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Evidence for the pair-breaking process in 116,117Sn
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The nuclear level densities of 116,117Sn below the neutron separation energy have been determined
experimentally from the (3He,αγ ) and (3He,3He′γ ) reactions, respectively. The level densities show a
characteristic exponential increase and a difference in magnitude due to the odd-even effect of the nuclear
systems. In addition, the level densities display pronounced step-like structures that are interpreted as signatures
of subsequent breaking of nucleon pairs.
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I. INTRODUCTION

Nuclear level densities are important for many aspects of
fundamental and applied nuclear physics, including calcu-
lations of nuclear reaction cross sections. The level density
of excited nuclei is an average quantity that is defined as
the number of levels per unit energy. The majority of data
for nuclear level densities are obtained from two energy
regions. At low excitation energy, the level density is obtained
directly from the counting of low-lying levels [1]. As the
excitation energy increases, the level density becomes large
and individual levels are often not resolved in experiments.
Therefore, the direct counting method becomes impossible.
Nuclear resonances at or above the nucleon binding energy
provide another source of level density data [2]. Between
these two excitation energy regions, the level density is often
interpolated using phenomenological formulas [3–5]. It is in
this energy region the present measurements focus.

Recently, an extension of the sequential extraction method,
now referred to as the Oslo method, was developed by the Oslo
Cyclotron Group. The Oslo method permits a simultaneous
determination of the level density and the radiative strength
function [6,7]. For both of these quantities, the experimental
results cover an energy region where there is little information
available and data are difficult to obtain. However, the limita-
tion of this method is that the results must be normalized to
existing data—from the discrete levels and neutron resonance
spacings for the level density and to the total radiative width
for the radiative strength function. Thus, the new and main
achievement of the Oslo method is to establish the functional
form of the level density and the radiative strength function in
the above specified energy region.

In this work we present results for the level density in
116,117Sn for the excitation energy 0 < E < Sn − 1 MeV. The
radiative strength functions of 116,117Sn have been published
elsewhere [8]. The experimental setup is briefly described
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in Sec. II, followed by a discussion of the analysis and
normalization procedure. The experimental results for the
level density are given in Sec. III, and the determination of
various thermodynamic quantities are presented in Sec. IV.
Conclusions are drawn in Sec. V.

II. EXPERIMENTAL PROCEDURE AND DATA ANALYSIS

The experiment was carried out at the Oslo Cyclotron
Laboratory (OCL) using a 38-MeV 3He beam. The self-
supporting 117Sn target had a thickness of 1.9 mg/cm2.
The reaction channels 117Sn(3He, αγ )116Sn and 117Sn(3He,
3He′γ )117Sn were studied.

The experiment ran for about 11 days with an average
beam current of ≈1.5 nA. Particle-γ coincidence events were
detected using the CACTUS multidetector array. The charged
particles were measured with eight Si particle telescopes
placed at 45◦ with respect to the beam direction. Each telescope
consists of a front Si �E detector with thickness 140 µm and a
back Si(Li) E detector with thickness 3000 µm. An array of 28
collimated NaI γ -ray detectors with a solid-angle coverage of
≈15% of 4π was used. In addition, one Ge detector was used
in order to estimate the spin distribution and determine the
selectivity of the reaction. The typical spin range is I ∼ 2–6h̄.

Figure 1 shows the singles α-particle spectrum (upper
panel) and the α-γ coincidence spectrum (lower panel) for
116Sn. The two peaks denoted by 0+ and 2+ are the transfer
peaks to the ground state and the first excited state, respectively.
The strong transfer peak at E = 3.2 MeV is composed of many
states found to be the result of pickup of high-j neutrons
from the g7/2 and h11/2 orbitals [9,10]. Another strong transfer
peak centered around E = 8.0 MeV is new and may indicate
the neutron pickup from the g9/2 orbital. The counts in the
coincidence spectrum decrease for excitation energies higher
than Sn due to lower γ -ray multiplicity when the neighboring
A − 1 isotope is populated at low excitation energy.

The particle-γ -ray coincidence spectra were unfolded using
the response functions for the CACTUS detector array [11].
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FIG. 1. (a) Singles α-particle spectrum and (b) α-γ coincidence
spectrum from the 117Sn(3He, α)116Sn reaction.

The first-generation matrix (the primary γ -ray matrix) contains
only the first γ -rays emitted from a given excitation energy bin;
this matrix is obtained by a subtraction procedure described
in Ref. [12]. This procedure is justified if the γ decay from
any excitation energy bin is independent of the method of
formation—either directly by the nuclear reaction or indirectly
by γ decay from higher lying states following the initial
reaction. This assumption is clearly valid if the same states
are populated via the two processes, since γ -decay branching
ratios are properties of levels. When different states are
populated, the assumption may not hold. However, much
evidence suggests [7] that statistical γ decay is governed only
by the γ -ray energy and the density of states at the final energy.

In the data analysis, the particle-γ -ray coincidence matrix
is prepared and the particle energy is transformed into
excitation energy using the reaction kinematics. The rows of
the coincidence matrix correspond to the excitation energy
in the residual nucleus, while the columns correspond to the
γ -ray energy. All the γ -ray spectra for various initial excitation
energies are unfolded using the known response functions of
the CACTUS array [11]. The first-generation γ -ray spectra,
which consist of primary γ -ray transitions, are then obtained
for each excitation energy bin [12].

The first-generation γ -ray spectra for all excitation energies
form a matrix P , hereafter referred to as the first-generation
matrix. The entries of the first-generation matrix P are the
probabilities P (E,Eγ ) that a γ -ray of energy Eγ is emitted
from an excitation energy E. This matrix is the basis for the
simultaneous extraction of the radiative strength function and

the level density. According to the Brink-Axel hypothesis
[13,14], a giant electric dipole resonance can be built on
every excited state with the same properties as the one built
on the ground state, that is, the radiative strength function
is independent of excitation energy and thus of temperature.
Many theoretical models do include a temperature dependence
of the radiative strength function [15,16]. However, the
temperature dependence is weak and the temperature change
in the energy region under consideration here is rather small.
Therefore, the temperature dependence is neglected in the Oslo
method.

The first-generation matrix is factorized into the radiative
transmission coefficient, which is dependent only on Eγ , and
on the level density, which is a function of the excitation energy
of the final states E − Eγ :

P (E,Eγ ) ∝ �(Eγ )ρ(E − Eγ ). (1)

The functions ρ and � are obtained iteratively by a globalized
fitting procedure [6]. The goal of the iteration is to determine
these two functions at ∼N energy values each; the product of
the two functions is known at ∼N2/2 data points contained in
the first-generation matrix. The globalized fitting to the data
points determines the functional form for ρ and �. The results
must be normalized because the entries of the matrix P are
invariant under the transformation [6]

ρ̃(E − Eγ ) = A exp[α(E − Eγ )] ρ(E − Eγ ), (2)

�̃(Eγ ) = B exp(αEγ )�(Eγ ). (3)

In the final step, the transformation parameters A, B,
and α which correspond to the most physical solution must
be determined. Details of the normalization procedure are
described in several papers reporting the results of the Oslo
method, see for example [17,18]. In the following, we will
focus on the level density and thermodynamic properties.

III. LEVEL DENSITIES

The coefficients A and α relevant for the nuclear level
density are determined from normalizing the level density
to the low-lying discrete levels and the neutron resonance
spacings just above the neutron separation energy Sn. For
117Sn, we used s- and p-wave resonance level spacings (D0,
D1) taken from [2] to calculate the total level density at Sn

(see Ref. [6] for more details on the calculation). Since there
is no experimental information about D0 or D1 for 116Sn, we
estimated ρ(Sn) for this nucleus based on systematics for the
other tin isotopes [2,4], and assuming an uncertainty of 50%.
The level spacings and the final values for ρ(Sn) are given in
Table I.

The experimental level density ρ is determined from the
nuclear ground state up to ∼Sn − 1 MeV. Therefore, an
interpolation is required between the present experimental data
and ρ evaluated at Sn. The back-shifted Fermi gas level density
with the global parametrization of von Egidy et al. [4],

ρ(E) = η
exp(2

√
aU )

12
√

2a1/4U 5/4σ
, (4)
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TABLE I. Parameters used for the back-shifted Fermi gas level density and the calculation of ρ(Sn).

Nucleus Epair (MeV) C1 (MeV) a (MeV−1) D0 (eV) D1 (eV) σ (Sn) (MeV) Sn (105 MeV−1) ρ(Sn) η

116Sn 2.25 −1.44 13.13 – – 4.96 9.563 4.12(206) 0.46
117Sn 0.99 −1.44 13.23 507(60) 155(6) 4.44 6.944 0.86(25) 0.40

is employed for the interpolation.1 The intrinsic excita-
tion energy is given by U = E − Epair − C1, where C1 =
−6.6A−0.32 MeV is the back-shift parameter and A is the
mass number. The pairing energy Epair is based on pair-
ing gap parameters �p and �n evaluated from even-odd
mass differences [19] according to [20]. The level-density
parameter a and the spin-cutoff parameter σ are given by
a = 0.21A0.87MeV−1 and σ 2 = 0.0888A2/3aT , respectively.
The nuclear temperature T is described by T = √

U/a MeV.
The constant η is a parameter applied to ensure that the Fermi
gas level density coincides with the neutron resonance data.
All parameters employed for the Fermi gas level density are
listed in Table I.

Figure 2 shows the normalized level densities of 116Sn
and 117Sn. The full squares represent the results from the
present work. The data points between the arrows are used
for normalizing to the level density obtained from counting
discrete levels (solid line) and the level density calculated from
the neutron resonance spacing (open square). The discrete
level scheme is seen to be complete up to excitation energy
≈3.5 MeV in 116Sn beyond which the level density obtained
from discrete levels starts to drop. For 117Sn the discrete level
density is complete only up to ≈1.5 MeV. The new data of
this work thus fill the gap between the discrete region and the
calculated level density at Sn.

From Fig. 2, we observe that pronounced step-like struc-
tures are present in the level densities of both 116,117Sn. In
the following section, nuclear thermodynamic properties are
extracted using the present level density results, and these
structures are investigated in detail.

IV. THERMODYNAMIC PROPERTIES

The entropy S(E) is a measure of the number of ways
to arrange a quantum system at a given excitation energy E.
Therefore, the entropy of a nuclear system can give information
on the underlying nuclear structure. The microcanonical
entropy is given by

S(E) = kB ln �(E), (5)

where �(E) is the multiplicity of accessible states and kB is
Boltzmann’s constant, which we will set to unity to give a
dimensionless entropy.

The experimental level density ρ(E) is directly proportional
to the multiplicity �(E), which can be expressed as

�(E) = ρ(E) · [2〈J (E)〉 + 1]. (6)

1We chose to apply the old parametrization of [4] instead of the
more recent one in [5] because new (γ ,n) data [21] showed that the
slope of the radiative strength function in 117Sn [8] became too steep
using the values of [5].

Here, 〈J (E)〉 is the average spin at excitation energy E

and the factor [2〈J (E)〉 + 1] thus gives the degeneracy of
magnetic substates. As the average spin is not well known at
all excitation energies, we choose to omit this factor and define
the multiplicity as

�(E) = ρ(E)/ρ0, (7)

where the denominator is determined from the fact that the
ground state of even-even nuclei is a well-ordered system with
zero entropy. The value of ρ0 = 0.135 MeV−1 is obtained
such that S = ln � ∼ 0 for the ground state region of 116Sn.
The same ρ0 is also applied for 117Sn. In Fig. 3 the resulting
entropies of 116,117Sn are shown.

The entropy carried by the valence neutron can be estimated
by assuming that the entropy is an extensive (additive) quantity
[22]. With this assumption, the experimental single neutron
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FIG. 2. Normalized level density of (a) 116Sn and (b) 117Sn.
Results from the present work are shown as full squares. The data
points between the arrows are used for the fitting to known data.
The level density at lower excitation energy obtained from counting
of known discrete levels is shown as a solid line, while the level
density calculated from neutron resonance spacings is shown as an
open square. The back-shifted Fermi gas level density used for the
interpolation is displayed as a dashed line.
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FIG. 3. (a) Experimental entropies for 116,117Sn and (b) the
entropy difference. By fitting a straight line to the entropy difference
in the energy region 2.4–6.7 MeV, an average value of �S 	 1.6 kB

was obtained.

entropy is given by

�S = S(117Sn) − S(116Sn). (8)

From Fig. 3, we observe that �S becomes more constant
as the excitation energy increases, and above 2–3 MeV we
estimate the single neutron quasiparticle to carry about �S 	
1.6 in units of Boltzmann’s constant. This agrees with previous
findings from the rare-earth region [22].

Both entropy curves display step-like structures superim-
posed on the general smooth increasing entropy as a function
of excitation energy. At these structures, the entropy increases
abruptly in a small energy interval before it becomes a more
slowly increasing function.

The first low-energy bump of 116Sn is connected to the
first excited 2+ state at E = 1.29 MeV and the second excited
0+ state at E = 1.76 MeV. Similarly, the first bump in the
entropy of 117Sn is connected to the first excited states in this
nucleus. The next structures are probable candidates for the
pair-breaking process. Microscopic calculations based on the
seniority model indicate that step structures in the level density
can be explained by the consecutive breaking of nucleon
Cooper pairs [23].

The bumps present in the Sn level densities are much more
outstanding than previously measured for other mass regions
by the Oslo group. One explanation of the clear fingerprints
could be that since the Z = 50 shell is closed, the breaking of
proton pairs are strongly hindered and thus do not smooth out
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FIG. 4. Microcanonical temperatures of (a) 116Sn and (b) 117Sn.

the entropy signatures for the neutron pair breaking. Therefore,
it is very likely that the structures are due to pure neutron-pair
breakup.

We have investigated the structures further by introducing
the microcanonical temperature given by

T =
(

∂S

∂E

)−1

. (9)

By taking the derivative, small changes in the slope of the
entropy are enhanced. This is easily seen in Fig. 4, where
the microcanonical temperatures of 116,117Sn are displayed.
The striking oscillations of the temperature is a thermodynamic
signature for such small systems as the nucleus. Only a few
quasiparticles participate in the excitation of the nucleus. Since
the system is not in contact with a heat bath with a constant
temperature, the system is far from the thermodynamic limit.

In Fig. 4, the bumps below ≈2 MeV are connected to the
low-lying excited states in 116,117Sn. However, the peak-like
structure centered around E = 2.8 MeV in 116Sn and around
E = 2.6 MeV in 117Sn could be a signature of the first breakup
of a neutron pair. Above E = 4.5 and 3.6 MeV in 116,117Sn,
respectively, the temperature appears to be constant on the
average, indicating a more continuous breaking of further
pairs.

Recently [24], the criticality of low-temperature transitions
was investigated for rare-earth nuclei. We apply the same
method here and investigate the probability P of the system at
fixed temperature T to have excitation energy E, i.e.,

P (E, T ) = �(E) exp (−E/T ) /Z(T ), (10)
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FIG. 5. Linearized Helmholtz free energy
Fc at critical temperature Tc for (a) 116Sn and
(b) 117Sn displaying a characteristic double-
minimum structure. The constant level F0, which
is connecting the minima, is indicated by hori-
zontal lines. A continuous minimum of Fc is
shown for (c) 116Sn and (d) 117Sn.

where the canonical partition function is given by

Z(T ) =
∫ ∞

0
�(E′) exp

(−E′/T
)

dE′. (11)

Lee and Kosterlitz showed [25,26] that the function A(E, T ) =
− ln P (E, T ), for a fixed temperature T in the vicinity of a
critical temperature Tc of a structural transition, will exhibit
a characteristic double-minimum structure at energies E1 and
E2. For the critical temperature Tc, one finds A(E1, Tc) =
A(E2, Tc). It can be easily shown that A is closely connected to
the Helmholtz free energy, and that this condition is equivalent
to

Fc(E1) = Fc(E2), (12)

which can be evaluated directly from our experimental data.
It should be emphasized that Fc is a linearized approximation
to the Helmholtz free energy at the critical temperature Tc

according to

Fc(E) = E − TcS(E). (13)

Linearized free energies Fc for certain temperatures Tc are
displayed in Fig. 5. In the upper panels, 116,117Sn data are
shown where the condition Fc(E1) = Fc(E2) = F0 is fulfilled.
Each nucleus shows a double-minimum structure, which we
interpret as the critical temperatures for breaking one neutron
pair. The values found are Tc = 0.58(2) and 0.71(2) MeV for
116,117Sn, respectively. Furthermore, we observe a potential
barrier �Fc of about 0.25 MeV between the two minima E1

and E2. The potential barrier indicates the free energy needed
to go from one phase (no pairs broken) to another (one broken
pair) at the constant, critical temperature Tc.

In the process of breaking additional pairs, the structures are
expected to be less pronounced. Indeed, in the lowest panels of

Fig. 5, the free energy is rather constant for excitation energies
above E ≈ 5.0 and 4.2 MeV for 116,117Sn, respectively. Instead
of a double-minimum structure, a continuous minimum of
Fc appears for several MeV of excitation energies. This
demonstrates clearly that the depairing process in tin cannot
be interpreted as an abrupt structural change typical of a first
order phase transition. For this process we evaluate the critical
temperature by a least χ2 fit of F0 to the experimental data.
The excitation energies (E1 and E2) and temperatures for the
phase transitions are summarized in Table II.

According to the linearized free-energy calculations, the
first neutron pair is broken for excitation energies between
2.4–4.2 MeV in 116Sn. Comparing with the upper panel of
Fig. 4, we see that this coincides with the excitation-energy
region where a peak structure is found. This bump is thought to
represent the first neutron pair breakup as discussed previously
in the text. The average temperature of the bump is 0.59(2)
MeV, in excellent agreement with the deduced critical tem-
perature Tc = 0.58(2). Similarly, for 117Sn in the lower panel
of Fig. 4, we find that a peak-like structure with an average
temperature of 0.74(2) MeV is present between 2.3–3.7 MeV.
Compared to the critical temperature Tc = 0.71(2) MeV, the
values agree satisfactory.

TABLE II. Phase transition values deduced for 116,117Sn.

Breaking of 116Sn 117Sn

E1–E2 Tc E1–E2 Tc

(MeV) (MeV) (MeV) (MeV)

One pair 2.4–4.2 0.58(2) 2.3–3.7 0.71(2)
Two or more pairs 5.0–8.0 0.69(8) 4.2–6.0 0.63(4)
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For the continuous break-up process characterized by a
zero potential barrier (�Fc ≈ 0 MeV), we estimate for 116Sn
an average microcanonical temperature of 0.75(6) MeV in
the excitation-energy region E = 5.0–8.0 MeV, in reasonable
agreement with Tc = 0.69(8) calculated from the linearized
Helmholtz free energy. In the case of 117Sn, the average
microcanonical temperature for excitation energies between
4.2–6.0 MeV is found to be 0.64(3) MeV, which agrees very
well with Tc = 0.63(4) MeV. This gives further confidence in
our interpretation of the data as two independent methods give
very similar results.

V. CONCLUSIONS

The nuclear level densities for 116,117Sn are extracted from
particle-γ coincidence measurements. New experimental re-
sults are reported for the level density in 116,117Sn for excitation
energies above 1.5 MeV and 3.5 MeV up to Sn − 1 MeV.

The level densities for both nuclei display prominent step-
like structures. The structures have been further investigated
by means of thermodynamic considerations: microcanonical
entropy and temperature, and through calculations of the lin-
earized Helmholtz free energy. Both methods give consistent
results, in strong favor of the pair-breaking process as an
explanation of the structures.
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