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Momentum-space three-body Faddeev-like equations are used to calculate elastic, transfer, and charge-
exchange reactions resulting from the scattering of deuterons on 12C and 16O or protons on 13C and 17O,
with 12C and 16O treated as inert cores. All possible reactions are calculated in the framework of the same model
space. Comparison with previous calculations based on approximate methods used in nuclear reaction theory is
made.
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I. INTRODUCTION

As discussed in the review article by Austern et al. [1]
twenty years ago, three-body models of deuteron-induced
reactions became important since the early studies of stripping
theory [2], where “the internal coordinates of the target nucleus
are ignored and the only dynamically active variables are the
coordinates, relative to the target nucleus, of the interacting
nucleon that is captured by the nucleus and the spectator
nucleon that goes on to the detector.”

The present work goes back in time, recaptures the three-
body concept of direct nuclear reactions that is common to
continuum discretized coupled channels (CDCC) calculations
[1], and shows the results obtained by solving Faddeev/Alt,
Grassberger, and Sandhas (AGS) equations [3–5] for elastic,
transfer, and breakup reactions where three-body dynamics
plays a dominant role. In this work we attempt to calculate
all observables using dynamical models based on energy-
independent or energy-dependent optical potentials for the
nucleon-nucleus interaction [6] and realistic neutron-proton
(np) potentials such as CD-Bonn [7]. Some examples are
shown for reactions initiated by deuterons on 12C and 16O,
as well as protons on 13C and 17O. Although the use of
energy-dependent potentials in three-body calculations is not
free of theoretical problems that are discussed in the following,
the results we show demonstrate the possibilities and the
shortcomings of this model; this is, above all, the aim of the
present paper. In addition, we present the exact derivation of
an alternative set of equations that may serve as the basis for
future investigations on improving approximate methods in
nuclear reaction theory.

Although deuteron-nucleus three-body models, including
striping or pickup, have already been explored in the past in
the framework of Faddeev/AGS equations starting with the
pioneering work of Aaron and Shanley [8] to the more recent
calculations of Alt et al. [9], all of them were drastically
simplified. In most cases separable interactions were used
between pairs and the correct treatment of the Coulomb
interaction was missing. This situation has now changed
owing to recent progress in the description of proton-deuteron
elastic scattering and breakup [10,11], where the Coulomb
repulsion is fully included by using the method of screening
and renormalization [12,13] together with realistic nuclear
potentials. This technical development was applied to three-

body nuclear reactions to test the accuracy of the CDCC
method [14] and the convergence of the multiple scattering
series in the framework of the Glauber approximation [15] and
distorted-wave impulse approximation (DWIA) [16], which
are standard approximations used to describe nuclear reaction
data.

Some of the interaction models employed in this work and
in CDCC calculations are formally identical, but instead of
solving the three-body Schrödinger equation in coordinate
space using a representation in terms of a set of eigenstates
pertaining to a given subsystem Hamiltonian, we solve the
Faddeev/AGS equations in momentum space and obtain a
numerically well converged solution of the three-body problem
for all reactions allowed by the chosen interactions. In Ref. [14]
we benchmarked the two methods and concluded that CDCC
is indeed a reliable method to calculate deuteron-nucleus
elastic and breakup cross sections but may not provide a
sufficiently accurate solution of the three-body problem for
transfer and breakup in one-neutron halo nucleus scattering
from a proton target such as in 11Be + p reactions. In those
cases the comparison of CDCC results with experimental data
may be misleading.

In Sec. II we recall the Faddeev/AGS equations, in
Sec. III we present the results for three dynamical models,
and in Sec. IV we compare them with the results of standard
approximations used in nuclear reaction theory. Conclusions
are given in Sec. V.

II. THE THREE-BODY EQUATIONS

Let us consider a system of three particles (α = 1, 2, 3) with
kinetic energy operator H0, interacting by means of two-body
potentials vα (v1 = v23 in the standard odd-man-out notation).
The full resolvent

G(Z) =
(

Z − H0 −
∑

σ

vσ

)−1

(1)

and the channel resolvent

Gα(Z) = (Z − H0 − vα)−1 (2)

may be related through the AGS transition operator Uβα(Z) as

G(Z) = δαβ Gα(Z) + Gβ(Z)Uβα(Z)Gα(Z). (3)
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The transition operator Uβα(Z) satisfies the AGS equation [4]

Uβα(Z) = δ̄βαG−1
0 (Z) +

∑
σ

δ̄βσ Tσ (Z)G0(Z)Uσα(Z), (4)

where the summation on σ runs from 1 to 3, δ̄βα = 1 − δβα ,
G0(Z) = (Z − H0)−1 is the free resolvent, and Tα(Z) is the
two-body transition matrix (t matrix) that obeys the Lippmann-
Schwinger equation for pair α,

Tα(Z) = vα + vαG0(Z)Tα(Z). (5)

At a given energy E in the three-body center-of-mass (c.m.)
system the on-shell matrix elements 〈ψβ |Uβα(E + i0)|ψα〉
calculated between the appropriate channel states yield all
the relevant elastic, inelastic, and transfer (β, α = 1, 2, 3) as
well as breakup (β = 0) amplitudes. The channel state |ψα〉
for α = 1, 2, 3 is the eigenstate of the corresponding channel
Hamiltonian Hα = H0 + vα with the energy eigenvalue E

comprising the bound state wave function for pair α times a
relative plane wave between particle α and pair α. For breakup
the final state is a product of two plane waves, corresponding
to the relative motion of three free particles.

The AGS equations [Eq. (4)] are Faddeev-like equations
with compact kernel and therefore suitable for numerical so-
lution; they are consistent with the corresponding Schrödinger
equation and therefore provide an exact description of the
quantum three-body problem. After partial wave decomposi-
tion Eq. (4) becomes a two-variable integral equation, which
we solve by standard discretization of momentum variables
and summation of the multiple scattering series by the Padé
method; more details can be found in Refs. [17,18]. As in all
numerical calculations, convergence of results has to be tested
with respect to the number of included partial waves, mesh
points, and Padé steps.

To include the Coulomb interaction between two charged
particles we use the method of screening and renormalization
[10,12,13]. The Coulomb potential is screened, standard
scattering theory for short-range potentials is used in the
form of Eq. (4) with parametric dependence on the screening
radius R, and the renormalization procedure is applied to
obtain R-independent results for sufficiently large R, which
correspond to the unscreened limit. A complete review on this
subject is presented in Ref. [19] together with a number of
practical applications.

III. THE DYNAMICAL MODELS

In this section we set the three-body dynamics we apply to
study all the reactions initiated by deuterons on 12C and 16O
as well as protons on 13C and 17O, where 12C and 16O are
considered as inert cores.

Although in most nuclear reaction calculations the deuteron
wave function is generated through a Gaussian potential fitted
to the deuteron binding energy, which is then used to drive the
np interaction in all other partial waves, we use the CD-Bonn
[7] potential as our realistic interaction for all np partial waves
including the deuteron channel.

For the neutron-nucleus (nA) and proton-nucleus (pA)
interactions we use the optical potentials of Watson et al. [6],

which are based on an optical model analysis of nucleon
scattering from 1p-shell nuclei between 10 and 50 MeV; the
nucleus A is a structureless core of mass number A. Although
core excitation may be treated in the present three-body
models, we discard such a possibility at this time. Therefore
the relevant parameters of this optical model fit are both
energy and mass dependent and are fitted to the existing
data over the energy and mass range. For specific nuclei
and energy, one could perhaps obtain a better fit but, as
mentioned in Sec. I, our goal is to explore the possibilities
of a three-body model that can simultaneously describe all
reactions allowed by the chosen interactions and leave the
fine-tuning for an improved model study. In all calculations
nucleons are considered as spin-1/2 particles and the nuclear
cores as spin-0 particles; the spin-orbit terms of the optical
potentials are included as well as the full operator structure of
the CD-Bonn potential for the np pair. The calculations include
np partial waves with total angular momentum I � 3, nA

partial waves with orbital angular momentum L � 8, and pA

partial waves with L � 20; the total three-particle angular
momentum is J � 35. Depending on the reaction and energy,
some of these quantum number cutoffs can be safely chosen
significantly lower, leading, nevertheless, to well-converged
results. The pA channel is more demanding than the nA

channel because of the screened Coulomb force, where the
screening radius R ≈ 10 fm for the short-range part of the
scattering amplitude is sufficient for convergence. The only
exception are reactions leading to a final (Ap) bound state
where R ≈ 15 fm and a sharper screening is needed. With
this choice of the calculational parameters we obtain well-
converged results for all considered observables such that all
discrepancies with the experimental data can be attributed
solely to the shortcomings of the interaction models that are
used.

A. Model 1: Energy-independent optical potentials

In this case we use the traditional approach based on
energy-independent optical potentials whose parameters are
chosen at a fixed energy. For deuteron scattering from nucleus
A the parameters for the nA and pA potentials are taken
from Ref. [6] at half the laboratory energy of the deuteron
projectile. For proton scattering from the (An) nucleus the pA

parameters are taken from Ref. [6] at the laboratory energy of
the proton beam and the nA parameters at zero energy, where
the imaginary part of the nA optical potential is zero. Small
adjustments to these nA parameters are made to be able to
reproduce the experimental binding energies of the ground and
excited single-particle states of the (An) nucleus while all Pauli
forbidden bound states of the resulting potential are removed
as described in Ref. [20]. Original [6] and adjusted values of
these parameters are given in Table I. In the present model
only the modified nA parameters are used in given partial
waves, leading to the single-particle states listed in Table II for
13C and 17O; in all other nA partial waves we used the original
parameters [6] as well as for the pA optical potential. Whereas
in d + A scattering the pA and nA potentials are complex,
in p + (An) scattering only the pA potential is complex.
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TABLE I. Original parameters of the real part of the nucleon-
nucleus optical potential [6] (first line) and those adjusted to the
energies of bound states or resonances in given partial waves, all
in units of MeV. The strength of the central part is related to
vR as VR = vR + 0.4ZA−1/3 ± 27.0(N − Z)/A − 0.3Ec.m.�(Ec.m.)
and Vso is the strength of the spin-orbit part; see Ref. [6] for more
details.

vR(nA) vR(pA) Vso(nA) Vso(pA)

Ref. [6] 60.00 60.00 5.5 5.5
N -12C (s) 67.50 66.47
N -12C (p) 61.67 61.50 20.38 20.83
N -12C (d) 66.42 66.42 5.5 5.5
N -16O (s) 61.65 60.94
N -16O (d) 61.47 60.89 5.4 5.4

Although in both cases we are dealing with the same particles,
the Hamiltonians are different and, therefore, in d + A we
cannot calculate d + A → p + (An), but in p + (An) we can
calculate the inverse reaction p + (An) → d + A, or even
p + (An) → p + (An)∗, because the nA interaction is real,
in contrast to d + A where it is complex.

Results for these studies are shown by the dotted
curves (M1) in Figs. 1–3 for d + 12C and p + 13C and in
Figs. 4–6 for d + 16O and p + 17O at different energies. As
previously mentioned the results shown by the dotted curves in
Fig. 1 (Fig. 4) are obtained with a different Hamiltonian
from those in Figs. 2 and 3 (Figs. 5 and 6). In general the
description of the data for elastic scattering is fairly reasonable
and within what can be expected from corresponding CDCC
calculations. For the transfer reactions p + 13C → d + 12C
and p + 17O → d + 16O shown in Figs. 3 and 4, respectively,
one gets a reasonable agreement with data in the forward
direction (except for a scaling factor), but deviations from
data increase for �c.m. > 30◦.

The fact that traditional three-body models of d + A

and p + (An) scattering are inconsistent with each other
encouraged us to study other possibilities to shed light on
the sensitivity of results to different dynamical approaches.

B. Model 2: Energy-dependent optical potentials

The two-body t matrix given by Eq. (5) enters the
Faddeev/AGS equation [Eq. (4)] for the transition operator
Uβα(Z). Even if the potential is energy independent, the
pair t matrix has to be calculated at the two-body energies

TABLE II. Binding energies (in MeV) of the bound states
corresponding to the potential parameters of Table I. Pauli forbidden
bound states that are removed are marked with ∗.

1s1/2 2s1/2 1p3/2 1p1/2 1d5/2

13C 38.022∗ 1.857 18.722∗ 4.946 1.092
13N 33.864∗ 15.957∗ 1.944
17O 37.213∗ 3.272 19.267∗ 16.067∗ 4.143
17F 32.559∗ 0.105 15.561∗ 12.348∗ 0.600
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FIG. 1. (Color online) Differential cross section divided by
Rutherford cross section for d + 12C elastic scattering at Ed =
30 MeV. Predictions of Model 1 (dotted curve), Model 2 (solid
curve), and Model 3 (dashed-dotted curve) are compared with the
experimental data from Ref. [21].
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FIG. 2. (Color online) Differential cross section divided by
Rutherford cross section for p + 13C elastic scattering at Ep =
35 MeV. Curves are as in Fig. 1. The experimental data are from
Ref. [22].
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FIG. 3. (Color online) Differential cross section for p + 13C →
d + 12C transfer at Ep = 35 MeV. Curves are as in Fig. 1. The
experimental data are from Ref. [23].
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FIG. 4. (Color online) Differential cross section divided by
Rutherford cross section for d + 16O elastic scattering at Ed =
25.4, 36.0, and 63.2 MeV. Curves are as in Fig. 1. The experimental
data are from Refs. [24,25].

e = E − q2
α/2µα , where qα is the relative momentum between

particle α and the c.m. of pair α that has to be integrated
over when solving the Faddeev/AGS equation, µα is the
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FIG. 5. (Color online) Differential cross section divided by
Rutherford cross section for p + 17O elastic scattering at Ep =
35.2 MeV. Curves are as in Fig. 1. The experimental data are from
Ref. [22].
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FIG. 6. (Color online) Differential cross section for p + 17O →
d + 16O transfer at Ep = 35.2 MeV. Curves are as in Fig. 1. The
experimental data are from Ref. [24].

corresponding particle-pair α reduced mass, and E is the
three-body energy in the c.m. system. Therefore in three-body
calculations the particles in all pairs scatter at two-body
energies between E and −∞. In the case of the CD-Bonn
potential np observables are described with χ2/datum ∼1
from zero np relative energy to the π production threshold. The
same cannot be said about the nA and pA optical potentials,
which in the previous model were chosen at a fixed energy.
Hence they describe the corresponding data at that energy but
not over the broader range that is relevant for the solution of
the three-body Faddeev/AGS equation.

In the present model we take the full energy dependence of
the optical potential such that when nA or pA pairs interact
at a given positive relative energy, the used parameters of
the optical potential fit elastic nA and pA scattering at that
energy. In addition, when the energy becomes negative the
corresponding potentials become real and energy-independent
and support a number of bound states that correspond to
the ground and excited states of the (An) and (Ap) nucleus
whereas the Pauli forbidden states are removed. As mentioned
before, the parameters of the energy-dependent optical poten-
tials are slightly modified to obtain the experimental binding
energies at zero energy, as indicated in Table I for both nA or
pA potentials in given partial waves. In addition, the binding
energy of the Pauli forbidden 1p3/2 state in 13C and 13N
systems is fitted to the 12C neutron and proton separation
energy, respectively, whereas the 1p1/2 binding energy in
17O and 17F systems calculated with original parameters [6]
is close to the corresponding nucleon separation energies of
16O. The resulting binding energies are given in Table II for
13C, 13N, 17O, and 17F nuclei. In the case of N -12C, where
the adjusted parameters are quite different from the original
ones, at positive energies vR is replaced by vR(Ec.m.) =
60.0 + (vR − 60.0) exp(−Ec.m./2) and Vso is replaced by
Vso(Ec.m.) = 5.5 + (Vso − 5.5) exp(−Ec.m./2), such that the
potential preserves the description of the N -12C scattering
data in the desired energy regime and remains a continuous
function of the energy. Such a replacement is not needed in the
case of N -16O, where the adjusted parameters are very close
to the original ones.
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Using energy-dependent pair interactions in three-body
calculations is by no means free of theoretical complications,
such as the problem of nonorthogonality of three-body wave
functions at different energies as a result of the absence of
a Hamiltonian theory for the scattering process. This issue
can be easily understood even at the two-body level. If the
potential is energy dependent the two-body bound states and
scattering states are not necessarily orthogonal, much like
scattering states corresponding to different energies. Therefore
completeness relations and three-particle unitarity may be at
fault even in the presence of real interactions. Nevertheless,
present optical model fits, in particular the one by Watson et al.,
are rather weak in their energy dependence, as can be seen by
the strength of the energy-dependent coefficients compared
with the energy-independent parameters; furthermore, this
energy dependence is smooth over the energy range of the
fit except perhaps for the N -12C spin-orbit interaction in
p waves near e = 0. Even in this case we tried different
p-wave interactions and the results are not very different, as
demonstrated in the Appendix. For this reason we believe
that the problems of nonorthogonality of wave functions and
completeness may be sufficiently small to allow a serious
consideration of this model given its notorious advantages
such as consistent dynamics for both d + A and p + (An)
scattering and the possibility of calculating transfer reactions
to p + (An) and n + (Ap) final states.

Furthermore, one should keep in mind that the energy
dependence and the imaginary part of the optical potential
have the same origin; they arise after the elimination of
active degrees of freedom (i.e., excitations, multiconfiguration
mixing, and breakup of nucleus A) from the considered Hilbert
space, as described earlier by Feshbach [26]. However, in
a three-body system this leads in addition to an effective
energy-dependent complex three-body potential, or, in general,
to many-body potentials (up to n-body) in an n-body system,
as formally developed by Polyzou and Redish [27] in the
framework of exact n-body theory. Well-known examples
are the three- and four-nucleon systems described within
the interaction model with energy-independent two-body
potentials allowing for an explicit excitation of a nucleon to
a 	 isobar [28,29], which yields effective energy-dependent
two-nucleon and many-nucleon forces that are mutually con-
sistent. In the study of three-nucleon observables it was found
that the 	-isobar effect of the two-nucleon nature is often
overcompensated by the three-nucleon force effect. Thus, also
in the three-body nuclear reactions one could expect a similar
situation for some observables, that is, a partial cancellation of
the effects arising from the energy dependence of the two-body
potential and from the three-body potential if the latter would
be included in the calculations. However, when the energy
dependence of the two-body optical potential is introduced
in the usual phenomenological way, it is not clear what the
consistent three-body potential should be. We therefore do not
attempt to include an optical three-body potential in the present
calculations, although such an extension of the Faddeev/AGS
framework is possible.

In Figs. 1–11 the solid curves (M2) show the results of the
present fully energy dependent model for all possible reactions
at different energies. A number of interesting features emerge:
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FIG. 7. (Color online) Differential cross section for d + 12C →
p + 13C transfer at Ed = 30 MeV. Predictions of Model 2 (solid
curve) and Model 3 (dashed-dotted curve) are compared with the
experimental data from Ref. [30].

(i) Elastic scattering results shown in Figs. 1, 2, 4, and
5 differ quite strongly from Model 1 (dotted curves),
particularly at large angles, and become considerably
worse when compared to data.

(ii) In the low angular region (�c.m. < 30◦)p + 13C →
d + 12C (Fig. 3) and p + 17O → d + 16O (Fig. 6)
results are very similar to those obtained with Model 1,
except for a small scaling factor.

(iii) Figure 7 shows new results for the transfer reactions
d + 12C → p + 13C to ground state 1/2− and excited
states 1/2+ and 5/2+. Again up to �c.m. 	 30◦ the
calculation follows the data within a small scaling
coefficient that may be associated with a spectroscopic
factor. In the case of the transfer to the ground state,
the solid curves in Figs. 3 and 6 have similar shape,
as expected by detailed balance taking into account the
small difference in the energies. The calculations also
reflect the qualitative features of the data.

(iv) Figures 9 and 10 show new results for the transfer
reactions d + 16O → p + 17O to ground state 5/2+ and
excited state 1/2+. Again the calculations describe the
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qualitative features of the data though scaling factors
may be needed.

(v) Figures 8 and 11 show new results for p + 13C →
n + 13N ground state 1/2− and p + 17O → n + 17F
ground state 5/2+ and excited state 1/2+. Although in
the charge-exchange reactions to the ground state the
data are not described successfully, it is worth noting
that in the p + 17O → n + 17F excited state (1/2+) the
calculations are in very reasonable agreement with data,
except for a small scaling factor.

It is worth noting at this point that a good description of
elastic data beyond small angles does not seem to be necessary
to get the right magnitude of the transfer cross sections at small
angles since Figs. 3 and 6 show similar results for two distinct
models that lead to very different results for the elastic cross
sections at large angles (see Figs. 1, 2, 4, and 5).

C. Model 3: A “hybrid” optical potential approach

Having studied these two extreme dynamical model ap-
proaches, the energy-independent and the fully energy de-
pendent, we attempt to study a combination of the two.
Since we want the relevant nuclei, 13C, 13N, 17O, and 17F,
to have the proper low-energy spectra to describe all the
relevant transfer reactions discussed before, we use in this case
a partial-wave-dependent optical potential in the following
way: (a) For d + A reactions in N -12C (N -16O) s, p, and d

waves (s and d waves) we use the energy-dependent optical
potentials of Model 2; for p + (An) reactions the pA potential
in these partial waves is energy dependent as well, but the nA

potential is taken over from Model 1 since it is sufficient to
bind 13C and 17O. (b) In all other partial waves we use the
energy-independent optical potentials of Model 1 with a few
nuances that are explained in the text, depending on whether
we have d + A or p + (An) scattering.

Since Model 1 is more absorptive than Model 2 owing to the
large impact of the imaginary part of the optical interactions
on the elastic cross sections we expect this hybrid model to
improve the description of the elastic data.

For d + A scattering, results are shown by the dash-dotted
curves (M3) in Figs. 1, 4, 7, 9, and 10. In d + 12C (d + 16O)
both nA and pA optical potentials are, as in Model 2, energy
dependent in s, p, and d waves (s and d waves) but in all other
partial waves they are energy independent with the parameters
chosen at half the deuteron laboratory energy, as in Model
1. The dash-dotted curves show a remarkable improvement
compared with the fully energy dependent calculations (solid
lines in Model 2), particularly at large angles. This effect is
visible not only in elastic scattering (Figs. 1 and 4) but also in
the transfer reactions d + A → p + (An) shown in Figs. 7, 9,
and 10, where in some specific cases such as in Figs. 9 and 10
one gets quite reasonable descriptions of the data.

For p + (An) scattering results are again shown in
Figs. 2, 3, 5, 6, 8, and 11 by the dash-dotted curves (M3).
In p + 13C (p + 17O) the pA optical potentials are, as in
Model 2, energy dependent in s, p, and d waves (s and d

waves) and, in all other partial waves, are energy independent
with the parameters chosen at the proton laboratory energy,
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FIG. 8. (Color online) Differential cross section for the p +
13C → n + 13N reaction at Ep = 35 MeV. The dashed curve is the
prediction of Model 3′; other curves are as in Fig. 7. The experimental
data are from Ref. [31].

as in Model 1. As for the nA optical potential it is chosen
as in Model 1, where in all partial waves the potential is real
and supports a number of single-particle states as mentioned
before. As in d + A reactions, we notice an improvement in
the description of p + (An) elastic (Figs. 2 and 5) as well
as p + (An) → d + A transfer (Figs. 3 and 6) observables.
Nevertheless, at small angles (�c.m. � 30◦), the differences
among Models 1, 2, and 3 are quite small, indicating that the
extracted spectroscopic factors would be of similar size as
well.
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FIG. 9. (Color online) Differential cross section for d + 16O →
p + 17O transfer at Ed = 25.4 and 36.0 MeV. Curves are as in
Fig. 7. The experimental data are from Ref. [24].
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FIG. 10. (Color online) Differential cross section for d + 16O →
p + 17O transfer at Ed = 25.4, 36.0, and 63.2 MeV. Curves are as in
Fig. 7. The experimental data are from Ref. [24].

Finally, for the charge-transfer reactions shown in Figs. 8
and 11 we add a new calculation shown by the dashed curves
(M3′), where the nA optical potential is energy dependent
in the s, p, and d partial waves for 13C and in the s and d

waves for 17O as in Model 2 but is, in the other partial waves,
energy independent with the parameters chosen according to
the laboratory energy of the neutron in the inverse reaction
n + (Ap) → p + (An). The three curves shown in Figs. 8 and
11 are not very different aside from a scaling factor.

IV. DISTORTED WAVE EQUATIONS

To relate our calculations to the standard approaches
of nuclear reaction theory we derive an alternative set of
scattering equations. Introducing an effective interaction Ṽα

acting between particle α and the c.m. of pair α as shown in
Fig. 12 one may define a new resolvent

G̃α(Z) = (Z − H0 − vα − Ṽα)−1, (6)

such that

G̃α(Z) = Gα(Z) + Gα(Z) T̃α(Z) Gα(Z), (7)

T̃α(Z) = Ṽα + Ṽα Gα(Z) T̃α(Z). (8)
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FIG. 11. (Color online) Differential cross section for the p +
17O → n + 17F reaction at Ep = 35 MeV. Curves are as in Fig. 8.
The experimental data are from Ref. [32].

Likewise one may define a distorted wave in channel α as

|ψ̃α〉 = (1 + Gα(Z) T̃α(Z))|ψα〉. (9)

Using the identity

G(Z) = G̃β(Z) + G̃β(Z)
[
G̃−1

β (Z) − G−1(Z)
]
G(Z), (10)

together with Eqs. (1) and (6), one gets

G(Z) = G̃β(Z) + G̃β(Z)
βG(Z), (11)

where

β =

∑
σ

δ̄σβ vσ − Ṽβ . (12)

A new operator Ũβα(Z) relating G(Z) to G̃α(Z) instead of
Gα(Z), that is,

G(Z) = δβαG̃α(Z) + G̃β(Z)Ũβα(Z)G̃α(Z), (13)

satisfies an equation

Ũβα(Z) = δ̄βαG̃−1
α (Z) + 
β + 
βG̃α(Z)Ũαα(Z). (14)

Its relation to the standard Faddeev/AGS operator Uβα(Z) is
obtained by using Eq. (7) in Eq. (13) and comparing back with
Eq. (3) as

Uβα(Z) = δβα T̃α(Z) + [
1 + T̃β(Z) Gβ(Z)

]
× Ũβα(Z)

[
1 + Gα(Z) T̃α(Z)

]
, (15)

◦
Ṽα

α

FIG. 12. Ṽα optical interaction in channel α.
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which for on-shell elements reads

〈ψβ |Uβα(Z)|ψα〉 = δβα〈ψβ |T̃α(Z)|ψα〉 + 〈ψ̃β |Ũβα(Z)|ψ̃α〉.
(16)

In Eq. (14) the term δ̄βαG̃−1
α (Z) is zero on-shell and will be

omitted in the following considerations.
Using the Born approximation Ũβα(Z) 	 
β for β �= α,

one gets

〈ψβ |Uβα(Z)|ψα〉 	 〈ψ̃β |
β |ψ̃α〉, (17)

which corresponds to the usual distorted-wave Born approxi-
mation (DWBA) for the transfer reactions in the post form.

However, using Ṽ1 = 0 in the case of particle 1 colliding
with pair (23) one gets T̃α(Z) = 0, U11(Z) = Ũ11(Z), and

1 = v2 + v3, leading to

U11(Z) = (v2 + v3) + (v2 + v3)G1(Z)U11(Z), (18)

which is the integral form of the CDCC differential equation.
This equation by itself is not connected in all orders of
iteration and therefore cannot be solved by standard numerical
methods since it does not satisfy the Fredholm alternative.
Nevertheless, one may follow the momentum-space version
of the CDCC approach and use the spectral decomposition
of G1(Z) to obtain a set of coupled equations involving the
continuum wave functions of pair (23) in addition to the
bound-state wave function |ψ1〉. If the continuum is discretized
and the corresponding wave functions normalized as in CDCC,
the solution of Eq. (18) includes the bound to continuum
and continuum to continuum couplings that are common to
CDCC calculations. In Ref. [14] we have shown that CDCC
calculations for deuteron elastic scattering and breakup from
a heavier target are reliable, but transfer and breakup reactions
involving the scattering of a halo nucleus from a light target,
such as 11Be + p, may be at fault. Therefore we expect all
deuteron elastic scattering results shown in Figs. 1 and 4
to agree well with those obtained from equivalent CDCC
calculations.

The present derivations may be useful in future studies of
approximate methods often used in nuclear reaction calcula-
tions involving deuterons or halo nuclei. Since at this time in
the present framework we do not have the means to test the
validity of Eq. (17) or any other approximation, we compare
our results with published calculations involving either the
DWBA, the coupled-channel Born approximation (CCBA), or
various adiabatic approaches [33–35]. These calculations use
wave functions |ψ̃α〉 and optical potentials Ṽα that are tuned at
the considered reaction energies, whereas our calculations use
global fits to nuclear reaction data and are aimed at providing
a description of the data in different channels simultaneously.
That tuning may be, at least in part, the reason for a better
description of the data as discussed in the following.

The data points in Fig. 3 for p + 13C → d + 12C were
analyzed in Ref. [23] by using the DWBA, the adiabatic
deuteron breakup approximation (ADBA), and the CDCC-
CCBA. Up to 30◦ our results coincide with all of the previous
calculations, but at larger angles adiabatic and CDCC-CCBA
calculations follow the data much better than ours.
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FIG. 13. (Color online) Differential cross section for p + 13C
elastic and transfer reactions at Ep = 35 MeV. Predictions of
Model 2 with p-wave potential from Tables I (solid curves) and
III (dashed curves) are compared. The experimental data are from
Refs. [22,23,31].

Likewise, the data points in Fig. 7 for d + 12C → p + 13C
were analyzed in Ref. [30] by using the DWBA for transition
to the 13C ground state and the CCBA for transitions to the
1/2+ and 5/2+ excited states. Whereas the DWBA provides a
better fit to the data at small angles, it still overshoots the data
at larger angles much like our calculations. As for the reactions
leading to the 1/2+ and 5/2+ excited states of 13C, both CCBA
and our calculations describe the data equally poorly.

In Ref. [31] the p + 13C → n + 13N reaction was analyzed
with the DWBA, which undershoots the data at small angles,
much like our results shown in Fig. 8, but, overall, provides a
better description of the data.

The results in Figs. 9 and 10 for d + 16O → p + 17O may
be compared with DWBA studies from Ref. [24] and adiabatic
calculations from Ref. [35] for 36- and 63.2-MeV deuterons.
The results we get in the framework of Model 3 (the “hybrid”)
are qualitatively similar to those obtained in Refs. [24,35]
although quantitatively they may differ in specific angular
regions, leading to a description of the data that is not as
good as the one provided by DWBA or adiabatic calculations.

Finally, the data in Fig. 11 for p + 17O → n + 17F is
analyzed in Ref. [32] by using the DWBA. The DWBA
calculations leading to the ground state of 17F are qualitatively
similar to ours but fit the data better at the forward angles. For
the transition to the 1/2+ excited state of 17F both calculations
are quantitatively similar and fit the data equally well.
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V. CONCLUSIONS

We have used the Faddeev/AGS three-body approach to
study d + 12C, d + 16O, p + 13C, and d + 17O reactions as
a three-body system made up by a proton p, a neutron n,
and a structureless nuclear core A, the 12C or the 16O. The
interactions between pairs are the realistic interactions that
describe np, nA, and pA scattering over the relevant energy
range. The Coulomb interaction between the proton and the
nuclear core is included in a numerically exact (converged)
way.

The aim of the present work is to demonstrate the
possibilities and the shortcomings of the Faddeev/AGS three-
body approach that provides, simultaneously, predictions for
all possible reactions, that is, elastic, transfer, and charge-
exchange such as, for example, p + 17O → p + 17O, p +
17O → d + 16O, and p + 17O → n + 17F or d + 16O → d +
16O, d + 16O → p + 17O, and d + 16O → n + 17F.

Three different models (M1, M2, and M3) are studied
involving energy-independent and energy-dependent optical
potentials that fit the nA and pA elastic scattering and whose
parameters are fixed at a chosen energy or are allowed to vary
over the energy range of the interacting pair, respectively. In the
case of energy-dependent optical potentials these become real
at negative energies and support a number of single-particle
states that characterize the (An) or the (Ap) nucleus.

The results of our calculations indicate that transfer
and charge-exchange reactions at small angles are rather
insensitive to the chosen model, but the elastic scattering
cross sections are highly sensitive to the choice of energy
dependence of the optical interaction (M1 versus M2 and
M3). Comparison with published CDCC, DWBA, CCBA,
and adiabatic calculations indicates that these approximate
methods provide, in general, a better fit of the data than
our calculations but are qualitatively similar to our results,
particularly the ones of the “hybrid” model M3 that uses a
partial-wave-dependent optical potential whose parameters are

energy independent except in the partial waves that support the
single-particle states of the (An) and (Ap) nuclei.
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APPENDIX

We present here selected results obtained with an alternative
N -12C p-wave potential whose spin-orbit strength is the same
as in the other partial waves (see Table I). The strength of the
central part is adjusted to reproduce 13C and 13N1p1/2 ground-
state energies as in Table II, thereby resulting in different
binding energies for the Pauli forbidden 1p3/2 bound states.
These are given in Table III together with the new values of
potential parameters.

The predictions of Model 2 with p-wave potential from
Tables I and III are compared in Fig. 13 for p + 13C elastic
and transfer reactions. The differences are rather insignificant
when compared to the discrepancies between theory and data
and therefore do not change the conclusions of this paper.
Differences of similar magnitude can also be seen for the
observables of d + 12C reactions.

TABLE III. Parameters of the alternative N -12C p-wave potential
together with the resulting binding energies for the Pauli forbidden
1p3/2 bound state. See Tables I and II for further explanation.

vR(nA) vR(pA) Vso(NA) 1p3/2(13C) 1p3/2(13N)

49.61 49.11 5.5 8.587∗ 5.507∗
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