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Nuclear tetrahedral configurations at spin zero
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The possibility of the existence of stable tetrahedral deformations at spin zero is investigated using the
Skyrme-HFBCS approach and the generator coordinate method (GCM). The study is limited to nuclei in which
the tetrahedral mode has been predicted to be favored on the basis of non-self-consistent models. Our results
indicate that a clear identification of tetrahedral deformations is unlikely because they are strongly mixed with the
axial octupole mode. However, the excitation energies related to the tetrahedral mode are systematically lower
than those of the axial octupole mode in all the nuclei included in this study.
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I. INTRODUCTION

Exotic shapes of the nuclear density have always attracted
the interest of physicists. In this respect, the octupole degree of
freedom has played a special role. Axial octupole deformations
are well established, both experimentally and theoretically [1],
in several regions of the nuclear chart. It has also been shown
that nonaxial octupole shapes are competitive with the axial
ones in specific nuclei [2]. However, octupole deformations
are more subtle than quadrupole ones. Stable static octupole
deformations correspond usually to shallow minima as a
function of the octupole deformation [3–5]. Dynamical studies
have shown that octupole correlations in the ground state
manifest themselves predominantly by a spreading of the
wave function around the left-right symmetric mean-field
configuration [6].

Nuclear tetrahedral deformations have been recently in-
vestigated in Refs. [7–9]. Symmetry arguments show that
tetrahedral deformations induce a fourfold degeneracy of the
single-particle spectra. Based on this peculiar shell structure,
the stability of such configurations has been conjectured in
specific nuclei. Such a large degeneracy results indeed in large
gaps in the single-particle spectrum and increases the shell
effects for specific values of the neutron and proton numbers.
Those values have been dubbed “tetrahedral magic numbers”
and have been determined using a microscopic-macroscopic
model based on a Woods-Saxon potential [7–12].

However, these conjectures almost exclusively originate
from approaches based on non-self-consistent average nuclear
potentials, with only a limited support of self-consistent
calculations. It is, therefore, clearly necessary to test their
validity in the framework of up-to-date theories using modern
energy density functionals. We address this issue in the present
article in the framework of self-consistent mean-field methods
using Skyrme interactions. Because to go beyond a pure
mean-field approach has been shown to be crucial for octupole
deformations, we have also studied the stability of tetrahedral
shapes using the generator coordinate method (GCM). This
study is focused on nuclei in which the tetrahedral mode has
been predicted to be favored: 80,98,110Zr, 152−156Gd, and 160Yb.
It extends our previous study, which was limited to 80,98Zr
[13,14], by considering the dynamical coupling between the

axial octupole and the tetrahedral degrees of freedom. Because
tetrahedral shapes are generated by the nonaxial intrinsic
octupole moment Q32 ∝ r3(Y32 + Y3−2), it is likely that they
are in strong competition with axial octupole shapes. Most
details about our method can be found in Refs. [13] and [14].
Details on the GCM can be found in Ref. [15], and details on
its application to two-dimensional octupole calculations can
be found in Ref. [16].

Our aim in this study is to determine whether there are
situations in which a configuration can be unambiguously
identified as tetrahedral. We, therefore, first identify which
are the possible coexisting structures in the nuclei for which
tetrahedral deformations have been predicted. We then study
whether some of these configurations provide clear signatures
of tetrahedral shapes.

II. MEAN-FIELD CALCULATIONS AND
PARITY PROJECTION

Octupole deformations of the nuclear density are generated
by introducing in the HFBCS equations the axial Q30 ∝ r3Y30

and the triaxial Q32 ∝ r3(Y32 + Y3−2) moments as constrain-
ing operators. This last one is the operator generating tetrahe-
dral deformations. The details of the HFBCS calculations have
been described in Refs. [13] and [14]. The pairing interaction
strength has been adjusted to reproduce “experimental pairing
gaps” in the same way as described in Refs. [13] and [14].
In particular the standard prescription based on the odd-even
difference of binding energies has been used [17]. The pairing
strength for 98Zr and 110Zr has been adjusted to reproduce the
pairing gap in 102Zr. In Gd isotopes the pairing strength has
been adjusted to reproduce pairing gaps in 154Gd. For studies
of 80Zr and 160Yb the pairing strength has been adjusted for
each of these nuclei individually. These reference nuclei have
been chosen to minimize the influence of deformation changes
for the determination of the pairing gap.

The experimental data suggest that all the nuclei in which
tetrahedral deformations have been predicted theoretically
have a well-deformed ground state (with the possible exception
of 98Zr). A first question to address is whether a spherical
configuration may coexist at low excitation energy in any
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FIG. 1. Variation of the total mean-field energy as a function
of the quadrupole Q20 moment (in fm2). Triangles, squares, and
circles denote results obtained using the SIII, SkM∗, and SLy4
parametrizations of the Skyrme force, respectively.

of the studied nuclei. As we shall see in the following, the
single-particle pattern typical of a tetrahedral configuration is
very well preserved close to sphericity. Therefore, a tetrahedral
magic nucleus in which the spherical configuration is at low
energy represents a particularly promising case of the existence
of tetrahedral configurations. Let us first focus on the case of
110Zr for which the variation of the energy as a function of
the axial quadrupole deformation is shown in Fig. 1.
Octupole deformations are set to zero for all values of the
quadrupole moment. The calculations have been performed
for three representative Skyrme parametrizations. A deformed
prolate ground state at large deformation is obtained for

all three interactions. It coexists with an oblate minimum
and, in the case of SLy4 and SkM∗, with a local minimum
for the spherical configuration. It is only for the SLy4
parametrization that the spherical and the prolate minima are
almost degenerate.

The case of 110Zr illustrates well the energy dependence on
the quadrupole degree of freedom obtained for all studied
nuclei with the three Skyrme forces. The ground state
corresponds in all cases to a deformed prolate minimum
(with the only exception of 80Zr for the SLy4 parametrization,
but this is in clear contradiction with the experimental
data [18]). The spherical configurations are excited by a
few MeV, except in some Zr isotopes where depending on
the Skyrme parametrization they are obtained at excitation
energies smaller than 1 MeV.

A first question that must be answered is how this picture
is affected by tetrahedral deformations and whether the
magnitude of the energy gain obtained around the spherical
minimum is large enough to bring its energy close to that of
the deformed ground state.

The variation of the mean-field energy with octupole
deformations when the quadrupole moment is constrained to
be zero is shown in Fig. 2 for the six nuclei that we have
selected. These results have been obtained with the SLy4
Skyrme parametrization and their dependence on the choice of
the parametrization is illustrated by results obtained for 110Zr
with SIII. Note that, contrary to Fig. 1, the HFBCS results are
very similar for both interactions. We have also checked for
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FIG. 2. Total mean-field energy ob-
tained with the HF (squares) and HFBCS
(circles) methods as a function of the
dimensionless β30 (solid symbols) and β32

(open symbols) deformation parameters.
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several nuclei and for SkM∗ that the behavior of the HFBCS
energy as a function of the octupole degrees of freedom is
qualitatively similar in all cases.

The octupole deformations are parametrized by dimension-
less parameters proportional to the octupole moments (see
Refs. [13] and [14]). There is no direct connection between
the values of β30 and β32 and one must be cautious when
comparing axial and tetrahedral deformation energy curves.
The only nucleus for which a sizable tetrahedral minimum is
obtained is 156Gd with an energy gain of 500 keV with respect
to the spherical configuration. The energy is rather flat as a
function of both β30 and β32 for the other nuclei, although
the meaning of this shallowness can only be made precise by
dynamical calculations. The energy curve obtained for 110Zr
with SIII is only marginally different from that of SLy4, with
a tetrahedral minimum 100 keV below the spherical point.

These mean-field calculations have been performed using a
single constraint on either the Q30 or Q32 moments. Because
the unconstrained degrees of freedom are completely relaxed
(except for the quadrupole moment and either Q30 or Q32,
which were set to zero) by the variational procedure, there
is no guarantee that the unconstrained moments remain equal
to zero (except those that are forbidden due to the imposed
symmetry conditions, see Refs. [13] and [14]) for all values
of the constraint. Nevertheless, the behavior typical of the
tetrahedral symmetry is largely preserved up to a deformation
of β32 ≈ 0.2–0.3. Up to these values, the single-particle
states exhibit the fourfold degeneracies characteristic for the
point group T D

d . In general, the single-particle energies as a
function of Q32 exhibit more bunching as compared to the Q30

direction. However, this does not translate into a lower energy
for the tetrahedral configuration.

As a typical example, the variation of the single-particle
energies as a function of octupole deformations is shown in
Fig. 3 for 110Zr. One can see that the single-particle states
are still almost degenerate at β32 equal to 0.15 but not at
β30 equal to 0.15, which is in both cases the deformation

beyond which the mean-field energy starts to increase. Note
also that both the tetrahedral and the spherical configurations
have a similar single-particle structure because there are
no level crossings between these configurations. The same
is true for the axial octupole configuration. Moreover the
HFBCS calculations indicate almost no barrier between
tetrahedral and axial octupole minima. These facts indicate
that all three configurations may be strongly mixed when the
octupole collective dynamics are taken into account (see next
section).

Because tetrahedral deformations break parity, projection
on parity gives rise to an energy gain for the positive parity
as soon as the octupole moments have a nonzero value and it
generates a distinct energy curve for the negative parity. We
have restored both particle number and parity by projecting
the mean-field wave functions. The projected potential energy
is defined as

E(N,Z, β3µ)± = 〈φ(β3µ)|Ĥ P̂(±,N,Z)|φ(β3µ)〉
〈φ(β3µ)|P̂(±,N,Z)|φ(β3µ)〉 , (1)

where |φ(β3µ)〉 are HFBCS wave functions generated with
the constraint 〈φ(β3µ)|Q̂3µ|φ(β3µ)〉 = Cµβ3µ, where C0 =

3
4π

A2r3
0 , C2 = C0/

√
2, with A = N + Z and r0 = 1.2 fm (see

Refs. [13] and [14]). The operator P̂(±,N,Z) is the product of
operators projecting on π = ±1 parity and on N neutrons and
Z protons. The parity-projected energies are shown in Fig. 4,
except for 80Zr and 98Zr, which are discussed in Refs. [13]
and [14].

The situation is similar to that discussed already in
Refs. [13] and [14]. The positive parity curves exhibit a small
minimum for nonzero values of β30 and β32. The energy gain
due to the parity restoration is of the order of 1 MeV for both
axial octupole and tetrahedral deformations (see Fig. 4). In
fact for all nuclei considered (with the exception of 160Yb) the
axial octupole minimum has an energy slightly lower than that
of the tetrahedral one (see Table I).
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FIG. 3. Single-particle energies as a
function of octupole deformation β30 and
β32 for 110Zr calculated for SLy4 force.
The positive and negative parity levels
are denoted by solid and dashed lines,
respectively.
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FIG. 4. Parity and particle number
projected energies as a function of the
octupole deformations β30 and β32. In
the two top subfigures (a and b) corre-
sponding to 110Zr, the results obtained
with the SLy4 (circles) and SIII (squares)
are compared. In the other subfigures,
only calculations performed with SLy4
are shown. The circles and squares denote
then the energies as a function of β30 and
β32, respectively. In all subfigures solid
and open symbols refer to positive and
negative parity, respectively.

The dependence of energy on octupole deformations is not
significantly modified by the projection on positive parity. An
interesting property of the particle projection is that it makes
the results rather weakly dependent on the pairing strength, in
contrast to pure mean-field calculations. We have checked that
the differences between the energy of the octupole minima
and that of the spherical configuration are not significantly
modified by a variation of the pairing strength within the
interval between half and twice the physical value. This holds
for both the positive and the negative parity states. The main
effect of an increase of the pairing strength is an increase of
the energy difference between the positive and the negative
parity minima.

TABLE I. Energies (in MeV) of the positive parity configurations
with respect to the spherical configurations for axial (β30) and
tetrahedral (β32) configurations.

Sly4 SLy4 SIII

β30 β32 β30 β32

110Zr −1.25 −0.98 −1.12 −0.96
152Gd −1.09 −0.93 – –
154Gd −1.13 −0.92 – –
156Gd −1.16 −1.14 – –
160Yb −1.19 −1.20 – –

III. TWO-DIMENSIONAL GCM

To be unambiguously identified experimentally, tetrahedral
deformations should have a clear signature, which allows them
to be distinguished from axial octupole deformations. The
GCM enables the study of the coupling between both octupole
modes and allows one to see whether tetrahedral shapes can
be separated from axial octupole shapes. We have therefore
performed two-dimensional GCM calculations in which the
axial and nonaxial octupole shapes are coupled. This coupling
was not considered in Refs. [13] and [14], where separate
dynamical calculations were performed along the collective
paths determined by nonzero Q30 and Q32 values, respectively.
The method we apply is similar to that introduced by Skalski
et al. [16].

A collective wave function is constructed by mixing the
mean-field states corresponding to different values of the
octupole moments, after their projection on particle numbers,

|�〉 =
∫

f (β30, β32)P̂(N,Z)|φ(β30, β32)〉dβ30dβ32. (2)

The coefficients f (β30,β32) are determined by minimizing the
total energy of the collective wave function |�〉.

Our collective space forms a plane specified by Q30 and
Q32, or equivalently by β30 and β32. This requires that
one consider HFBCS states inside a rectangle specified by
“corners”: (±β30max, ±β32max). However the full problem can
be decomposed in four subspaces by introducing combinations
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of states in the four quadrants. Starting from |φ1〉 =
|φ(β30,β32)〉, one constructs the four states:

|φ2〉 = |φ(−β30,−β32)〉 = P̂ |φ1〉,
|φ3〉 = |φ(−β30,+β32)〉 = P̂xyP̂ |φ1〉,
|φ4〉 = |φ(+β30,−β32)〉 = P̂xy |φ1〉,

where P̂ is the parity operator and P̂xy is the reflection
operation in which x and y coordinates are exchanged. Thus,
one needs to generate only the HFBCS basis in 1/4 of the
rectangle and extend it to the full square thanks to these
relations. Another interest of this decomposition is that P̂

and P̂xy commute with the Hamiltonian. This means that
they can be used to label GCM eigenstates. Both P̂ and
P̂xy are projectors, so the quantum numbers associated with
each operator take the values ±1. From the wave functions
|φi〉, i = 1, 2, 3, 4, one can define a new basis in which both
P̂ and P̂xy are diagonal, namely,

|�++〉 = 1
2 (|φ1〉 + |φ2〉 + |φ3〉 + |φ4〉),

|�−−〉 = 1
2 (|φ1〉 − |φ2〉 + |φ3〉 − |φ4〉),

|�−+〉 = 1
2 (|φ1〉 − |φ2〉 − |φ3〉 + |φ4〉),

|�+−〉 = 1
2 (|φ1〉 + |φ2〉 − |φ3〉 − |φ4〉),

where the first index of |�kl〉 denotes the eigenvalue with
respect to parity and the second index with respect to x-y
reflection. One can easily check that |�+−〉 is identically zero
in the absence of either axial or tetrahedral deformations,
while |�−+〉 and |�−−〉 are zero when β30 or β32 are zero,
respectively. For this reason, we have dubbed the excited
states corresponding to k = l = −1 tetrahedral excitations,
those corresponding to k = −1, l = +1 axial excitations,
and those corresponding to k = 1, l = −1 mixed octupole
excitations.

In this basis, |�kl〉, the Hamiltonian does not couple
states corresponding to different values of k and l and the
GCM equation decomposes into four equations for each
set (k, l). The resulting GCM wave functions are expressed
by

|�kl〉 =
∫

f (β30, β32)P̂(N,Z)|�(β30, β32)kl〉dβ30dβ32. (3)

We have restricted this study by imposing the quadrupole
moment to be fixed. A full calculation would require one to
consider the octupole and quadrupole modes simultaneously,
which would be a huge computational task, well beyond the
scope of the present study. Our aim is indeed only to determine
the most favorable scenario of coupling between the axial
octupole mode and the nonaxial Q32 mode generating the
tetrahedral deformation.

We first performed a calculation in the vicinity of the
deformed ground state of two nuclei, 110Zr and 154Gd. The
results are shown in Table II.

The correlation energy due to the octupole modes is defined
by

Ecorr = E(N,Z, sph) − E++,

where E(N,Z, sph) is the energy of the particle number
projected spherical configuration and E++ is the lowest

TABLE II. Excitation energies, correlation energies, and dy-
namical deformations of the lowest four states obtained in two-
dimensional GCM. π and πxy denote the parity and Pxy quantum
numbers, respectively.

SLy4 Eexc (MeV) Ecorr (MeV) π πxy β̃30 β̃32

110Zr 0 1.222 +1 +1 0.08 0.06
4.535 – −1 −1 0.07 0.17
4.282 – −1 +1 0.15 0.04
7.423 – +1 −1 0.19 0.24

154Gd 0 2.228 +1 +1 0.05 0.06
2.892 – −1 −1 0.06 0.10
1.998 – −1 +1 0.12 0.04
5.005 – +1 −1 0.12 0.10

positive-parity energy obtained in the GCM. The value
of this correlation energy is rather small for both nuclei,
indicating a weak effect of octupole correlations in the ground
state.

The lowest octupole excitation corresponds in both cases to
the axial octupole mode. The nonaxial octupole excitation is
only slightly larger in energy for 110Zr, but both modes being
above 4 MeV of excitation are very unlikely to survive to
the coupling to any other modes. The situation is slightly more
favorable in 154Gd, although in this case the nonaxial excitation
is nearly 1 MeV above the axial octupole one. Note that in the
vicinity of a deformed ground state, one cannot identify a
nonaxial Q32 mode with tetrahedral deformations, because
the tetrahedral symmetry is broken by large quadrupole
deformations.

In view of the very unfavorable conditions obtained when
the quadrupole moment is large, we have continued this study
by looking to the octupole properties around the spherical
configuration. The GCM results are summarized in Table III.
We have performed calculations with two sets of mean-field
wave functions corresponding to 16 and 25 positive octupole
deformations, respectively, to check the accuracy of the results.
The difference between both sets of results shows that the
accuracy obtained with a 25 wave-function basis set is better
than 100 keV. Note that the excellent agreement obtained by
using two different basis sets is also a test that our results are
not affected by the pathology that can appear when working
an energy density functional [19].

The largest gain is obtained for 110Zr. It is of an order of
magnitude similar to that of the energy gain due to quadrupole
correlations in deformed nuclei [20]. A full study of the energy
gain due to the coupling between different modes remain to
be done but the results of Ref. [20] seem to indicate that
these energy gains quickly saturate in models based on self-
consistent mean-field wave functions.

Dynamical deformations associated with the lowest GCM
solutions corresponding to quantum numbers k and l are
defined by

β̃3µ =
∑
β3µ

β3µg2
kl(β30, β32), (4)

014319-5
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TABLE III. Excitation energies, correlation energies, and dynamical deformations of the lowest four states obtained
in two-dimensional GCM. �16/25 denotes the difference in energies between calculations performed with 16 and 25
mean-field states. π and πxy denote the parity and Pxy quantum numbers, respectively. In the last two columns the
two-quasiparticle excitation energies (neutron and proton) of the spherical configuration are given.

SIII Eexc (MeV) Ecorr (MeV) �16/25 π πxy β̃30 β̃32 2Ep
qp (MeV) 2En

qp (MeV)

80Zr 0 2.116 0.15 +1 +1 0.07 0.06 2.786 3.518
2.832 – 0.06 −1 −1 0.05 0.18
2.854 – 0.01 −1 +1 0.14 0.00
8.275 – 0.16 +1 −1 0.13 0.17

98Zr 0.0 1.184 0.02 +1 +1 0.07 0.04 2.114 2.66
2.128 – 0.12 −1 −1 0.04 0.25
1.732 – 0.09 −1 +1 0.19 0.02
6.628 – 0.12 +1 −1 0.17 0.23

SLy4 Eexc (MeV) Ecorr (MeV) �16/25 π πxy β̃30 β̃32 2Ep
qp (MeV) 2En

qp (MeV)
98Zr 0 2.660 0.07 +1 +1 0.10 0.08 1.96 1.78

2.393 – 0.06 −1 −1 0.08 0.21
2.639 – 0.05 −1 +1 0.18 0.06
6.127 – 0.02 +1 −1 0.17 0.17

110Zr 0 3.303 0.01 +1 +1 0.09 0.10 1.612 2.72
1.764 – 0.01 −1 −1 0.06 0.22
2.188 – 0.01 −1 +1 0.17 0.06
4.936 – 0.01 +1 −1 0.16 0.20

152Gd 0 2.791 0.00 +1 +1 0.05 0.06 2.884 2.78
2.018 – 0.00 −1 −1 0.04 0.13
2.233 – 0.00 −1 +1 0.11 0.05
4.922 – 0.01 +1 −1 0.12 0.12

154Gd 0 3.054 0.00 +1 +1 0.06 0.07 2.566 3.0
1.507 – 0.01 −1 −1 0.05 0.14
1.857 – 0.01 −1 +1 0.12 0.05
4.134 – 0.00 +1 −1 0.11 0.02

156Gd 0 3.085 0.10 +1 +1 0.06 0.08 2.008 2.742
1.072 – 0.00 −1 −1 0.05 0.15
1.507 – 0.06 −1 +1 0.12 0.05
3.329 – 0.02 +1 −1 0.11 0.13

160Yb 0 3.085 0.00 +1 +1 0.06 0.06 3.438 3.06
1.629 – 0.00 −1 −1 0.05 0.13
1.858 – 0.02 −1 +1 0.11 0.05
3.893 – 0.02 +1 −1 0.10 0.12

for µ = 0, 2, where gkl is the collective wave function for
parity k and for an eigenvalue l associated with the operator
P̂xy (see Ref. [15] for the relation between the collective
wave function g and the GCM function f ). For all nuclei
that we have studied the dynamical deformations β̃30 and
β̃32 of the lowest positive parity GCM solutions are smaller
than 0.1. The ground state collective wave function is rather
isotropic as a function of Q30 and Q32. It shows a similar
spreading as a function of axial and tetrahedral octupole
deformations.

The first negative parity state has an excitation energy
between 1.0 and 2.3 MeV, the tetrahedral mode being sys-
tematically the lowest one. The largest difference E+− − E−−
between both octupole modes occurs for 110Zr, where it
is around 0.8 MeV, and for 156Gd, where it is around
0.5 MeV.

The ratios between the B(E3) values obtained for both
modes are given in Table IV. Better than the absolute
values of these quantities, which are not well defined in an
angular momentum unprojected model, these ratios are good
indicators whether these states have a specific signature in their
deexcitation spectrum. In the first column are given the ratios
corresponding to the transitions from the tetrahedral and the
axial excited states to the ground state. The second column
corresponds to the ratios of the transitions between the mixed
octupole states to the tetrahedral and the axial excitations. This
ratio oscillates in all cases around 1, which suggests that the
spectrum of GCM excitations resembles, to a large extent, a
harmonic spectrum. The only noticeable deviation occurs in
the case of 110Zr, where the transition from the tetrahedral
state to the lowest GCM state is decreased by about 30% as
compared to the deexcitation of the axial octupole vibration.

014319-6



NUCLEAR TETRAHEDRAL CONFIGURATIONS AT SPIN ZERO PHYSICAL REVIEW C 79, 014319 (2009)

TABLE IV. Ratios of the B(E3) values obtained for
the transitions between the four lowest GCM states. In
the column denoted by a, the ratio is taken between
|�−−〉 → |�++〉 and |�−+〉 → |�++〉; in the column
denoted by b, the ration is taken between |�+−〉 →
|�−−〉 and |�+−〉 → |�−+〉.

SLy4 a b

98Zr 0.78 1.05
110Zr 0.67 0.72
152Gd 0.83 0.90
154Gd 0.97 0.91
156Gd 1.15 0.89
160Yb 1.04 1.12

IV. CONCLUSIONS

We have investigated the possible existence of stable tetra-
hedral configurations in nuclei in which they were predicted
on the basis of non-self-consistent models. Our calculations
have been based on several parametrizations of the Skyrme
interaction, with only marginal differences between the results.
The coupling between the axial and tetrahedral octupole modes
has been studied with the GCM, in the absence of quadrupole
deformations. Our results do not support the prediction that
tetrahedral deformations should have a definite signature:

(i) The susceptibility of the spherical configuration toward
tetrahedral deformations is rather weak and pairing
effects wash out the shell effects. Moreover, the tetra-
hedral minimum is accompanied by an axial octupole
minimum of similar depth.

(ii) The correlation energy associated with shape fluctu-
ations and parity restoration lowers substantially the
mean-field energy. However the dynamic octupole
deformations in the ground state state are rather small.

Moreover, axial and nonaxial octupole deformations
are strongly coupled.

(iii) The excitation energies of states associated with tetra-
hedral shapes are systematically lower than those
corresponding to the axial octupole mode. However the
B(E3) ratios do not distinguish between these modes.

The prospects for the experimental detection of the tetra-
hedral configurations at spin zero are thus rather poor. It
seems that the increased shell effects due to the tetrahedral
mode do not provide a sufficient condition for the existence
of a stable tetrahedral deformation. At spin zero, stable
tetrahedral configurations seem unlikely. Their trace may be
manifested in nuclear vibrations in negative parity bands but
the B(E3) values indicate that there is no way to distinguish the
tetrahedral modes from the axial octupole modes by looking
to the decay probabilities. It should be noted that our study
does not rule out the possibility of the existence of rotating
tetrahedral configurations. Several of the predicted tetrahedral
nuclei are, however, strongly deformed in their ground state
and a mixing of octupole and quadrupole deformations would
make still more problematic the extraction of a tetrahedral
signature.
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[9] J. Dudek, A. Góźdź, and N. Schunck, Acta Phys. Pol. B 34, 2491
(2003); N. Schunck and J. Dudek, Int. J. Mod. Phys. E 13, 213
(2004).

[10] N. Schunck, P. Olbratowski, J. Dudek, and J. Dobaczewski, Int.
J. Mod. Phys. E 15, 490 (2006).

[11] J. Dudek, D. Curien, N. Dubray, J. Dobaczewski, V. Pangon,

P. Olbratowski, and N. Schunck, Phys. Rev. Lett. 97, 072501
(2006).

[12] J. Dudek, J. Dobaczewski, N. Dubray, A. Gozdz, V. Pangon, and
N. Schunck, Int. J. Mod. Phys. E 16, 516 (2007).

[13] K. Zberecki, P. Magierski, P.-H. Heenen, and N. Schunck, Phys.
Rev. C 74, 051302(R) (2006).

[14] K. Zberecki, P. Magierski, P.-H. Heenen, and N. Schunck, Int.
J. Mod. Phys. E 16, 533 (2007).

[15] M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys.
75, 121 (2003).

[16] J. Skalski, P.-H. Heenen, P. Bonche, H. Flocard, and J. Meyer,
Nucl. Phys. A551, 109 (1993).

[17] J. Dobaczewski, P. Magierski, W. Nazarewicz, W. Satuła, and
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