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Relevance of equilibrium in multifragmentation
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The relevance of equilibrium in a multifragmentation reaction of very central 40Ca + 40Ca collisions at
35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two
types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision
events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of
motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is
performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists
an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated
period 80 � t � 300 fm/c. However, there are some other observables that show discrepancies between the
reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual
static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of
the reaction system cannot reproduce the fragment observables.
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I. INTRODUCTION

In medium-energy heavy-ion collisions at around the
Fermi energy, intermediate-mass fragments as well as a
large number of light particles such as nucleons and alpha
particles are copiously produced [1–5]. This phenomenon
is called multifragmentation. It is a challenging problem
to understand the complex but rich quantum many-body
dynamics of multifragmentation. One of the purposes of
studying heavy-ion collisions is to explore the properties of
nuclear matter [6,7]. This information is valuable not only
for nuclear physics but also for astrophysical interests such as
supernova explosions and the structure of neutron stars [8].
The nuclear matter is expected to be compressed in the initial
stage of a collision and the created compressed matter then
expands afterward. The study of heavy-ion collisions thus
offers a possibility to probe the properties of nuclear matter in a
wide range of density. Multifragmentation has been considered
to occur in the expanding stage and to have some connection
to the nuclear liquid-gas phase transition, the existence of
which is speculated based on the resemblance between the
equation of state of homogeneous nuclear matter and that of
a van der Waals system. Intensive research has been carried
out to find evidence of this phase transition in experimental
data of multifragmentation. In some works it is claimed that
indications have been obtained [5,9–15]. However, they are
not conclusive and much effort is still required.

One of the difficulties is that it is not straightforward to
relate the experimental data of heavy-ion collisions with the
statistical properties of nuclear matter unless the state variables
such as the temperature are well defined in dynamical reac-
tions. The typical reaction time scale of multifragmentation
reactions is the order of 100 fm/c, which may not be long
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enough for the system to reach equilibrium compared with
the typical time scale of successive two-nucleon collisions
(a few tens of fm/c). However, there are several reports that
support the achievement of equilibrium. An example is the
existence of several types of scaling laws that appear in
experimental data (e.g., Fisher’s scaling [13] and isoscaling
[16,17]), which may be understood if the system has reached
equilibrium. Another example is the reasonable reproduction
of the fragment mass (charge) distribution by statistical models
for some multifragmentation reactions [18–22]. However, the
achievement of equilibrium in multifragmentation reactions
is still a controversial issue. One of the difficulties is that
the information obtained directly from experiments is that
of the very last stage of the reactions. Even if the system
reaches equilibrium, the system undergoes the sequential
decay process that distorts the information at the stage of
the equilibrium before the fragments are finally detected in
experiments. Another difficulty is that even if the equilibrium
is relevant to multifragmentation reactions the achievement
can be incomplete. Several aspects are expected to reflect the
reaction dynamics, such as the pre-equilibrium emissions of
light particles, the collective flow, and the expansion of the
system [23–27].

The aim of this paper is to investigate whether the concept
of equilibrium is relevant in multifragmentation, and, if so, in
what sense. We examine the achievement of equilibrium in
multifragmentation reactions simulated by antisymmetrized
molecular dynamics (AMD) [28–30]. AMD is a microscopic
dynamical model based on the degrees of freedom of inter-
acting nucleons. AMD is a suitable model for this study for
the following reasons: It has been shown that various aspects
of experimental data are reproduced by applying AMD to
nuclear reactions [23,28–36]. It has been also argued that
the quantum and fermionic statistical properties of nuclear
systems are correctly described by AMD if an appropriate
quantum branching process is taken into account [37–40].
Furthermore, we can construct microcanonical equilibrium
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ensembles for given energies and volumes by solving the AMD
equation of motion of a many-nucleon system confined in a
container for a long time [41]. By extracting temperature and
pressure from these equilibrium ensembles and interpolating
these data, we have drawn the constant-pressure caloric curves
to show that negative heat capacity, which is a signal of the
phase transition in finite systems [18,42,43], appears in the
obtained result.

To investigate the relevance of equilibrium in multifrag-
mentation, we employ the following steps. We perform the
AMD simulation for very central 40Ca + 40Ca collisions at
35 MeV/nucleon. The reaction ensemble at each reaction time t

is constructed by collecting the many-nucleon states at the time
t from different events. We compare this reaction ensemble
with an equilibrium ensemble with appropriately chosen en-
ergy and volume. If we are able to find an equilibrium ensemble
that is equivalent to the reaction ensemble, we may be able to
discuss the connection between the multifragmentation data
and statistical properties of nuclear matter. This subject has
been studied by Raduta et al. [44,45]. They have compared an
ensemble obtained by the stochastic mean-field approach [46],
which is a BUU-type transport model, with that obtained by
the microcanonical multifragmentation model [47], which is
a statistical model. In contrast, we use the same version of
AMD to describe both dynamical and equilibrium situations
so that we can compare the reaction and equilibrium ensembles
directly without being affected by the model difference.

This paper is organized as follows. In Sec. II, the framework
of AMD, which is used to simulate reaction and equilibrium
systems, is explained. In Sec. III, we show the results
of the AMD simulation for the 40Ca + 40Ca collisions at
35 MeV/nucleon, which have been already studied with
another version of AMD [36]. One of the purposes of this
section is to ensure that the modifications introduced in
Ref. [41] for the application to statistical calculations do not
spoil the good reproduction of the reaction data. Limiting the
discussion to the very central reaction, we also argue the time
evolution of the reaction system by showing the fragment
observables. In Sec. IV, we show results of the statistical
calculation for an equilibrium system with 18 protons and
18 neutrons, which is the same system as Ref. [41]. It is
confirmed that negative heat capacity appears in the constant-
pressure caloric curves although several modifications are
introduced in this paper. In Sec. V, we compare the ensembles
obtained by the dynamical simulation (Sec. III) and obtained
by the statistical calculations with various conditions of
volume and energy (Sec. IV) and discuss whether the concept
of equilibrium is relevant to the multifragmentation reaction.
Section VI is devoted to a summary and future perspectives.

II. FRAMEWORK OF AMD TIME EVOLUTION

In this section, we present our AMD framework to calculate
the time evolution of many-nucleon systems. We basically
follow the framework of Ref. [41], although several modifi-
cations are introduced in the present work. We simulate both
a multifragmentation reaction (Sec. III) and an equilibrium
system (Sec. IV) with the same AMD model.

The wave function of an A-nucleon system |�(t)〉 that
evolves with time t according to the many-body Hamiltonian
is given by a superposition of various reaction channels.
As it is impossible to follow the exact time evolution of
|�(t)〉 in practice, in the AMD formalism we approximate
the many-body density matrix |�(t)〉〈�(t)| by an ensemble of
AMD wave functions |�(Z)〉 as

|�(t)〉〈�(t)| ≈
∫ |�(Z)〉〈�(Z)|

〈�(Z)|�(Z)〉 w(Z, t) dZ, (1)

where w(Z, t) is the weight factor for each reaction channel
at time t . This approximation implies that we incorporate
the existence of various reaction channels while we ignore
the interference between channels since it is unimportant for
practical purposes (decoherence).

AMD uses a single Slater determinant of Gaussian wave
packets as a channel wave function

〈r1 · · · rA|�(Z)〉 = det
ij

[ϕZi
(rj )χαi

(j )], (2)

where the spatial wave functions of nucleons ϕZ are given by

〈r|ϕZ〉 =
(

2ν

π

)3/4

exp

[
−ν

(
r − Z√

ν

)2
]

(3)

and χα denotes the spin-isospin wave function, χα = p ↑,

p ↓, n ↑, and n ↓. The AMD wave function |�(Z)〉 is the
many-nucleon state parametrized by a set of complex variables
Z ≡ {Zi}i=1,...,A. The real and the imaginary parts of Z
correspond to the centroids of the position and the momentum
of each wave packet, respectively, if the antisymmetrization
effect is ignored. The width parameter ν is treated as a constant
parameter common to all the wave packets and ν = 0.16 fm−2

is utilized in this paper, which has been adjusted to reasonably
describe ground states of light nuclei such as 16O. It is shown
that the binding energies of nuclei in a wide range of the
nuclear chart are reproduced well with appropriate effective
interactions [30,48]. This choice of channel wave function is
suitable for the simulation of multifragmentation reactions,
where each single-particle wave function should be localized
within a fragment. Besides, the AMD wave function |�(Z)〉
contains many quantum features owing to antisymmetrization
and so is even utilized for nuclear structure studies [49].

According to Eq. (1), the time evolution of the A-nucleon
system may be determined by calculating the time evolution
of the weight factor for each channel w(Z, t). Alternatively,
we take another viewpoint that the parameters Z of the wave
function |�(Z)〉 are stochastic time-dependent variables Z(t)
and the time evolution of the many-nucleon state is given
by the ensemble of the various trajectories. The stochastic
time evolution of Z(t) should be considered as the quantum
branching from a channel |�(Z)〉 to many other channels
|�(Z′

1)〉, |�(Z′
2)〉,. . . .

The time evolution of the centroids Z is determined by a
stochastic equation of motion symbolically written as

d

dt
Zi = {Zi ,H} + (NN collision) + �Zi . (4)

The first term {Zi ,H} is the deterministic term, which is
derived from the time-dependent variational principle [28–30].
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FIG. 1. Density distributions projected on
the reaction plane of very central 40Ca + 40Ca
collisions at 35 MeV/nucleon (bimp = 0 fm)
from t = 0 fm/c to t = 300 fm/c for four dif-
ferent events. The size of the displayed area is
40 × 40 fm.

The Gogny force [50] is adopted as the effective interaction
and the Coulomb force is also taken into account. The second
term represents the stochastic two-nucleon collision process,
where a parametrization of the energy-dependent in-medium
cross section is adopted [30].

The third term �Zi is a stochastic fluctuation term that has
been introduced to compromise the unrestricted single-particle
motion in the mean-field and the localization of single-particle
wave functions at the time of forming fragments [30–32].
The fluctuation �Zi is determined so that the evolution
of the width and shape of the single-particle phase-space
distribution in mean-field theories is reproduced for a certain
time duration τcohe by the ensemble average of the localized
single-particle phase-space distribution of each channel. In
practice, we compute �Zi by solving the Vlasov equation
with the same effective interaction used in the term {Zi ,H}.
The time duration τcohe to respect the coherent single-particle
motion in the mean-field should be related to many-body

effects in some way since the decoherence is due to the
many-body correlations beyond the mean-field. In this paper,
we choose τcohe in such a way that the decoherence probability
becomes approximately proportional to the density at the
nucleon location. This stochastic term is essential for the
consistency of dynamics with quantum statistics [37–40].

Basically, we follow the formalism explained in Ref. [41].
In the present work, we have chosen the probability of
decoherence for the nucleon k to occur during the time interval
�t to be

Pdech k = 1 − exp

(
−ρk�t

ρ0τ0

)
, (5)

where τ0 is chosen to be 5 fm/c, ρk is the density at the wave
packet center of the nucleon k excluding the contribution from
the nucleon k itself, and ρ0 = 0.16 fm−3 is the normal nuclear
matter density. To better describe the 40Ca + 40Ca reaction at
35 MeV/nucleon, the dissipation term (corresponding to the
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fluctuation term) is assumed to conserve the monopole and
quadrupole moments in coordinate and momentum spaces for
the nucleons that have more than 15 neighboring nucleons as
in Ref. [32]. Furthermore, another modification is introduced
to better incorporate the effect of decoherence, the details of
which are given in the Appendix.

III. APPLICATION TO A REACTION

We apply AMD to 40Ca + 40Ca collisions at 35 MeV/
nucleon. This system has been already studied by using AMD
with the instantaneous decoherence [36] and it has been shown
that a good reproduction of experimental data is obtained
[23,36]. However, we take a finite coherence time and we
also introduce some modifications explained in Ref. [41] and
the Appendix. Therefore, we confirm the applicability of the
present framework by comparing the simulation results with
the experimental data by Hagel et al. [51]. The ensembles of the
many-nucleon states obtained from the dynamical simulations
in this section are utilized in Sec. V.

The simulations are performed in the usual way. The
time evolutions are calculated up to t = 300 fm/c, when the
produced fragments are no longer strongly interacting with
each other. Simulations are carried out for many (∼1000)
events independently. Figure 1 shows the time evolution of
the density projected on the reaction plane for several very
central reaction events. The range of the impact parameter
bimp < 7 fm is investigated, which is wide enough to compare
the simulation results with the experimental data of central
reactions [51]. The fragments at t = 300 fm/c are identified
by the condition that two nucleons i and j belong to the same
fragment if 1√

ν
|Zi − Zj | < rfrag with rfrag = 5 fm, and the

decays of excited fragments are calculated by using a statistical
decay code [52]. To compare the results with experimental
data, the same experimental filter and event selection as in the
experiment [51] are applied. The obtained fragment charge
distribution is shown in Fig. 2 together with the experimental
data [51]. In Fig. 3, we also show how the total charge of the
system is distributed in fragments in the final state.

The experimental data show that 20% of protons are emitted
as protons, deuterons, and tritons, 30% of protons are contained

10-3

10-2

10-1

100

101

102

0 5 10 15 20 25 30

M
ul

tip
lic

ity

Z

AMD
Exp

FIG. 2. (Color online) The fragment charge distribution of the
reaction 40Ca + 40Ca at 35 MeV/nucleon simulated by AMD (full
line) compared with the experimental data of Hagel et al. [51] (points).
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FIG. 3. Partition of total charge into fragments at the final state
of the reaction 40Ca + 40Ca at 35 MeV/nucleon for the experimental
data of Hagel et al. [51] (left) and the AMD result (right).

in He isotopes, and the rest of the protons are contained
in heavier fragments. The features of the experimental data
are reproduced by AMD well, as we see in Figs. 2 and 3.
Reasonable reproduction of the fragments with Z = 1 and 2
is obtained.

In this paper, we have chosen the coherence time parameter
τ0 to be 5 fm/c [Eq. (5)]. No significant difference is seen even
if we take τ0 to be a half or twice this choice. When we take τ0 to
be much longer such as τ0 ∼ 100 fm/c, excessive production
of heavy fragments is observed and consequently the amounts
of the fragments around the B–Ne region are underestimated
compared with the experimental data. The same trend has
been seen when we use the AMD model described in
Ref. [41]. This can be understood because the treatment in
Ref. [41] corresponds to a relatively weak decoherence (a long
coherence time), as explained in the Appendix.

Let us concentrate our arguments on the time evolution of
several observables for very central reaction events (bimp =
0 fm). The fragment charge distribution and the average
excitation energy as a function of the fragment mass number
are shown for several reaction times in Figs. 4 and 5,
respectively, by identifying fragments with rfrag = 3 fm. The
fragments identified in this way are not necessarily related to
the fragments at the end of the reaction. Nevertheless, these
quantities are helpful to understand the change of the reaction
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FIG. 4. (Color online) The fragment charge distribution of the
very central (bimp = 0 fm) reaction 40Ca + 40Ca at 35 MeV/nucleon
at four reaction times t = 50–300 fm/c.
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FIG. 5. (Color online) The average excitation energy of fragments
as a function of the fragment mass number A for the very central
(bimp = 0 fm) reaction 40Ca + 40Ca at 35 MeV/nucleon at three
reaction times t = 100–300 fm/c.

system along the time evolution. (The choice of the parameter
rfrag = 3 fm is taken to identify fragments even at early stages
of the reaction, but rfrag = 3 fm seems to be too small to
identify the realistic fragments at time t = 300 fm/c.)

Isolated nucleons and light fragments are identified even
at a very early stage of the reaction (t = 50 fm/c); these are
interpreted as pre-equilibrium emissions of light particles. The
heavy fragments Z > 20 are negligible at the truncation time
(t = 300 fm/c). The average excitation energies per nucleon
of the fragments A � 15 are as high as about 5 MeV at t =
100 fm/c and decrease to about 4 MeV at t = 300 fm/c.

In many very central reaction events, the produced frag-
ments seem to be divided into two groups, projectile-like and
target-like groups, at the late stage of the reaction (Fig. 1).
Therefore, the two separate equilibrium systems of about half
size will be more relevant to this reaction system rather than a
single large equilibrium system, if the concept of equilibrium
is relevant to this reaction in any sense.

IV. APPLICATION TO STATISTICAL CALCULATIONS

We are able to study the statistical properties of many-
nucleon systems in equilibrium by using AMD as in Ref. [41].
We calculate the time evolution of the system of Atotal nucleons
(Ntotal neutrons and Ztotal protons) confined in a spherical
container of radius rwall for a long time. We regard the
Atotal-nucleon state at each time as a sample of an equilibrium
ensemble. The total energy Etotal of the system is conserved
throughout the time evolution so that the obtained ensemble
is a microcanonical ensemble specified by the total energy
Etotal, the volume Vtotal = 4

3πr3
wall, and the number of nucle-

ons, Atotal(Ztotal, Ntotal). By extracting statistical information
(temperature T and pressure P ) from the ensembles, we can
construct caloric curves T (Etotal, P ).

We utilize the same AMD model used to simulate the
reaction 40Ca + 40Ca at 35 MeV/nucleon in the previous
section to study the equilibrium system of (Ztotal, Ntotal) =
(18, 18), which is the same system as studied in Ref. [41].
We calculate ensembles for various energies E∗

total/Atotal =
5–8 MeV and volumes rwall = 5–15 fm (Vtotal/V0 = 2.5–67),
where E∗

total stands for the excitation energy relative to the
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FIG. 6. (Color online) The constant-pressure caloric curves for
the Atotal = 36 (Ntotal = 18, Ztotal = 18) system obtained by AMD.
The lines correspond to the pressure P = 0.005, 0.01, 0.02, 0.03,
0.05, 0.07, 0.10, 0.15, 0.20, 0.25, 0.30, and 0.40 MeV/fm3 from
the bottom upward. Statistical uncertainties are shown by error
bars. The curves of E∗

total/Atotal = T 2/(8 MeV) and E∗
total/Atotal =

T 2/(13 MeV) and the line of Etotal/Atotal = (E∗
total + Eg.s.)/Atotal =

3
2 T are drawn for comparison.

ground state of the 36Ar nucleus (Eg.s. = −8.9 Atotal MeV)
and V0 = Atotal/ρ0 corresponds to the volume for the system
with normal nuclear matter density ρ0. The obtained constant-
pressure caloric curves are shown in Fig. 6. Although several
changes (explained in Sec. II and the Appendix) have been
introduced in this paper, the characteristic feature of the phase
transition in finite systems [18,42,43], namely negative heat
capacity, can be recognized in the constant-pressure caloric
curves with P � 0.3 MeV, as has been seen in Ref. [41]. The
caloric curve for the liquid phase, namely the line obtained
by connecting the leftmost points of the constant-pressure
caloric curves, shifted slightly left compared with the result
of Ref. [41] and, connected to that, the critical point seems
to be affected slightly. This is mostly due to the change of
decoherence, as explained in Sec. VB in Ref. [41].

The created equilibrium ensembles in this section are
utilized in Sec. V.

V. COMPARISON BETWEEN A DYNAMICAL
SIMULATION AND STATISTICAL CALCULATIONS

In this section, we compare two ensembles—a reaction
ensemble and an equilibrium ensemble—to study whether
the concept of equilibrium is relevant in multifragmentation
reactions.

(i) A reaction ensemble is obtained by collecting the states
at a certain reaction time from many events of a dynam-
ical multifragmentation reaction simulated by AMD
(Sec. III). The reaction ensemble is specified by the
reaction time t , and we consider the ensembles obtained
from the reaction 40Ca + 40Ca at 35 MeV/nucleon in
Sec. III. We use only very central reaction events
(bimp = 0 fm).
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(ii) An equilibrium ensemble is obtained by calculating the
time evolution of a many-nucleon system in a container
for a long time by AMD and regarding a state at each
time as a sample (Sec. IV). The equilibrium ensemble
here is a microcanonical ensemble specified by the total
energy Etotal, container volume Vtotal, and number of
nucleons, Atotal(Ztotal, Ntotal). We consider the system
of (Ztotal, Ntotal) = (18, 18) studied in Sec. IV.

We utilize the same AMD model to calculate both situations
so that we are able to compare the reaction and equilibrium
ensembles without ambiguities.

The comparison of the reaction and equilibrium ensembles
is performed by calculating the same observables for both
ensembles. In this paper, the fragment charge distribution
YZ and the average excitation energy as a function of the
fragment mass number 〈E∗/A〉A are chosen as the observables
(“fragment observables”). To make a detailed comparison with
many observables, we introduce three classes of fragment
observables by choosing different values of the fragment
identification parameter rfrag : rfrag(1) = 3 fm, rfrag(2) = 2.5 fm,
and rfrag(3) = 2 fm (see Sec. III). The fragment observables
with different rfrag can be regarded as different observables for
the comparison of ensembles.

For a given reaction time t , we compute a quantity

δ2 = 1

3 × 13

[
3∑

i=1

16∑
Z=4

{
ln Y

(i)
Z react − ln

(
NY

(i)
Z equil

)}2

]

+ 1

3 × 14

[
1

ε2

3∑
i=1

15∑
A=2

{〈E∗/A〉(i)
A react − 〈E∗/A〉(i)

A equil

}2

]

(6)

and search the equilibrium ensemble that gives the minimum
value of δ2. Here YZ and 〈E∗/A〉A are the yield of the fragments
with the charge number Z and the average excitation energy
of the fragments with mass number A, respectively. The
subscripts “react” and “equil” indicate that the observables
for the reaction ensemble and for the equilibrium ensemble,
respectively. The superscript (i) denotes that the observables
are calculated with the fragments identified by rfrag(i). The
factor ε is a dimensional constant of energy and is taken as
1 MeV in this paper. The factor N is a normalization constant
that is optimized to give the minimum value of δ2. The yields
YZ of the fragments with Z = 1–3 are omitted to compute δ2

to avoid the effect of pre-equilibrium emissions.
In Sec. III, we have seen that the reaction system seems to be

composed of two separate equilibrium systems if equilibrium
is relevant to this reaction. The system (Ztotal, Ntotal) =
(18, 18) we studied in Sec. IV is about half the size of the
reaction system. We therefore compare the reaction ensemble
of Sec. III and the equilibrium ensembles of Sec. IV. A
value of N ≈ 2 is expected to compare the equilibrium
system of (Ztotal, Ntotal) = (18, 18) with the reaction system
of 40Ca + 40Ca. In early stages of the reaction, a heavy
fragment with Z > 20 is identified when the projectile-
like and target-like groups overlap spatially. It is not appropri-
ate to compare such situations with an equilibrium ensemble
with (Ztotal, Ntotal) = (18, 18). We therefore exclude from the

TABLE I. The state variables of the equilibrium ensemble that
reproduces the fragment observables of the reaction 40Ca + 40Ca at
35 MeV/nucleon at each reaction time t = 80–300 fm/c.

t E∗
total/Atotal Vtotal/V0 T P N δ2

(fm/c) (MeV) (MeV) (MeV/fm3)

80 6.9 3.3 8.1 0.042 1.4 0.46
100 6.5 3.9 7.1 0.029 2.0 0.18
120 6.3 5.0 6.1 0.019 2.1 0.12
140 6.1 6.2 5.9 0.013 2.0 0.13
160 5.9 6.4 5.6 0.011 2.0 0.12
180 5.7 6.6 5.4 0.010 2.0 0.13
240 5.4 9.2 4.7 0.007 1.8 0.11
300 5.3 13.2 4.1 0.005 1.9 0.15

reaction ensemble the states in which a heavy fragment
with Z > 20 is identified with rfrag(1) = 3 fm. We start the
comparison after the reaction time t = 80 fm/c at which we
find a significant number of adopted states.

The reaction ensembles at the time t = 80, 100,

120, 140, 160, 180, 240, and 300 fm/c are compared with the
equilibrium ensembles E∗

total/Atotal = 5–8 MeV and rwall =
5–9 fm (Vtotal/V0 = 2.5–14). When the energy of the equilib-
rium system E∗

total/Atotal is varied, a large change is observed
in 〈E∗/A〉A. However, when the volume of the equilibrium
system, Vtotal, is varied, the change of the shape of YZ is
noticed. Therefore, by reproducing YZ and 〈E∗/A〉A, we are
able to find an equilibrium ensemble (specified by Etotal and
Vtotal) that reproduces the reaction ensemble, if it exists. The
observables for the equilibrium ensemble depend on the size
of the system, but we have confirmed that this dependence is
compensated by the freedom of the normalization factor N
when we change the number of nucleons in the equilibrium
system to Atotal = 20.

Figure 7 is the comparison of the observables between the
reaction and equilibrium ensembles. The equilibrium ensem-
ble is chosen to minimize the δ2 value for the reaction ensemble
at each reaction time t = 80–300 fm/c. Overall features of the
fragment observables of both ensembles agree well at every
reaction time except for small details. The comparisons of
〈E∗/A〉A for the fragments identified with rfrag = 2.5 and
2 fm are not shown in Fig. 7, but the agreement between
the two ensembles are as good as in the case of rfrag = 3 fm.
Table I shows the energy, volume, temperature, and pressure of
the best-fit equilibrium ensembles. The normalization factorN
and δ2 values are also listed in the table. The larger volume is
required to reproduce the later stage of the reaction while the
energy per nucleon decreases gradually. As a consequence,
the temperature and pressure of the system decrease along
the reaction time. In the caloric curves of Fig. 8, we show the
reaction path by connecting the points (E∗

total/Atotal, T ) of the
equilibrium systems corresponding to different reaction times.
All these points seem to be located in the region of liquid-gas
coexistence that includes the region of negative heat capacity,
and therefore it seems that the fragmentation of this reaction
is connected to the nuclear liquid-gas phase transition.

These results may be interpreted as follows. The fragment
observables of the reaction system become equivalent to those
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FIG. 7. (Color online) Comparison of the fragment charge distribution (left three columns) and the average excitation energy of fragments
(rightmost column) of the reaction ensemble at each reaction time t = 80–300 fm/c obtained from the very central (bimp = 0 fm) reaction
40Ca + 40Ca at 35 MeV/nucleon and those of the best-fit equilibrium ensemble of the system (Ztotal, Ntotal) = (18, 18). The reaction time of the
reaction ensemble and the energy and the volume of the equilibrium ensemble are shown in the leftmost column. The values of rfrag for the
fragment identification are indicated.
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FIG. 8. (Color online) The crosses on the E-T plane indicate
the equilibrium ensembles that reproduce the fragment observ-
ables of the reaction ensembles at reaction times t = 80, 100, 120,

140, 160, 180, 240, and 300 from the top downward. The constant-
pressure caloric curves of Fig. 6 are shown for comparison.

of an equilibrium system by the time t = 80 fm/c at latest. The
equivalence of the reaction and equilibrium systems is kept
for a while although the reaction system cools by breaking the
fragments as well as by emitting light fragments and nucleons.
A natural question arises as to when the equivalence between
the reaction and equilibrium systems is achieved and at what
time the equivalence ends, which corresponds to the time of
freeze-out. Unfortunately, it seems that the current choice of
observables is not suitable to discuss the beginning and the end
of the equivalence. Because the identification of fragments is
impossible at earlier stages of the reaction, it seems difficult
to find out-of-equilibrium effects after freeze-out with the
resolution we have obtained in this paper even if they exist.
Even at a very late stage such as t = 300 fm/c, it seems that
the fragment observables of the reaction are still well explained
by an equilibrium ensemble.

Even though the overall features match well, there are
also small discrepancies in the fragment observables between
the reaction and equilibrium ensembles. The yields of light
particles (Z = 1 and 2) of the equilibrium ensemble are much
less than those of the reaction ensemble, which is due to
the effect of pre-equilibrium emissions of light particles. We
also notice two systematic deviations at the early stage of
the reaction (t ∼ 100 fm/c), which may be due to dynamical
effects. One is the deviation in YZ for heavy fragments. The
equilibrium ensemble overestimates these fragments when the
fragments are identified by rfrag(1) = 3 fm but it underestimates
these fragments with rfrag(3) = 2 fm. The other difference is in
the value of 〈E∗/A〉A for heavy fragments (A > 15), where
the equilibrium results give slightly higher values than the
reaction results, even though the values of 〈E∗/A〉A for lighter
fragments (A � 15) for the reaction and equilibrium ensembles
match well. It will be possible to discuss dynamical effects that
exist in the reaction ensemble by further comparison in future
studies.

Let us compute other observables in both the reaction
and corresponding equilibrium ensembles. In the following
calculations, we use the fragments identified by using rfrag =
3 fm.

First, we compute the kinetic observables, which should
also agree in the two ensembles if complete equilibrium is
achieved in the reaction. Unfortunately, it is not straight-
forward since we are comparing the reaction system of
40Ca + 40Ca with the equilibrium system of (Ztotal, Ntotal) =
(18, 18) and thus the kinematics is different. However, we
are using the very central reaction events (bimp = 0) and
the fragments in the reaction system seem to be categorized
into two groups, projectile-like and target-like groups, and
therefore the observables related to the transverse momentum
may be little affected by the difference of kinematics. To
further reduce the influence of different kinematics, we define
the transverse direction on an event-by-event basis for the
reaction system. Choosing the z′-axis obtained by connecting
the center of mass of the nucleons located in the positive
side of the beam axis (the projectile-like group) and that of the
nucleons located in the negative side (the target-like group), we
compute the transverse momentum (Px ′ , Py ′ ) of each fragment
projected on the x ′y ′-plane perpendicular to the z′-axis. For
the equilibrium system, the z′-axis can be taken arbitrarily. We
calculate the following quantities as functions of the fragment
mass number A:

E⊥(A) = 1

2µ(A)

〈
P 2

x ′ + P 2
y ′
〉
A
, (7)

Eflow
⊥ (A) = 〈P flow

⊥ 〉2
A

2µ(A)
, (8)

where the brackets 〈 〉A denote the average for all the fragments
with mass number A in the ensemble. The momentum and
the position of a fragment are denoted by Pσ and Rσ (σ =
x ′, y ′, z′), respectively. P flow

⊥ is the momentum component in
the transverse radial direction (Rx ′ , Ry ′ ):

P flow
⊥ = Px ′Rx ′ + Py ′Ry ′√

R2
x ′ + R2

y ′

. (9)

The reduced mass µ(A) of a fragment is defined by

1

µ(A)
= 1

mN

(
1

Asystem − A
+ 1

A

)
, (10)

where mN is the nucleon mass and Asystem is the number of
nucleons in the system. We take Asystem = 40 for the reaction
system since the reaction system seems to be composed of
two groups, and we take Asystem = 36 for the equilibrium
system. The comparison between the reaction and equilibrium
ensembles is shown in the left panels of Fig. 9 for the
observables E⊥(A) and Eflow

⊥ (A) at various reaction times.
Large differences between the ensembles are found for these
observables, especially at the late stage of the reaction. For
instance, a non-negligible Eflow

⊥ for the reaction ensemble
(shown by squares) is noticed at t >∼ 140 fm/c, whereas Eflow

⊥
for the equilibrium (shown by circles) is almost zero for
all the times, as it should be for equilibrated systems. (At
t = 80 fm/c, the statistical results are insufficient to draw con-
clusions.) However, the difference E⊥(A) − Eflow

⊥ (A) agrees
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FIG. 9. (Color online) Comparison of the
observables related to the fragment transverse
momenta (E⊥ and Eflow

⊥ ) of the reaction ensemble
(“React”) at each reaction time t = 80–300 fm/c

with those of the corresponding equilibrium
ensemble (“Equil”). E⊥ and Eflow

⊥ are shown
in the left column as functions of the fragment
mass number A, and the difference E⊥ − Eflow

⊥
is shown in the right column. The dashed hor-
izontal lines indicate the temperature T of the
equilibrium ensembles.

quite well between the reaction and equilibrium ensembles,
as shown in the right panels of Fig. 9, at all the shown times.
Furthermore, E⊥(A) − Eflow

⊥ (A) has nearly no dependence on
the mass number A, and its value almost agrees with the value
of the temperature T of the equilibrium ensemble shown by the
horizontal line at each reaction time. This surprising agreement

also suggests a consistency of the model, since the temperature
has been extracted from an equilibrium ensemble without
using the information of fragment kinetic energies. Thus the
reaction results for the observables related to the fragment
momenta seem to be still consistent with the equilibrium
results if we subtract the flow effects from the reaction results.
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FIG. 10. (Color online) The root mean square radius R
system
⊥ of

the total system in the x ′y ′-plane for the reaction ensemble (“React”)
and the corresponding equilibrium ensemble (“Equil”) as functions
of the reaction time.

Second, we estimate the size of the reaction system. The
volume listed in Table I is that of the equilibrium system that
gives the best fit for the fragment observables of the reaction
system. However, the real volume of the reaction system may
be different from this. To estimate the size of the reaction
system, we compute the root mean square radius of the total

system in the x ′y ′-plane,

R
system
⊥ =

〈√√√√ 1

NS(A>5)

∑
i∈S(A>5)

(
R2

ix ′ + R2
iy ′

)〉
, (11)

by using the nucleon positions Riσ (σ = x ′, y ′, z′), where
S(A > 5) denotes the nucleons that belong to the fragments
with mass number greater than 5 and NS(A>5) is the number
of these nucleons in each event. The nucleons that belong to
light fragments (A � 5) are omitted from the calculation in
Eq. (10) to minimize the effect of pre-equilibrium emissions.
The results are given in Fig. 10. The radius R

system
⊥ of

the reaction ensemble is larger than that of the equilibrium
ensemble at all the reaction times and the difference increases
with time. For the reaction ensemble, the system may be more
extended along the beam axis owing to the memory of reaction
dynamics and then the difference of the volume between the
reaction and equilibrium systems will be more prominent.
Therefore, the difference of R

system
⊥ shown in Fig. 10 suggests

that the real volume of the reaction system is larger than the
volume of the corresponding equilibrium system, typically
by 50% or more. Conversely, if the real volume is required
to agree between reaction and equilibrium ensembles, any
good fitting of YZ will not be obtained, because of the strong
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FIG. 11. (Color online) The fragment root
mean square radius Rrms(A) divided by A1/3

plotted as a function of the fragment mass
number A for the reaction ensemble at each
reaction time t = 80–300 fm/c and for the
corresponding equilibrium ensemble.
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volume dependence of YZ of the equilibrium system, as can
be seen from Fig. 7. (The dependence of YZ on the system
energy is weak, as mentioned earlier.) Thus the usual static
equilibrium at each instant is not realized. This may be because
fragments are formed in a dynamically expanding system and
the observables of fragments recognized at a reaction time t

may be reflecting the history of the state of the system before
t rather than the volume at that instant t .

Third, we calculate the root mean square radii of fragments
Rrms(A) for the reaction and equilibrium ensembles to inves-
tigate whether the properties of the created fragments in the
reaction system are the same as those in the equilibrium system
(Fig. 11). We find that Rrms(A) of intermediate-mass fragments
(A = 6–20) for the reaction ensemble are systematically
(about 5%) larger than those for the equilibrium ensemble.

We also calculate the average of the difference of Rrms(A)
between the ensembles over a range of intermediate-mass
fragments (A = 6–20):

�Rrms = 1

15

20∑
A=6

{
Rreact

rms (A) − Requil
rms (A)

}
. (12)

We plot �Rrms as a function of the reaction time in
Fig. 12. The difference is large at the early stage of the
reaction (t∼100 fm/c) and reduces with time at the late
stage of the reaction. In fact, the radii of the intermediate-
mass fragments in the reaction ensemble at t∼100 fm/c

are larger than those in any of the equilibrium ensembles
that we have investigated. This may be an indication of the
fragment formation mechanism in which the fragments in the
reaction are made from the expanding dilute system where
surface effects are less important. It may also be related
to the finding that the symmetry energy extracted from the
multifragmentation reactions shows almost no surface effect
[53].

0.0

0.1

0.2

0 50 100 150 200 250 300 350

∆R
rm

s 
[fm

]

t [fm/c]

FIG. 12. The time dependence of the difference of the fragment
root mean square radius between the reaction and corresponding equi-
librium ensembles, averaged over the intermediate mass fragments
(A = 6–20).

VI. SUMMARY

In this paper, we have investigated the relevance of the
equilibrium concept in multifragmentation by comparing
reaction and equilibrium ensembles. The reaction ensemble
at each reaction time t is constructed by gathering the many-
nucleon states at time t in AMD simulations of very central
40Ca + 40Ca collisions at 35 MeV/nucleon. The equilibrium
ensemble is prepared by solving the AMD equation of
motion of a many-nucleon system (Ztotal, Ntotal) = (18, 18)
confined in a container for a long time. We then compare
the reaction ensemble at each t with equilibrium ensembles
at various conditions of volume and energy. We have used
exactly the same AMD model in simulating both situations.
To our knowledge, this is the first work that directly com-
pares the multifragmentation reaction and the corresponding
equilibrium system by describing both situations with one
model.

The AMD model used in this paper has been modified from
that in Ref. [41] to better incorporate the effect of decoherence.
We have confirmed the validity of the current version of
AMD by comparing the result of 40Ca + 40Ca reactions at
35 MeV/nucleon with the experimental data [51]. We have
also confirmed that the constant-pressure caloric curves of the
equilibrium system (Ztotal, Ntotal) = (18, 18) constructed with
the same AMD show negative heat capacity, which is the signal
of the phase transition in finite systems.

The comparison between the reaction and equilibrium
ensembles has been performed by computing the fragment
charge distribution and the average excitation energies of
fragments (fragment observables) for both ensembles. We
are able to find an equilibrium ensemble that reproduces
overall features at each reaction time t = 80–300 fm/c. For
the later stage of the reaction, an equilibrium ensemble with a
larger volume and a slightly lower energy is required. This
is consistent with the scenario that the system created by
heavy-ion collisions cools during expansion. Unfortunately,
it is difficult to identify the beginning and the end of the
equivalence between the reaction and equilibrium systems,
and it will be interesting to further develop the study to
explore these. Experimentally, isotope thermometers have
been utilized to extract the temperature from reactions
[54,55]. By comparing it with the temperature obtained by
numerical simulation, it may be possible to identify the
reaction stage relevant to the experimentally obtained isotope
temperature.

The reaction ensembles have been constructed without
any assumption of thermal equilibrium. Nevertheless, we
can find an equilibrium ensemble that is almost equivalent
to the reaction ensemble as far as the fragment observables
are concerned at each reaction time after t = 80 fm/c. This
is a rather surprising result, since there are certainly some
observables that reflect the reaction dynamics. In fact, we
have given several examples of the observables that show
some discrepancy between the reaction and corresponding
equilibrium ensembles. The fragment transverse kinetic en-
ergies are different from those of the equilibrium system,
especially for the late stages of the reaction. However, the
difference can be explained by simple flow effects. If the flow
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effects are subtracted, the fragment kinetic energies of the
reaction system is still consistent with those of the equilibrium
system. The size of the reaction system is larger than that
of the equilibrium system. Namely, the real volume of the
reaction system is larger than the volume assigned by fitting
the fragment observables. The difference becomes larger at
the later stages of the reaction. The usual static equilibrium
at each instant is not realized since any equilibrium ensemble
with the same volume as that of the reaction system cannot
reproduce the fragment observables. The fragment radii in
the reaction system are larger than those in the equilibrium
system. The difference is large at the early stage of the
reaction (∼100 fm/c) and decreases with time. This may
be an indication of a fragment formation mechanism in which
the fragments are made from an expanding dilute system in
the reaction.

Only a small difference between the reaction and equilib-
rium ensembles is seen in the fragment observables studied
in this paper. However, dynamical effects may become
essential even for the fragment observables when the incident
energy is increased or the impact parameter is varied. It
has been suggested that neck formation play an important
role in semiperipheral collisions [56], but in this paper we
ignored this effect. It is an interesting question whether
the equivalence between the multifragmentation reaction and
the equilibrium system still holds under such circumstances.
It is also interesting to compare observables such as the
momentum distribution of fragments and the system size of
multifragmentation reactions with those of the corresponding
equilibrium systems in the explicit presence of expansion and
flow effects [57,58].

In this paper, we studied only one particular reaction,
namely, very central 40Ca + 40Ca collisions at 35 MeV/
nucleon. The reaction mechanism changes from one reaction
to another. It is therefore interesting to apply the same approach
to other reactions, such as a reaction of heavier nuclei where
creation of a single thermal source is expected [44,45] and a
reaction of nuclei with different isospin compositions where
the occurrence of isospin diffusion has been claimed [59,60].
It is interesting to explore the effects of various reaction
parameters such as the reaction system, the incident energy,
and the impact parameter on the achievement of equilibrium. If
the concept of equilibrium is relevant, it is important to explore
how these parameters influence the parameters to specify
the equilibrium system. This study will offer guidelines for
combining experimental data of various heavy-ion collisions
to construct, for example, equations of state and constant-
pressure caloric curves.
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APPENDIX: IMPROVED IMPLEMENTATION
OF DECOHERENCE

The reaction 40Ca + 40Ca at 35 MeV/nucleon has already
been studied by AMD [23,36] and it has been shown that
several aspects of the experimental data [51] are nicely
reproduced. The AMD model used in these studies adopts the
instantaneous decoherence of the single-particle motion [36].
In contrast, in Ref. [41] and in this paper, we utilize the AMD
model in which the coherence of the single-particle motions are
kept for a finite duration. When we directly applied the AMD
formalism given in Ref. [41] to the reaction 40Ca + 40Ca at
35 MeV/nucleon, excessive productions of heavy fragments
are obtained and, connected to that, amounts of lighter frag-
ments around the B–Ne region are underestimated compared
with the experimental data. This is because the coherence
time chosen by the formalism in Ref. [41] is too long and the
effect of decoherence is hindered for some cases, and thus it
fails to give enough quantum fluctuations to break the heavy
fragments. A modification is necessary to better incorporate
the effect of decoherence and reproduce the experimental
data. This is rather technical but the summary is given in this
Appendix.

In the AMD formalism, special care is taken for the
nucleons that are almost isolated. For instance, the zero-point
kinetic energies of these nucleons are subtracted since the
wave functions of such nucleons should have sharp momentum
distributions rather than Gaussian ones corresponding to the
wave packet in Eq. (3). This change of interpretation is
necessary for the consistency of Q values of nucleon emissions
and fragmentation [28–30] and is very important for the
definition of temperature [41]. In Ref. [41], we judge the
“degree of isolation” of the nucleon k by introducing

Ik = [1 − w(qk)]I (0)
k + w(qk), (A1)

where qk counts the neighboring nucleons of the nucleon k

including itself, w(q) is a continuous function, ranging from
one when the number of neighboring nucleons qk is small
(q <∼ 2.5) to zero, and I (0)

k corresponds to the inverse number
of the neighboring nucleons. Detailed definitions of these
functions are given in Appendix A in Ref. [41].

In the AMD formalism, the phase-space distribution
g(x; X, S) is considered to compute the time evolution of the
mean-field propagation. The distribution for each nucleon k is
parametrized by

g(x; Xk, Sk) = 1

8
√

det S

× exp

[
−1

2

6∑
a,b=1

S−1
kab(xa − Xa)(xb − Xb)

]
, (A2)

where x gives the six-dimensional phase-space coordinates

x = {xa}a=1,...,6 =
{√

νr,
p

2h̄
√

ν

}
, (A3)

and Sk and Xk specify the shape and the centroids of the
distribution, respectively. Xk is identified with the physical
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coordinate Wk [28–30]:

Xk = {Xka}a=1,...,6 = {ReWk, ImWk}. (A4)

In Ref. [41], one condition was imposed on g(x; Xk, Sk) for
each nucleon k by using the degree of isolation Ik . The
condition was

Trp Sk ≤ 3
4 (1 − Ik), (A5)

where Trp Sk = Sk44 + Sk55 + Sk66 denotes the momentum
spreading of the distribution g(x; Xk, Sk). Namely, if the
left-hand side of Eq. (A5) is getting larger than the right-hand
side, Sk was reduced to satisfy the equality of Eq. (A5) and
the reduced part was converted into a stochastic Gaussian
fluctuation to the centroid Xk (the details of which are
explained in Sec. III in Ref. [41]). The purpose of this condition
is to ensure full consistency of the energy conservation and to
allow precise evaluation of the temperature. When a recovery
of the phase-space distribution g(x; X, S) for nucleon k took
place as a result of decoherence, we replaced the shape of the
distribution Sk with

Skab =




1
4 (a = b = 1, 2, 3),
1
4 (1 − Ik) (a = b = 4, 5, 6),

0 (a �= b),

(A6)

where the momentum widths were chosen to be 1
4 (1 − Ik)

rather than the standard Gaussian width 1/4 to satisfy
Eq. (A5).

The condition is arbitrary as long as Trp Sk � 3
4 (1 − Ik)

is satisfied for the nucleon k that is utilized to measure the
temperature. Unfortunately, it turns out that the condition (A5)
utilized in Ref. [41] tends to hinder the effect of decoherence
unphysically at the surface of fragments. This is because Ik

increases close to unity when the nucleon k is located near the
surface of the fragment to which the nucleon k belongs. The

increase of Ik results in keeping Trp Sk small, even though the
recovery of the phase-space distribution defined by Eq. (A6)
frequently occurs. There is no physical reason why the effect
of decoherence is suppressed at the surface of fragments and it
is more natural that the effect of decoherence for the nucleon
k is as large as those for the other nucleons belonging to the
same fragment even though the nucleon k is located near the
surface. We thus introduce a new function

I∗
k = w(qk)[1 − w(qk)]I (0)

k + w(qk) (A7)

and replace Ik in Eq. (A5) and Eq. (A6) with this newly defined
function I∗

k , while we keep Ik, which appears in the equation
of motion as it is (see Sec. III in Ref. [41]). The difference
between I∗

k and Ik is only that the first term of Eq. (A1)
is multiplied by w(qk) so that I∗

k ∼ 0 when the nucleon k

is located inside of a fragment, whereas I∗
k ∼ Ik when the

nucleon k has only a few neighboring nucleons. In addition to
this modification, we change the criteria to choose the nucleons
that are used to measure temperature of the system. It has
been shown that, to calculate the temperature of the system
correctly, it is necessary to choose the subsystem consisting
of the nucleons with negligible quantum effects among them
based on only the nucleon spatial coordinates without using
momentum variables (see Appendix B in Ref. [41]). For
this purpose, there was a condition that the nucleons that
are used to measure the temperature are chosen not to have
more than one other nucleon within a distance of 3 fm in
Ref. [41]. We replace this condition with {k; w(qk) � 0.9},
which has similar meaning to the aforementioned condition
and guarantees that the difference between I∗

k and Ik for
these nucleons is 1% at most. This replacement is justified
by the study that the measured temperatures are independent
of the choice of nucleons utilized to measure the temperature
as long as necessary conditions are satisfied (see Sec. VC in
Ref. [41]).
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