.4◦ (light solid line).

very narrow in momentum space, this means that the cross
section will decrease very rapidly as one increases the core
scattering angle, as seen clearly in Fig. 4. For the case of a
P-wave, it starts to probe nonvanishing values of the wave
function reaching steeply its peak. Likewise for the D-wave
as one moves away from the QFS point it starts to probe
nonvanishing values of the wave function reaching less steeply
its peak as also shown in Fig. 4.

On the other hand the cross section calculated using
SSA from the core probes the bound state wave function at
relative momentum different from zero. This means that the
contribution from the scattering from the core is small for the
S-wave. As shown in the graph at this energy the scattering
from the core gives an important contribution to the single
scattering term in the case where the struck particle is bound
to the core in P- or D-waves.

We would like to point out that the SSA from the core is
neglected in standard DWIA approaches which are therefore
inadequate for nonzero relative angular momentum wave
functions of the bound pair.

In Fig. 5 we show the semi-inclusive cross section for the
breakup p(14Be,13Be)np at 69 MeV/nucleon using full mul-
tiple scattering Faddeev/AGS calculations. The most striking
feature from the graphs is the relative order of magnitude of the
calculated observables for each single-particle configuration
which is carried over from the SSA calculations shown in
Fig. 4. The breakup observable calculated with the S-wave
single particle state is one order (two-orders) of magnitude
larger that the breakup observable calculated with the P-wave
(D-wave). Therefore the magnitude of the semi-inclusive cross
section in quasifree conditions is a clear signature of the
angular momentum of the valence nucleon. Comparing Figs. 4
and 5 we conclude that the SSA clearly overestimates the full
multiple scattering results in all configurations at this energy
regime. Therefore care should be taken into account when
using truncated multiple scattering frameworks such as DWIA
as pointed out in Ref. [7].
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FIG. 5. (Color online) Semi-inclusive cross section for the
breakup p(14Be,13Be)np at 69 MeV/nucleon using the full multiple
scattering calculations for θC = 0◦ (dark thick solid line), θC = 0.4◦

(dashed line), θC = 0.8◦ (dark thin solid line), θC = 1.2◦ (dashed
dotted line), and θC = 1.4◦ (light solid line). The n-13Be interaction
is restricted to the 0+ partial wave.

In order to assess the effect of introducing higher partial
waves in the n-13Be interaction we follow the prescription
mentioned at the end of Sec. V and use the potential
corresponding to Vc = 32.922 MeV in Table I in all partial
waves other than 0+. For that matter we include n-13Be relative
angular momenta � � 3. The results for the semi-inclusive
cross section obtained from the full multiple scattering
Faddeev/AGS calculation are shown in Fig. 6 and do not differ
significantly from the results in Fig. 5. This indicates that the
effect of introducing the coupling to the other n-13Be partial
waves is small, and does not change the conclusions.

0

2×10
3

4×10
3

0

2×10
2

4×10
2

 d
3 σ/

dΩ
C
dE

C
(m

b/
(M

eV
 s

r)
)

700 800 900 1000
E

C
(MeV)

0

4×10
1

8×10
1

S-wave

P-wave

D-wave

Full Faddeev-all partial waves

FIG. 6. (Color online) Semi-inclusive cross section for the
breakup p(14Be,13Be)np at 69 MeV/nucleon using the full multiple
scattering calculations for θC = 0◦ (dark thick solid line), θC = 0.4◦

(dashed line), θC = 0.8◦ (dark thin solid line), θC = 1.2◦ (dashed
dotted line), and θC = 1.4◦ (light solid line). The n-13Be interaction
is included in all partial waves (see text).
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FIG. 7. (Color online) Transverse momentum distributions of
the 13Be = (12Be + n) system in the p(14Be,13Be)np reaction at
69 MeV/nucleon. Results of the full Faddeev/AGS calculations with
S-, P-, and D-wave (13Be + n) bound states are shown.

In Fig. 7 we show the inclusive transverse momentum dis-
tributions of the 13Be = (12Be + n) system in the 1/2−, 1/2+,
and 5/2+ states at 69 MeV/nucleon obtained from the full
multiple scattering Faddeev/AGS calculations. These results
show that the shape of the inclusive transverse momentum
distribution does not provide a clear signature for the spin of
the 13Be resonance, but instead, its magnitude at the peak does,
as long as one has full control of the three-body dynamics.
Nevertheless the magnitude of the semi-inclusive cross section
is far more sensitive to the orbital angular momentum of
the (13Be + n) 0+ bound state than the inclusive transverse
momentum distribution of 13Be.

VII. CONCLUSIONS

We have performed full Faddeev-type calculations for
one-neutron knockout reaction of 14Be on proton target at
69 MeV/nucleon incident energy. These results were compared
with those corresponding to the single scattering approxima-
tion. Inclusive transverse momentum distribution observables
for the outgoing (12Be + n) system were calculated. Semi-
inclusive differential cross sections at the np QFS kinematical
conditions were also presented.

In this work we have considered the 0+ ground state of 14Be
as a single particle state made up of (13Be + n) bound in P-,
S-, or D-wave depending on the 13Be spin being 1/2−, 1/2+,
or 5/2+, respectively.

We have found that the single scattering contribution from
the core is very significant in the case of P- or D-waves. In any
case the single scattering is a bad approximation of the full
results at this energy. Thus, DWIA approaches which take into
account the contribution between the proton and the struck
valence neutron, are inadequate in this case. Higher order
multiple scattering contributions need to be taken into account
as done in the full Faddeev/AGS approach. The semi-inclusive
breakup cross section resulting from the full Faddeev/AGS
calculation with a (13Be + n) S-wave bound state is one order
(two orders) of magnitude larger than in the case of the
P-wave (D-wave) bound state. Therefore the magnitude of
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the semi-inclusive cross section in QFS conditions is a clear
signature of the angular momentum of the valence nucleon
if we can have a good control of the underlying three-body
dynamics.
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APPENDIX A

In SSA, the initial relative momentum between particles 1
and 2 is

q12 = m2

M12
k1 − m1

M12
(−k1 − k′

3). (A1)

In np QFS kinematical conditions k′
3 = −k1

m3
m2+m3

we get

[q12]QFS = Mm2

M12M23
k′

1. (A2)

The two-body energy ω12, in the limit of zero binding energy
for the pair (23), is given by

ω12 = E − k′
3

2

2µ3(12)
= k2

1

2µ1(23)
− k′

3
2

2µ3(12)
. (A3)

Under the QFS condition

[ω12]QFS = k2
1

2µ1(23)
− k2

1

2µ3(12)

m2
3

M23
2 = k2

1
M2m2

2m1M23
2M12

= E
Mm2

M23M12
, (A4)

leading to

[ω12]QFS =
[
q2

12

]QFS

2µ(12)
. (A5)

Thus, in the single scattering term the matrix elements of the
transition operator t12(ω12) are on the energy shell in the limit
of zero binding for pair (23).

APPENDIX B

Let us consider the breakup reaction p((nC), C)np. In this
section we give the formulas for the momentum distributions of
the detected core C. The kinematics of particle C can be defined
in terms of its momentum (Kx,Ky,Kz) or, alternatively, by its
lab energy and angular variables (E,
) where, in this section,
we drop the index of the core for simplification. The semi-
inclusive cross section is given by

d3σ

d3K
= 1

mK

d3σ

dEd

, (B1)

with m the mass of the core. The Cartesian compo-
nents of the momentum of the particle can be ex-
pressed in terms of its spherical components (Kx,Ky,Kz) =
(K sin θ cos φ,K sin θ sin φ,K cos θ ). Alternatively one may
define the set of cylindrical momentum coordinates

(Kρ, φ,Kz) = (
√

K2
x + K2

y , tan−1(Ky/Kx),Kz). One can

write then

d3K = dKxdKydKz = d2KρdKz = KρdKρdφdKz. (B2)

Thus

d2σ

d2Kρ

=
∫ +∞

−∞

d3σ

d3K
dKz. (B3)

From this double cross section we can calculate the inclusive
perpendicular momentum distribution

dσ

dKρ

= 2πKρ

∫ +∞

−∞

d3σ

d3K
dKz (B4)

and the inclusive transverse momentum distribution

dσ

dKx

= 2
∫ +∞

0

d2σ

d2Kρ

dKy. (B5)
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