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Coulomb-nuclear interference in pion-nucleus bremsstrahlung
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Pion-nucleus bremsstrahlung offers a possibility of measuring the structure functions of pion-Compton
scattering from a study of the small-momentum-transfer region where the bremsstrahlung reaction is dominated
by the single-photon-exchange mechanism. The corresponding cross-section distribution is characterized by a
sharp peak at small momentum transfers. But there is also a hadronic contribution that is smooth and constitutes
an undesired background. In this article the modification of the single-photon-exchange amplitude by multiple
Coulomb scattering is investigated as well as the Coulomb-nuclear interference term.
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I. INTRODUCTION

In this article we shall add a final touch to the subject of
hard bremsstrahlung in pion-nucleus scattering in the Coulomb
region. The reaction studied is

π− + A → π− + γ + A.

In the kinematic region of small momentum transfers to the
nucleus the reaction is dominated by the one-photon-exchange
mechanism. We have previously derived expressions [1,2] both
for the Coulomb contribution, i.e., radiation in conjunction
with elastic pion-nucleus Coulomb scattering, and for the
nuclear contribution, i.e., radiation in conjunction with elastic
pion-nucleus hadronic scattering. Also, detailed predictions
for the COMPASS experiment [3] at CERN have been made
[4], based on the Coulomb contribution alone. The aim of the
COMPASS experiment is to investigate the electromagnetic
structure functions of pion-Compton scattering. We studied
the sensitivity of pionic bremsstrahlung to details of the
structure functions by employing a meson-exchange model
for the pion-Compton amplitudes that in addition to the Born
contributions contained contributions from the σ, ρ, and a1

exchanges.
Aspects of the theory that need further investigation concern

the nuclear background contribution and the interference
between Coulomb and nuclear contributions. These aspects
are investigated in the present article. Also the form factor of
the Coulomb amplitude, due to multiple Coulomb scattering,
is investigated.

This work extends previous theoretical studies by Gal’perin
et al. [5] and Fäldt and Tengblad [1,2,4]. The results con-
cerning the Coulomb form factor may be important for the
interpretation of the data by Antipov et al. [6].

The kinematics of the pion-nucleus bremsstrahlung reaction
is defined by

π−(p1) + A(p) → π−(p2) + γ (q2) + A(p′), (1)
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and the kinematics of the related pion-Compton reaction is
defined by

π−(p1) + γ (q1) → π−(p2) + γ (q2), (2)

with q1 = p − p′.
Our analysis is carried out for high energies and small trans-

verse momenta, meaning small compared with the longitudinal
momenta. In addition the momentum transfer to the nucleus
must be in the Coulomb region, i.e., extremely small.

The cross-section distribution is written as

dσ

d2q1⊥d2q2⊥dx
= 1

32(2π )5E2ω2M
2
A

|MC + MN |2 , (3)

where MC is the Coulomb amplitude and MN the nuclear
amplitude. The parameter x is defined as the ratio

x = q2z

p1
= ω2

E1
, (4)

so that, e.g., E2ω2 = x(1 − x)E2
1 . In hadronic bremsstrahlung

there is a fixed longitudinal-momentum transfer to the nucleus
that depends on x,

q1‖ = qmin = m2
π

2E1
· x

1 − x
. (5)

At high energies qmin is obviously exceedingly small.
The structure of the cross-section distribution is mainly

determined by the one-photon-exchange factor

q2
1⊥(

q2
1⊥ + q2

min

)2 , (6)

which vanishes when the transverse-momentum transfer q1⊥
to the nucleus vanishes. When the momentum transfer to the
nucleus, q1⊥, increases far beyond qmin we eventually come to
momentum transfers where the nuclear contribution dominates
[1].

II. THE COULOMB AMPLITUDE

The expression for the Coulomb amplitude in the one-
photon-exchange approximation is given in Eq. (23) of
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Ref. [2]. It reads

M(B)
C = 8πiZMAeα

q2
1

4xE2

q2
2⊥ + x2m2

π

×
[
A

(
x, q2

2⊥
)(

q1⊥ − 2q2⊥
q2⊥ · q1⊥

q2
2⊥ + x2m2

π

)

+B
(
x, q2

2⊥
)
q1⊥

]
· ε2. (7)

The functions A(x, q2
2⊥) and B(x, q2

2⊥), which were there
called Ã(x, q2

2⊥) and B̃(x, q2
2⊥), are the pion-Compton-

structure functions. Their analytic expressions in the one-
meson-exchange approximation are given in the same refer-
ence. In the Born approximation, i.e., for point-like pions, the
structure functions take the values A = 1 and B = 0.

As can be inferred from Eq. (7) the Coulomb amplitude can
be factorized as

M(B)
C = 2Zα

q2
1⊥ + q2

‖
g · q1, (8)

with the vector g in the impact parameter plane, so that
g · q1 = g · q1⊥. This amplitude is valid for a point-like
nuclear-charge distribution. The factor multiplying g · q1 in
Eq. (8) is the π−-nucleus-Coulomb-scattering amplitude in
the Born approximation.

The above expression can be improved by taking into
account the finite extension of the nuclear-charge distribution
and the distortion of the pion trajectory due to multiple
Coulomb scattering. The hadronic distortion is treated in the
following section.

To simplify notation we drop the index on q1 and put q1 =
q = (q⊥, q‖). Then, observe that expression (8) can be written
as

M(B)
C (q) = 2Zα

q2
⊥ + q2

‖
g · q = −1

2πi

∫
d3re−iq·r g · ∇VC(r),

(9)

where VC(r) is the Coulomb-point-nucleus potential

VC(r) = −Zα

r
, (10)

and where g · r = g · b with r⊥ = b.
The Coulomb distortion along the pion trajectory is in the

Glauber model taken into consideration by replacing Eq. (9)
by

MC(q) = −1

2πi

∫
d3re−iq·r g · ∇VC(r) eiχC (b), (11)

where χC(b) is the Coulomb phase function,

χC(b) = −1

v

∫ ∞

−∞
dz VC(b, z). (12)

This expression for the amplitude is equally valid for extended
nuclear-charge distributions provided the Coulomb potential
is evaluated with the proper charge distribution [7].

We first investigate the case of point-like nuclear charge.
The Coulomb potential is then as in Eq. (10) and the
corresponding Glauber expression for the Coulomb phase

factor is

eiχC (b) =
(

2a

b

)iη

, (13)

where a is the cutoff radius in the Coulomb potential. For
π−-nucleus scattering,

η = 2Zα/v. (14)

The velocity v can in the following safely be put to unity. Thus,
Eq. (9) recast to include Coulomb scattering becomes

MC = −Zα

2πi

∫
d3re−iq·r g · r

r3

(
2a

b

)iη

. (15)

Integration over the z variable yields a modified Bessel
function. Integration over the angle of the vector q produces a
factor g · q⊥. We extract this factor and introduce the notation
FC(q) for the remaining factor, which is an off-shell-Coulomb-
scattering amplitude. Hence,

MC = g · qFC(q⊥, q‖). (16)

The Coulomb-scattering amplitude is an integral over
impact parameter

FC(q) = 2Zα/q⊥
∫ ∞

0
dbJ1(q⊥b){q‖bK1(q‖b)}

(
2a

b

)iη

.

(17)

It is convenient to split off the point-Coulomb factor, writing

FC(q) = 2Zα(aq)iηeiση

q2
hC(q), (18)

with η defined in Eq. (14) and

ση = 2 arg 	(1 − iη/2). (19)

The extracted phase factors in Eq. (18) are the same as those
in elastic Coulomb scattering, except that now

q =
√

q2
⊥ + q2

‖ . (20)

In high-energy elastic scattering the longitudinal-momentum
transfer q‖ vanishes. In that case, q of Eq. (18) is interpreted
as q⊥.

The integration over the impact parameter in Eq. (17) leads
to a hypergeometric function. After some manipulations a
simple result for the form factor hC(q) emerges:

hC(q) = q2/q⊥(aq)−iηe−iση

×
∫ ∞

0
dbJ1(q⊥b){q‖bK1(q‖b)}

(
2a

b

)iη

= 	(2 − iη/2)	(1 + iη/2)

×F

(
iη/2, 1 − iη/2; 2;

q2
⊥

q2
⊥ + q2

‖

)
. (21)

This function is plotted in Fig. 1.
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FIG. 1. Plots of the Coulomb form factor hc(z) = hC(z) of Eq. (21) for carbon and lead. The circles mark points for values of z from 0 to
1.0, in steps of 0.1.

There are three values of the momentum transfer where the
value of hC(q) is both simple and interesting:

hC(q⊥, q‖ = 0) = 1, (22)

hC(q⊥ = q‖) = 	(1 − iη/2)	(1 + iη/2)

	(1 + iη/4)	( 1
2 − iη/4)

√
π, (23)

hC(q⊥ = 0, q‖) = (1 − iη/2)
πη/2

sinh(πη/2)
, (24)

corresponding to z = 1, 1
2 , and 0. The value in

Eq. (22) applies to elastic scattering and bremsstrahlung when
the transverse-momentum transfer is considerably larger than
the longitudinal-minimum-momentum transfer. The value in
Eq. (23) applies to bremsstrahlung at the peak where q⊥ = q‖.
The value in Eq. (24) applies to bremsstrahlung in the very
forward direction where q⊥ = 0. In Table I we give numerical
values for three nuclei. In the cross-section distribution it is
|hC(z)|2 that enters.

The form factor hC(z), which could reduce the cross section
at the Coulomb peak by as much as 50%, has not always
been included. The cross-section distributions in Ref. [4], e.g.,
are calculated in the Born approximation. To be valid in the
very forward region of q⊥ ≈ q‖ those distributions should be
multiplied by |hC(z)|2. The analysis of the Dubna experi-
ment [6] was also done without explicitly mentioning this
factor.

The above expressions for the Coulomb contribution to
pionic bremsstrahlung are valid for point-like nuclear-charge

TABLE I. Numerical values of the Coulomb form factor
hC(z) with z = q2

⊥/(q2
⊥ + q2

‖ ).

Nucleus z = 1.0 z = 0.5 z = 0.0

C 1.0 0.998–i0.030 0.997–i0.044
Fe 1.0 0.963–i0.125 0.943–i0.179
Pb 1.0 0.717–i0.272 0.588–i0.352

distribution. The expression for the amplitude MC was given
in Eq. (16) and for the form factor FC in Eq. (17). This
amplitude is summarized by the formula

MC = g · qFC(q⊥, q‖). (25)

The pion-nucleus-Coloumb-scattering amplitude differs
slightly from the corresponding elastic amplitude because
off-shell effects have been included through q‖.

The finite extension of the nuclear-charge distribution can
also be handled. We replace the point-Coulomb potential of
Eq. (10) by the Coulomb potential V u

C (r), obtained from the
extended-charge distribution. As a result Eq. (25) is replaced
by

MC = g · qFu
C(q⊥, q‖), (26)

where Fu
C(q⊥, q‖) is the Coulomb-scattering amplitude of the

extended-charge distribution.
The Coulomb-scattering amplitude for an extended-charge

distribution cannot be calculated analytically. Therefore we
divide the calculation into two steps, writing

Fu
C(q⊥, q‖) = F

p

C (q⊥, q‖) + δF u
C(q⊥, q‖) (27)

δF u
C(q⊥, q‖) = Fu

C(q⊥, q‖) − F
p

C (q⊥, q‖), (28)

where F
p

C is the point-like form factor of Eq. (18). The
advantage of this rearrangement is that δF u

C (q⊥, q‖) is a smooth
function of q⊥ and q‖ and easily calculated numerically, and it
may in our bremsstrahlung application be evaluated at q‖ = 0.

From expression (11) for the bremsstrahlung amplitude we
conclude that

g · qδFC(q⊥, q‖) = −1

2πi

∫
d3re−iq·r[g · ∇V u

C (r)eiχu
C (b)

− g · ∇VC(r)eiχC (b)
]
, (29)

where superscript u indicates potential and Coulomb phase of
the the extended-charge distribution. We assume the nuclear
charge to vanish outside a radius of Ru.
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Rearrange the integrand as follows,

g · qδF u
C(q⊥, q‖)

= −1

2πi

∫
d3re−iq·r[g · ∇(

V u
C (r) − VC(r)

)
eiχu

C (b)

+ g · ∇VC(r)
(
eiχu

C (b) − eiχC (b))]. (30)

Then, the first term of the integrand vanishes for r � Ru, and
because Ruq‖ � 1 we conclude that the dependence on q‖ is
so weak it can be ignored. In the second term we integrate over
the z variable and end up with a factor bq‖K1(bq‖). But the
difference between the phase factors vanishes identically for
b � Ru, so that everywhere bq‖ � 1. Again it is permissible
to take the limit q‖ → 0.

The result of this deliberation is that in Eq. (29) we can put
q‖ = 0 and get

δF u
C(q⊥, q‖) = iv

∫ Ru

0
dbb2 J1(bq⊥)

bq⊥
∂b

[
eiχu

C (b) − eiχC (b)]
(31)

= −iv

∫ Ru

0
dbbJ0(q⊥b)

[
eiχu

C (b) − eiχC (b)
]
.

(32)

The first version is the one best suited for numerical evaluation.
The second version shows explicitly that δF u

C is the difference
between the Coulomb amplitudes for extended- and point-
charge distributions.

In Fig. 2 we compare the three functions Fu
C, F

p

C , and δF u
C .

We have chosen q‖ = 1.0 MeV/c, a longitudinal-momentum
transfer typical for the COMPASS experiment [3]. This
number is so small that the position of the peak, at q⊥ = q‖,
cannot be seen in the figure where the curves plotted start at
q⊥ = 10 MeV/c. As is evident, the point-like form factor is a
good approximation for the uniform form factor up to about
q2

⊥ = 0.001 (GeV/c)2.

We end this section by remarking that the Coulomb
form factor discussed above is also encountered in ordinary
Coulomb production,

a + A → a� + A,

where the longitudinal-momentum transfer is defined as

q‖ = (
m2

a� − m2
a

)/
(2k), (33)

with k the momentum of the incident particle a. In Refs. [8]
and [9], and similar applications, the form factor is calculated
numerically, but it is of course valuable to have an analytic
expression for the point-like case. In many applications the
dependence on q‖ is very important, in contrast to the high-
energy bremsstrahlung case discussed here.

III. THE NUCLEAR AMPLITUDE

It is important to have the correct phase between Coulomb
and nuclear contributions. This point is treated in detail
in Ref. [1]. Suppose the incident pion radiates a photon
before scattering. Then the nuclear scattering is of course the
compounded amplitude of Coulomb and nuclear scatterings.
In Eq. (7) the contributions from radiation from external
legs are summarized by the Born approximation to the pion
structure functions, A = 1 and B = 0, changing g into g0 in
Eq. (8). We want to extend this contribution by adding the
nuclear scattering. To this end we simply replace the Coulomb
potential VC(r) by the sum VC(r) + VN (r). As for the nuclear
potential we assume the hadronic interaction between pion
and nucleus to be the same for incident and emerging pions,
even though their energies may be quite different. This is
equivalent to saying that, within the Glauber model, we assume
the pion-nucleon cross section to be energy independent. This
assumption can of course be relaxed.
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FIG. 2. Plots of the squared Coulomb form factors for q‖ = 1.0 MeV/c. The dashed curve corresponds the point-like form factor F
p

C (q⊥, q‖)
of Eq. (18), the starred curve to the difference form factor δF u

C (q⊥, q‖) of Eq. (32), and the solid line to their sum, the Coulomb form factor
F u

C (q⊥, q‖) of Eq. (28). The unit for qt2 = q2
⊥ is (GeV/c)2.
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The compounded nuclear and Coulomb amplitude corre-
sponding to Eq. (9) thus reads

M(q) = −i

2π

∫
d3xe−iq·x g0 · ∇(VC(r)

+VN (r))ei(χC (b)+χN (b)). (34)

The momentum transfer q is three-dimensional and the
distortion includes both Coulomb and hadronic distortion. The
relation between potentials and phase-shift functions is defined
in Eq. (12).

The integrand of Eq. (34) can be rearranged to read

g0 · ∇VC(x)eiχC (b) + g0 · ∇VN (x)ei(χC (b)+χN (b))

− g0 · ∇VC(x)eiχC (b)(1 − eiχN (b)). (35)

The three terms are quite different in nature. The integrand of
the first term extends over all of space, because the Coulomb
potential does. The integrand of the second term is nonzero
only inside the nucleus, because only there is the nuclear
potential nonvanishing. Also the integrand of the third term
vanishes outside the nucleus, because the factor (1 − eiχN (b))
there does.

The first term of Eq. (35) describes the Coulomb contri-
bution, for a general charge distribution. In the second and
third terms we can neglect the functional dependence on the
longitudinal-momentum transfer, because q‖ is fixed and so
small that Ruq‖ � 1 for all nuclei. The nuclear contribution to
the bremsstrahlung amplitude, i.e., the second and third terms
of Eq. (35), can be written as

MN (q) = g0 · q FN (q⊥), (36)

FN (q⊥) = iv

2π

∫
d2be−iq⊥·beiχC (b)

[
1 − eiχN (b)

]
. (37)

The factor FN (q⊥) is simply the elastic pion-nucleus scattering
amplitude divided by the energy. It is energy independent
because we assumed energy-independent pion-nucleus inter-
actions.

In Fig. 3 we have plotted what essentially amounts to elastic
pion-nucleus cross-section distributions. The dashed lines

represent Coulomb scattering, the starred lines nuclear scatter-
ing, and the solid lines their sum. In all terms we have neglected
the longitudinal-momentum transfer, being so incredibly small
on the scale of momenta plotted. For transverse-momentum
transfers q2

⊥ � 0.002 (GeV/c)2, the hadronic contribution
dominates the Coulomb contribution.

IV. THE POLARIZABILITY AMPLITUDE

Now, we have the complete amplitude for point-like pions.
But the aim is to incorporate the pion polarizabilities, which are
represented by the vector g − g0 in the one-photon-exchange
matrix element of Eq. (8). Including Coulomb and hadronic
distortions gives, instead of Eq. (11), the polarizability
amplitude

MP (q) = −1

2πi

∫
d3re−iq·r(g − g0) · ∇VC(r)

× ei(χC (b)+χN (b)). (38)

Following our well-trodden path we rewrite the distortion
factor as

ei(χC (b)+χN (b)) = eiχC (b) − eiχC (b)(1 − eiχN (b)). (39)

The first term in this decomposition yields upon integration
the Coulomb-scattering amplitude FC(q). The second term
vanishes for impact parameters b � Ru, and leads to a smooth
term, as discussed above, where we can take the limit
q‖ → 0. Our result for the polarizability contribution to the
bremsstrahlung amplitude is therefore

MP (q) = (g − g0) · qFP (q), (40)

FP (q) = Fu
C(q) + δFP (q⊥), (41)

with the hadronic contribution

δFP (q⊥) = iv

∫ Ru

0
dbb2 J1(bq1⊥)

bq1⊥

[
∂be

iχu
C (b)

] (
1 − eiχN (b)

)
.

(42)
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FIG. 3. Plots of the squared form factors. The dashed curve corresponds to the uniform-Coulomb form factor Fu
C (q) of Eq. (28), the starred

curve to the nuclear-form factor FN (q) of Eq. (37), and the solid line to their sum. The unit for qt2 = q2
⊥ is (GeV/c)2.
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FIG. 4. Plots of the squared form factors. The dashed curve corresponds to the uniform-Coulomb form factor Fu
C (q) of Eq. (28), the starred

curve to the hadronic-distortion form factor δFP (q⊥) of Eq. (42), and the solid line to their sum. The unit for qt2 = q2
⊥ is (GeV/c)2.

This amplitude is a smooth function of q⊥. The fact that the
hadronic distortion effects are quite different for the Born and
the polarizability amplitudes was raised already in Ref. [1].

In Fig. 4 we graph the squared polarization form factors.
The dashed curve represents the Coulomb-scattering form
factor, the starred curve the hadronic-distortion form factor,
and the solid curve their sum. We see that hadronic effects
are much weaker for the Compton-polarizability amplitude
than for the Compton-Born amplitude, a conclusion that
should be evident from expression (42), being proportional
to the electromagnetic coupling as it is. Another conclusion
that can be drawn from Fig. 4 is that the strength of the
polarizability amplitude compared with that of the Born
amplitude diminishes when the transverse-momentum transfer
moves into the region q2

⊥ � 0.002 (GeV/c)2.

V. BREMSSTRAHLUNG CROSS-SECTION DISTRIBUTION

The complete pion-nucleus bremsstrahlung amplitude has
a simple structure

M = g0 · q1⊥FC(q1) + (g − g0) · q1⊥FP (q1)

+ g0 · q1⊥FN (q1⊥), (43)

where FC is the off-shell pion-nucleus Coulomb-scattering
amplitude, FN the on-shell pion-nucleus hadronic scattering
amplitude, and FP a mixed amplitude appropriate for the
polarizability contribution. Moreover, FP is essentially equal
to FC . The fact that the Coulomb amplitude is off-shell is only
important in the region of the Coulomb peak, where q1⊥ is of
a size similar to the constant q1‖ = qmin.

It is straightforward to calculate the cross-section distri-
bution from Eq. (43). However, in practice the polarizability
contributions are small, and in the expressions below it is
often sufficient to keep the corresponding linear terms. After
summation over the polarization directions of the final state

photon we get for the cross-section distribution of Eq. (3)

dσ

d2q1⊥d2q2⊥dx
= αq2

1⊥
π2m4

π

(
1 − x

x3

) (
x2m2

π

q2
2⊥ + x2m2

π

)2

× (K1 + K2 + K3), (44)

where K1 is the Coulomb-nuclear contribution for point-like
pions,

K1 = |FC(q1) + FN (q1)|2
(

1 − µ2 4x2m2
πq2

2⊥(
x2m2

π + q2
2⊥

)2

)
, (45)

K2 are the contributions linear in the pion-polarizability
functions,

K2 = 2
[(F�
C(q1) + F�

N (q1))FP (q1)]

×
[
C

(
x, q2

2⊥
) (

1 − µ2 4x2m2
πq2

2⊥(
x2m2

π + q2
2⊥

)2

)

+B
(
x, q2

2⊥
) (

1 − µ2 2q2
2⊥

x2m2
π + q2

2⊥

) ]
, (46)

and, finally, K3 are the contributions quadratic in the pion-
polarizability functions,

K3 = |FP (q1)|2
[∣∣C(

x, q2
2⊥

)∣∣2

(
1 − µ2 4x2m2

πq2
2⊥(

x2m2
π + q2

2⊥
)2

)

+ ∣∣B(
x, q2

2⊥
)∣∣2

+ 2
 (
C

(
x, q2

2⊥
)
B�

(
x, q2

2⊥
)) (

1 − µ2 2q2
2⊥

x2m2
π + q2

2⊥

)]
,

(47)

where, in order to shorten the expressions, we have introduced

A
(
x, q2

2⊥
) = 1 + C

(
x, q2

2⊥
)
. (48)
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FIG. 5. Plots of the ratio R(q1) of the form factors for the linear polarizability cross-section contribution and the point-like pion cross-section
contribution of Eq. (49). The circles represent the ratios for q2

1⊥ in the interval 0 � q2
1⊥ � 0.002 (GeV/c)2 in steps of 0.0002 (GeV/c)2. The

value of R(q1) is one at q2
1⊥ = 0. The unit for q2

⊥ is (GeV/c)2.

The parameter µ is defined as µ = q̂1⊥ · q̂2⊥. On the right-
hand sides of the above formulas we may in most applications
replace µ2 by its average 1

2 .
The dominant contribution to the cross section

Eq. (44) comes from the point-like pion approximation, i.e., the
contribution proportional to K1 of Eq. (45). The polarizbility
contributions are contained in K2 and K3. Experiments are
aimed at measuring the contribution proportional to K2, which
is linear in the polarizabilities. The relative nuclear-form factor
between the K2 and K1 contributions is

R(q1) = FP (q1)

FC(q1) + FN (q1)
, (49)

with the polarizability form factor FP (q1) as defined in
Eq. (41) and with q1 the momentum transfer to the nucleus.
When hadronic interactions of the pions are neglected, the
ratio R(q1) becomes one. In Fig. 5 we plot this ratio as a
function of q2

1⊥ in the interval 0 � q2
1⊥ � 0.002 (GeV/c)2.

In Fig. 5 we have limited the region of q2
1⊥, because

we know from the graphs of the previous sections that for
q2

1⊥ � 0.002 (GeV/c)2 the contributions from the hadronic
interactions of the pions play a dominant role. Of course, our
model is valid also in this case, but experimenters prefer to
stay in the region where the description is simple, meaning
R(q1) = 1. From Fig. 5 we conclude that if this is desired
we must further restrict the momentum transfer to the nucleus.
For Compton masses in the threshold region, sufficiently below
the ρ-meson mass, the polarizability functions C(x, q2

2⊥) and
B(x, q2

2⊥) of Eq. (46) are real-valued functions. Therefore, in
the threshold region only the real part of R(q1) matters and
limiting ourselves to q2

1⊥ � 0.001 (GeV/c)2, it is reasonable to
set R(q1) ≈ 1. In the general case, however, the more detailed
model developed here must be applied.

VI. SUMMARY

The pion-Compton-scattering amplitude is near
threshold fixed by Born terms involving pion-exchange
diagrams (Thompson scattering). At higher energies
structure-dependent terms enter, labeled electric and magnetic
polarizabilities (Rayleigh scattering). Those terms can be
modeled as σ -, ρ-, and a1-exchange contributions.

Pion-nucleus bremsstrahlung is closely related to pion-
Compton scattering. At small momentum transfers to the
nucleus the bremsstrahlung reaction is dominated by single-
photon exchange between the pion and the nucleus. As a con-
sequence, the bremsstrahlung amplitude becomes proportional
to the pion-Compton-scattering amplitude, the initial photon
of the Compton scattering being the virtual photon the pion is
exchanging with the nucleus.

For heavy nuclei multiple-photon exchange becomes im-
portant. But its sole effect is to introduce the well-known
Coulomb phase factor. In the bremsstrahlung reaction the
phase is slightly different from the one in elastic Coulomb
scattering, because in bremsstrahlung there is a fixed longi-
tudinal momentum transfer to the nucleus, qmin. A second
effect produced by the longitudinal momentum transfer is the
appearance of a new form factor. An analytic form for this
form factor is given, for the first time. It is important for heavy
nuclei when the transverse-momentum transfer to the nucleus
is similar in magnitude to qmin.

However, pionic bremsstrahlung can also be accompa-
nied by pion-nucleus hadronic scattering. The importance
of this contribution increases as the transverse-momentum
transfer increases, exactly as in elastic scattering. It af-
fects both Born and polarizability parts of the Compton
amplitudes. The Born term becomes, essentially, multiplied
by the sum of elastic Coulomb and hadronic pion-nucleus
scattering amplitudes. For the polarizability terms there is
a corresponding sum, but whereas the Coulomb amplitude
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GÖRAN FÄLDT AND ULLA TENGBLAD PHYSICAL REVIEW C 79, 014607 (2009)

is the same, the hadronic one is different and substantially
weaker.

Numerical estimates of the various contributions are pre-
sented. The outcome is that if one is interested in extracting
polarizability contributions, it is advantageous to restrict
oneself to momentum transfers q2

⊥ � 0.001 (GeV/c)2, because
there the ratio between polarizability and Born contributions
remains essentially the same as in free pion-Compton scatter-
ing. Increasing the momentum transfer means increasing the
importance of hadronic scattering. The ratio then changes in
an important way and varies with momentum transfer. Pushing
into the momentum-transfer region q2

⊥ � 0.002 (GeV/c)2 we
come into a region where hadronic scattering dominates and
where, in addition, the contribution from the polarizability
terms diminishes.

APPENDIX

In this Appendix we explain how we have calculated
the Coulomb and nuclear amplitudes. It is then impor-
tant to remember that we need the amplitudes only for
small momentum transfers, meaning that the structure of
the nuclear surface region will not be important. Hence,
we choose uniform nuclear charge and matter distributions
and with the same radii, Ru = 1.1A1/3 fm. More sophis-
ticated calculations are straightforward but also more time
consuming.

We start with the Coulomb amplitude. The Coulomb phase
contains a cutoff a that should go to infinity. In this limit the
cutoff enters as a phase factor common to both Coulomb and
nuclear amplitudes. The value of a is therefore immaterial and
we may simply replace 2a by Ru. We also put v = 1.

The Coulomb-phase function for a uniform-charge
distribution is

χu
C(b) = 2Zα ln(Ru/b), b > Ru

= 2Zα

[ (
1

3
+ 2b2

3R2
u

)√
1 − b2/R2

u

− ln

(
1 +

√
1 − b2/R2

u

) ]
, b < Ru. (A1)

We shall also need the derivatives

b∂bχ
u
C(b) = −2Zα, b > Ru

= 2Zα

(
b

Ru

)2
[

2
√

1 − b2/R2
u

− 1

1 + √
1 − b2/R2

u

]
, b < Ru. (A2)

The Coulomb-phase function for a point-charge distribution is

χC(b) = 2Zα ln(Ru/b). (A3)

The Coulomb-scattering amplitude Fu
C(q1) is decomposed

as in Eq. (27). It is written as a sum of two terms: the
point-Coulomb amplitude and a correction term, δF u

C(q1).
The point amplitude is calculated exactly. The correction
term is the difference between the Coulomb amplitudes for
extended and point charges, respectively. In this term the
fixed longitudinal-momentum transfer can be put to zero. The
difference is calculated numerically from the formula

δF u
C(q1⊥, q1‖) = i

∫ Ru

0
dbb2 J1(q1⊥b)

q1⊥b
∂b

[
eiχu

C (b) − eiχC (b)
]
.

(A4)

The integral in the last step extends over the nuclear charge
distribution alone.

Next we look at the nuclear amplitude of Eq. (37).

FN (q⊥) = i

∫ ∞

0
dbbJ0(q⊥b)eiχu

C (b)[1 − eiχN (b)]. (A5)

The nuclear phase-shift function is related to the target-
thickness function TA(b) by

iχN (b) = − 1
2σ (1 − iα)TA(b), (A6)

where σ is the pion-nucleon total cross section and α is the
ratio of real to imaginary part of the forward elastic pion-
nucleon scattering amplitude. The target-thickness function
for a nucleus of uniform density is

TA(b) = 3A

2πR2
u

√
1 − b2/R2

u. (A7)

We have chosen numerical values for the hadronic parameters
appropriate for pions of 190 GeV/c; i.e., σ = 24.1 mb and
α = −0.06 [10,11].
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