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Two-neutrino double β decay of deformed nuclei within the quasiparticle random-phase
approximation with a realistic interaction
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A method to implement a realistic nucleon-nucleon residual interaction based on the Brueckner G matrix
(for the Bonn-CD force) into the quasiparticle random phase approximation (QRPA) for deformed nuclei is
formulated. The two-neutrino double β decay for ground state to ground state transitions 76Ge → 76Se and
150Nd → 150Sm is calculated along with the Gamow-Teller strength distributions. The effect of deformation on
the observables is studied.
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I. INTRODUCTION

Nuclear double β decay is a second-order weak interaction
process that can proceed in two different modes: the two
neutrino mode 2νββ, with the emission of two neutrinos and
two electrons, and the neutrinoless mode 0νββ, with emission
of two electrons only, without neutrino emission (see, e.g.,
Refs. [1–4]). Observation of the latter mode that violates lepton
number conservation will prove that the neutrino is a massive
Majorana particle.

Theoretical interpretation of electroweak processes in
nuclei requires an accurate description of nuclear many-body
wave functions. The proton-neutron quasiparticle random
phase approximation (QRPA), first considered in Ref. [5],
is one of the most reliable nuclear structure methods used
for describing the structure of the intermediate nuclear states
virtually excited in double β decay. Important ground-state
correlations are naturally accounted for within the QRPA as
well (see, e.g., Refs. [3,4,6]). The method has been shown to be
capable of successfully describing double β decay provided
one includes the particle-particle (p-p) residual interaction,
along with the usual particle-hole (p-h) one [7]. However, the
calculated nuclear matrix elements for double β decay, both
the two-neutrino and neutrinoless modes, have been proven to
sensitively depend on the parameter gpp, which renormalizes
the G-matrix strength in the p-p channel [3,6].

As the majority of ββ-decaying nuclei are nearly spher-
ical, spherical symmetry has been assumed in all QRPA
calculations of the 0νββ-decay matrix elements M0ν up to
now. Nowadays, there is a growing interest in the scientific
community in double β decay of 150Nd as a very promising
candidate for the next generation of experimental searches for
the neutrinoless double β decay (SNO+ [8] and SuperNEMO
[9]). The nucleus is well known to have one of the largest
values of the lepton phase space factor (about 33 times
larger than that for 76Ge; see, e.g. Ref. [1]), but it is at the
same time strongly deformed, which provides a great obstacle
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for reliable theoretical analysis of the corresponding matrix
element M0ν . The effect of deformation on the 0νββ decay
of 150Nd to the ground and excited states of 150Sm was first
studied in Ref. [10] within the pseudo-SU(3) model, which
is a tractable shell model for deformed nuclei, in which,
however, a severely truncated single-particle basis is used.
The matrix element M0ν = −1.57 was found in Ref. [10]
for the ground state to ground state (g.s.-to-g.s.) transition
150Nd → 150Sm, a value substantially smaller than the recent
result M0ν = 4.74 of Ref. [6]. In the latter publication,
however, the nuclei were considered as spherical. The recent
result M0ν = −1.61 obtained in Ref. [11] within the projected
Hartree-Fock-Bogoliubov approach is in good agreement with
the previous one of Ref. [10]. Also the double β decay
160Gd → 160Dy is of interest, although the lepton phase space
factor is about one-sixth of that in the case of 150Nd → 150Sm.

An extension of the pnQRPA method to accommodate the
effect of nuclear deformation was first done in Ref. [12], where
a single-particle (s.p.) basis was generated in a Nilsson poten-
tial. Further developments by including Woods-Saxon-type
potentials [13], residual interactions in the particle-particle
channel [14], and self-consistent deformed Hartree-Fock mean
fields with consistent residual interactions [15] have followed.

Recently, the Gamow-Teller strength distributions and
the 2νββ-decay matrix elements have been calculated for
deformed nuclei within the QRPA by making use of a
phenomenological deformed Woods-Saxon potential and the
schematic separable forces [16–18]. It has been found that
differences in deformation between initial and final nuclei
can have a pronounced effect on the 2νββ-decay half-lives.
However, using the schematic forces for calculating the
amplitudes of the 0νββ decay would immediately raise the
problem of how to fix the numerous strength parameters of
the forces in different Jπ partial channels. Therefore, using a
realistic interaction with a minimal number of renormalization
parameters is obviously preferable. In the present paper the
approach used in Refs. [17,18] is extended to accommodate a
realistic effective interaction based on the Brueckner G matrix
derived from the nucleon-nucleon Bonn-CD force.

The 2νββ-decay half-lives have been already measured for
a dozen nuclei and the corresponding nuclear matrix elements
M2ν

exp have been extracted [19]. Theoretical interpretation of
these matrix elements provides a cross-check of reliability
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of the calculated nuclear wave functions. In the most recent
detailed spherical QRPA calculations of the 0νββ-decay
matrix elements Ref. [6], the renormalization parameter gpp of
the particle-particle residual interaction is fixed in such a way
that the experimental half-lives of 2νββ decay are correctly
reproduced. Thus, before calculating the matrix elements
M0ν by using the QRPA extended to deformed nuclei, the
corresponding calculation of M2ν has to be done as a test for
the modeled nuclear wave functions.

II. THE QRPA IN DEFORMED NUCLEI

The inverse half-life of 2νββ decay can be expressed as a
product of an accurately known phase-space factor G2ν and
the second-order Gamow-Teller matrix element M2ν

GT for the
g.s.-to-g.s. transition [1]:[

T 2ν
1/2(0+

g.s. → 0+
g.s.)

]−1 = G2ν
∣∣M2ν

GT

∣∣2
. (1)

The contribution from the two successive Fermi transitions to
the amplitude of the 2νββ decay can safely be neglected as
it arises from isospin mixing effects (see, e.g., Ref. [2]). The
double Gamow-Teller matrix element M2ν

GT in Eq. (1) can be
written in the form

M2ν
GT =

∑
m

〈0+
f ‖β−‖m〉〈m‖β−‖0+

i 〉
ω̄m

, (2)

where the index i(f ) refers to the initial (final) nuclei, the
sum runs over all |m〉 = |1+〉 states of the intermediate odd-
odd nucleus, β− = ∑

a σ aτ
−
a is the Gamow-Teller transition

operator, and ω̄m = Em − (E0i
+ E0f

)/2 = (ωm(i) + ωm(f ))/2
with ωm(i) = Em − E0i

(ωm(f ) = Em − E0f
) representing the

excitation energy of the mth state relative to the g.s. of the
initial (final) nucleus.

To take into account the effect of deformation, wave
functions |1+〉 of the intermediate states in the laboratory frame
that have a projection M of the total angular momentum onto
the z axis can be represented in terms of wave functions in the
intrinsic frame:

|1M(K),m〉 =
√

3

16π2

[
D1

MK (φ, θ, ψ)Q†
m,K

+ (−1)1+KD1
M−K (φ, θ, ψ)Q†

m,−K

]|0+
g.s.〉

(for K = ±1),

|1M(K),m〉 =
√

3

8π2
D1

MK (φ, θ, ψ)Q†
m,K |0+

g.s.〉
(for K = 0). (3)

Here, the correlated QRPA ground state in the intrinsic frame is
denoted as |0+

g.s.〉, the intrinsic excitations are generated by the

QRPA phonon creation operator Q
†
m,K , and K is the projection

of the total angular momentum onto the nuclear symmetry axis
(the only projection that is conserved in strongly deformed
nuclei).

These adiabatic Bohr-Mottelson-type wave functions pro-
vide an approximation that is valid for large deformations.
Thus, it is well justified to treat the most interesting nuclei
in question, 150Nd and 150Sm, which indeed are strongly

deformed, in such an approximation. The adiabatic, or the
strong coupling (see, e.g., Ref. [20]), approach fails, however,
for small deformations since the Coriolis force gets large and
mixes states with different K . Nuclei 76Ge and 76Se have
rather small deformations and the so-called weak-coupling,
or no-alignment, limit [20] seems to be more suitable. In this
limit the Coriolis force becomes so strong that the angular
momenta of the valence nucleons get completely decoupled
from the orientation of the core. Such a case would deserve a
detailed study, which is postponed to a future publication,
and the adiabatic approach to describing excited states of
deformed nuclei is adopted in this present first application of
the QRPA with a realistic residual interaction. Nevertheless,
one might already anticipate without calculations that in the
weak coupling limit the calculated observables should reveal
smaller deviations from the ones obtained in the spherical
limit than those calculated in the strong coupling limit of
the present work. In this connection it is worth noting that
spherical QRPA results can exactly be reproduced in the
present calculation by letting deformation vanish, in spite of
the formal inapplicability of the strong-coupling ansatz for the
wave function in this limit.

The QRPA phonon creation operator acting on the ground-
state wave function is given as

Q
†
m,K =

∑
pn

Xm
pn,KA

†
pn,K − Ym

pn,KĀpn,K . (4)

Here, A
†
pn,K = a

†
pa

†
n̄ and Āpn,K = ap̄an are the two-

quasiparticle creation and annihilation operators, respectively,
with the bar denoting the time-reversal operation. The quasi-
particle pairs pn̄ are defined by the selection rules 	p − 	n =
K and πpπn = 1, where πτ is the s.p. parity and 	τ is the
projection of the total s.p. angular momentum on the nuclear
symmetry axis (τ = p,n). The s.p. states |p〉 and |n〉 of
protons and neutrons are calculated by solving the Schrödinger
equation with the deformed axially symmetric Woods-Saxon
potential [21,22]. In cylindrical coordinates the deformed
Woods-Saxon s.p. wave functions |τ	τ 〉 with 	τ > 0 are
decomposed over the deformed harmonic oscillator s.p. wave
functions [with the principal quantum numbers (Nnz
)] and
the spin wave functions |� = ± 1

2 〉:
|τ	τ 〉 =

∑
Nnz�

bNnz�|Nnz
τ = 	τ − �〉|�〉, (5)

where N = n⊥ + nz (n⊥ = 2nρ + |
|), nz and nρ are the
number of nodes of the basis functions in the z and ρ directions,
respectively, and 
 = 	 − � and � are the projections of the
orbital and spin angular momentum onto the symmetry axis z.
For the s.p. states with the negative projection 	τ = −|	τ |,
which are degenerate in energy with 	τ = |	τ |, the time-
reversed version of Eq. (5) is used as a definition (see also
Ref. [17]). The states (τ ,τ̄ ) comprise the whole single-particle
model space.

The deformed harmonic oscillator wave functions |Nnz
〉
can be further decomposed over the spherical harmonic
oscillator ones |nr l
〉 by calculating the corresponding spatial
overlap integrals A

nr l
Nnz


= 〈nr l
|Nnz
〉 (where nr is the
radial quantum number and l and 
 are the orbital angular
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momentum and its projection onto z axes, respectively). (See
the Appendix for the details.) Thereby, the wave function
[Eq. (5)] can be reexpressed as

|τ	τ 〉 =
∑

η

Bτ
η |η	τ 〉, (6)

where |η	τ〉 = ∑
� C

j	τ

l	τ −�1
2�

|nr l
 = 	τ −�〉|�〉 is the spheri-

cal harmonic oscillator wave function in the j -coupled scheme
[η = (nr lj )], and Bτ

η = ∑
� C

j	τ

l	τ −� 1
2 �

A
nr l
Nnz	τ −� bNnz� , with

C
j	τ

l	τ −� 1
2 �

being the Clebsch-Gordan coefficient.

The QRPA equations(
A(K) B(K)

−B(K) −A(K)

)(
Xm

K

Ym
K

)
= ωK,m

(
Xm

K

Ym
K

)
, (7)

with realistic residual interaction, are solved to get the
forward Xm

iK and backward Ym
iK amplitudes and the excitation

energies ω
mi

K and ω
mf

K of the mth K+ (K = 0,±1) state in the
intermediate nucleus. The matrices A and B are defined by

Apn,p′n′(K) = δpn,p′n′ (Ep + En) + gpp(upunup′un′

+ vpvnvp′vn′ )Vpn̄p′n̄′ − gph(upvnup′vn′

+ vpunvp′un′ )Vpn′p′n (8)

Bpn,p′n′(K) = −gpp(upunvp′vn′ + vpvnup′un′ )Vpn̄p′n̄′

− gph(upvnvp′vn′ + vpunup′vn′ )Vpn′p′n,

where Ep + En are the two-quasiparticle excitation energies,
Vpn,p′n′ and Vpn̄,p′n̄′ are the p-h and p-p matrix elements of the
residual nucleon-nucleon interaction V , respectively, and uτ

and vτ are the coefficients of the Bogoliubov transformation.
The amplitudes of β− and β+ transitions from the 0+ ground
states of initial and final nuclei to a one-phonon K+ state in
the intermediate nucleus are given in the intrinsic system by

〈K+,m|β−
K |0+

g.s.〉 =
∑
pn

〈p|σK |n〉[upvnX
m
pn,K + vpunY

m
pn,K

]
,

(9)
〈K+,m|β+

K |0+
g.s.〉 =

∑
pn

〈p|σK |n〉[upvnY
m
pn,K + vpunX

m
pn,K

]
.

The matrix element M2ν
GT of Eq. (2) is given within the

QRPA in the intrinsic system by the following expression:

M2ν
GT =

∑
K=0,±1

∑
mimf

× 〈0+
f |β̄−

K |K+,mf 〉〈K+,mf |K+,mi〉〈K+,mi |β−
K |0+

i 〉
ω̄K,mimf

.

(10)

Along with the usual approximation of the energy denomi-
nator in Eq. (10) as ω̄K,mimf

= (ωK,mf
+ ωK,mi

)/2 (see, e.g.,
Refs. [17,18]; we will later refer to this case as “case II”),
we also use in this work another prescription in which the
whole calculated QRPA energy spectrum is shifted in such
a way as to have the first calculated 1+ state exactly at the
corresponding experimental energy (case I). In this case the
energy denominator in Eq. (10) acquires the form ω̄K,mimf

=
(ωK,mf

− ωK,1f
+ ωK,mi

− ωK,1i
)/2 + ω̄1+

1
, with ω̄1+

1
being

the experimental excitation energy of the first 1+ state
measured from the mean g.s. energy (E0i

+ E0f
)/2. All the

calculated strength functions in this work are represented
according to case I, as well.

The two sets of intermediate nuclear states generated from
the initial and final ground states do not come out identical
within the QRPA. Therefore, the overlap factor of these states
is introduced in Eq. (10) [23,24] as follows:

〈K+,mf |K+,mi〉 =
∑
li lf

[
X

mf

lf KX
mi

liK
− Y

mf

lf KY
mi

liK

]
×Rlf li 〈BCSf |BCSi〉. (11)

The factor Rlf li , which includes the overlaps of single-particle
wave functions of the initial and final nuclei, is given by

Rll′ = 〈pρp|p′ρp′ 〉(u(i)
p u

(f )
p′ + v(i)

p v
(f )
p′

)〈nρn|n′ρn′ 〉
× (

u(i)
n u

(f )
n′ + v(i)

n v
(f )
n′

)
, (12)

and the last term 〈BCSf |BCSi〉 in Eq. (11) corresponds to the
overlap factor of the initial and final BCS vacua in the form
given in Ref. [17].

As a residual two-body interaction we use the nuclear
Brueckner G matrix, which is a solution of the Bethe-
Goldstone equation, derived from the Bonn-CD one-boson
exchange potential, as used also in the spherical calculations
of Ref. [6]. The G-matrix elements are originally calculated
with respect to a spherical harmonic oscillator s.p. basis. By
using the decomposition of the deformed s.p. wave function in
Eq. (6), the two-body deformed wave function can be repre-
sented as

|pn̄〉 =
∑

ηpηnJ

F JK
pηpnηn

|ηpηn, JK〉, (13)

where |ηpηn, JK〉 = ∑
J CJK

jp	pjn	n
|ηp 	p〉|ηn	n〉, and

FJK
pηpnηn

= B
p
ηp

Bn
ηn

(−1)jn−	nCJK
jp	pjn−	n

is defined for the

sake of simplicity [with the phase (−1)jn−	n arising from
the time-reversed states |n̄〉]. The particle-particle Vpn̄,p′n̄′

and particle-hole Vpn′,p′n interaction matrix elements in the
representation [Eq. (8)] for the QRPA matrices A and B
[Eq. (7)] in the deformed Woods-Saxon single-particle basis
can then be given in terms of the spherical G-matrix elements
as follows:

Vpn̄,p′n̄′ = −2
∑

J

∑
ηpηn

∑
ηp′ηn′

FJK
pηpnηn

F JK
p′ηp′n′ηn′

×G(ηpηnηp′ηn′ , J ), (14)

Vpn′,p′n = 2
∑

J

∑
ηpηn

∑
ηp′ηn′

F
JK ′

pn′
pηpn̄′ηn′ F

JK ′
pn′

p′ηp′ n̄ηn

×G(ηpηn′ηp′ηn, J ), (15)

where K ′
pn′ = 	p + 	n′ = 	p′ + 	n. The matrix elements of

σK in Eq. (9) can be written as 〈p|σK |n〉 = ∑
ηp,ηn

F 1K
pηpnηn

〈ηp‖σ‖ηn〉/
√

3.

014314-3
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TABLE I. The values of the deformation parameter β2 for initial (final) nuclei adopted in the
calculations along with the fitted values of the p-p strength parameters gpp (for the realistic Bonn-CD
force) and κ (for a phenomenological separable force) for two ways of calculating M2ν

GT, (I) and (II). The
p-h strength parameters gph = 1.15 and χ = 3.73/A0.7 MeV are fixed as explained in the text. In the last
column the calculated (with the Bonn-CD force) values of the Ikeda sum rule [in percentage of 3(N − Z)]
are given for the initial (final) nucleus.

Nucleus β2 gpp (I) gpp (II) κ (I) (MeV) κ (II) (MeV) ISR (%)

76Ge (76Se) 0.0 (0.0) 0.94 0.91 0.087 0.083 96.8 (98.2)
0.10 (0.16) [25] 0.99 0.97 0.091 0.088 96.1 (96.8)

150Nd (150Sm) 0.0 (0.0) 1.11 1.11 0.051 0.050 94.8 (95.9)
0.37 (0.23) [25] 0.78 0.65 0.033 0.005 94.1 (95.8)
0.24 (0.21) [26] 1.35 1.32 0.053 0.052 95.4 (96.2)

III. RESULTS

The Gamow-Teller strength distributions and the 2νββ-
decay amplitudes for the g.s.-to-g.s. transitions are calculated
for the nuclear systems with A = 76 (76Ge → 76Se) and
A = 150 (150Nd → 150Sm). The single-particle Schrödinger
equation with the Hamiltonian of a deformed Woods-Saxon
mean field [21,22] is solved on the basis of an axially
deformed harmonic oscillator [see Eq. (5)]. The s.p. basis
corresponding in the spherical limit to full (2–4)h̄ω major
oscillator shells for the nuclei with A = 76 and (4–6)h̄ω for
A = 150 are used. Decomposition over the states within seven
major spherical harmonic oscillator shells is done in Eq. (13).
Only quadrupole deformation is taken into account in the
calculations. The deformation parameter β2 is obtained as
β2 = √

π
5

Qp

Zr2
c

(where rc is the charge rms radius) by using
the empirical intrinsic quadrupole moments Qp, which are
derived from the laboratory quadrupole moments measured
by the Coulomb excitation reorientation technique [25]. The
corresponding values of β2 are listed in Table I. The spherical
limit (i.e., β2 = 0) is considered in all cases as well. Because
of the rather large experimental errors β2 = 0.37 ± 0.09 and
β2 = 0.23 ± 0.03 [25] for 150Nd and 150Sm, respectively, we
also adopt for these nuclei the respective calculated values
from Ref. [26], which seem to fit better the rotational bands in
these nuclei.

First, the BCS equations are solved self-consistently to
obtain the occupation amplitudes uτ and vτ , gap parameter �τ ,
and the chemical potentials λp and λn [27]. The renormalizing
strengths g

p
pair and gn

pair of the proton and neutron pairing
interactions are determined to reproduce the experimental
pairing energies through a symmetric five-term formula [28].

For calculating the QRPA energies and wave functions
one has to fix the particle-hole gph and particle-particle gpp

renormalization factors of the residual interaction in Eq. (8).
An appropriate value of gph can be determined by reproducing
the experimental position of the Gamow-Teller giant resonance
(GTR) in the intermediate nucleus, whereas the parameter gpp

can be determined from fitting the experimental value
M2ν

exp. The experimental energy position of the GTR relative
to the energy of the first excited 1+ state in 76Ge can be
reproduced with gph = 1.15 [where the prescription of case
I is used; see the explanation after Eq. (10)]. Since there is no
experimental information on the GTR energy for 150Nd, we use

for this nucleus the same gph = 1.15. Two sets of parameters
gpp obtained from fitting M2ν

expin two calculations of M2ν
GT

(case I and case II) are listed in Table I. The difference between
gpp fitted in case I and case II is usually quite small. To
compare with the previous QRPA results, we have performed
calculations also with the separable p-h and p-p interactions
in a way similar to what was done in Refs. [17,18]. The
coefficient in the A dependence of the p-h strength parameter
χ = 3.73/A0.7 MeV is fitted to reproduce the GTR energy
in 76Ge and is used then in the calculations for 150Nd (with
the form of the A dependence taken from Ref. [14]). The
corresponding fitted values of the strength parameters κ of
the separable p-p interaction are also listed in Table I. All
the calculations in this work are done with the mean-field
spin-orbit coupling constant increased by a factor of 1.2 as
compared with the one used in Refs. [17,18], which gives a
better correspondence with the parametrization of the spherical
Woods-Saxon mean field used in Ref. [6]. Therefore, we get
slightly different fitted values of χ and κ as compared with
Refs. [17,18].

The calculation of single β− and β+ decay branches for par-
ent and daughter nuclei is the starting point for the calculation
of the 2νββ-decay amplitudes. The calculated Gamow-Teller
strength distributions for all the nuclei in question are shown
in Figs. 1 and 2 as functions of the excitation energy in the
intermediate (for the 2νββ decay) nuclei. The representation is
according to the convention of case I (i.e., the entire calculated
GT spectrum is shifted to fit the experimental energy of
the first 1+ state). To facilitate comparison among various
calculations the Gamow-Teller distributions are smoothed with
a Gaussian of width 1 MeV, so the original discrete spectrum
of B(GT ) values is transformed into a continuous one of the
strength function S(GT ). The relevant strength distributions
for the double β decay are the S(GT −) one for the parent
nucleus (two upper panels) and the S(GT +) distribution for
the daughter nucleus (two lower panels). In the left panels
(labeled “Realistic”) the results obtained by using a realistic
nucleon-nucleon interaction (Bonn-CD force) are shown; the
right panels (labeled “Separable”) show the results obtained
by using a separable interaction of Ref. [18]. In both types of
calculations the corresponding strengths of the p-h interaction
gph and χ are fixed by fitting the experimental energy of the
Gamow-Teller resonance in 76Ge as described in the preceding
paragraph. The thick solid and the dashed lines represent the
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FIG. 1. Gamow-Teller strength distri-
butions S(GT −) in 76Ge and S(GT +) in
76Se as functions of the excitation energy
Eex in the intermediate (for 76Ge → 76Se
decay) nucleus 76As. The QRPA calcu-
lation results obtained with realistic and
separable forces are shown in the left and
right panels, respectively. (Upper panels)
The results corresponding to the spher-
ical (β2 = 0.0) and deformed (β2 = 0.1)
ground state of 76Ge are represented by the
thick solid and dashed lines, respectively.
Experimental data (thin solid line) are
from Ref. [29]. (Lower panels) The results
corresponding to the spherical (β2 = 0.0)
and deformed (β2 = 0.16) ground state of
76Se are represented by the thick solid and
dashed lines, respectively.

results obtained in the spherical limit β2 = 0 and with the
realistic deformation, respectively. The thin solid line in Fig. 1
represents the Gaussian-smeared experimental B(GT ) values
for 76Ge taken from Ref. [29].

In the case of the β− distribution, one observes that the
position of the Gamow-Teller resonance is not sensitive to
the effect of deformation. For the β+ distribution, the effect
of deformation is more apparent in the strength distribution
than that in the case of the β− one. Comparing the results
obtained with the realistic and schematic residual interaction
one can see some marked differences in the β+ and the low-
energy part of the β− strength distributions. The Ikeda sum
rule is underestimated by a small amount (about 3%–5%) in
the calculations (see the last column of Table I; to get 100%

one would need to have the whole s.p. basis, as is done, for
instance, within the continuum-QRPA; see, e.g., Ref. [30]).
This also means that the chosen s.p. model spaces (see the
beginning of this section) are large enough.

Figure 3 illustrates the evolution of the strength functions
S(GT −) in 76Ge and 150Nd with respect to an increase of gpp

in the spherical limit (β2 = 0). One can see in the figure that all
the GT peaks get shifted to smaller energies as gpp increases.
In addition, the low-lying GT states become more collective
and, correspondingly, the low-energy part of the GT strength
gets markedly larger at the expense of a decrease in the GTR
strength. It can also be seen that the QRPA calculations with
the realistic gpp values as listed in Table I are still quite far from
the collapse of the QRPA. One may argue that the results show
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FIG. 3. Gamow-Teller strength distributions
S(GT −) in 76Ge and 150Nd (spherical limit) for
different particle-particle interaction strengths gpp

as functions of the QRPA energy EQRPA. The solid
lines (the same as in the upper left panels of
Figs. 1 and 2) represent S(GT −) corresponding to
the fitted gpp (Table I). The dashed and the dotted
lines correspond to smaller gpp as indicated in the
figure.

a low-energy part of the GT spectrum that is too enhanced as
compared with the experiment. This discrepancy might have
to do with the neglect of quenching in the present calculation.
For gA < 1.25 the corresponding experimental value of M2ν

exp
gets larger and a smaller gpp would be needed to fit it. This
effect deserves a separate detailed study, similar to the one
performed in Ref. [31], which lies outside the scope of the
present work.

As shown in Refs. [17,18], deformation introduces a mech-
anism of suppression of the M2ν

GT matrix element that works
even for the same initial and final deformations. The reduction
gets even stronger when initial and final deformations differ
from each other and is mainly due to a decrease of the
BCS overlap [Eq. (11)]. The values of the overlap calculated
with the realistic pairing interaction are very close to those

obtained by using the constant pairing gap as in Refs. [17,18],
which is illustrated in Fig. 4 for the transition 76Ge → 76Se.
In addition, there is the well-known reduction of the values
of M2ν

GT with increasing renormalization parameter gpp of
the p-p interaction [6,7]. It is interesting to study all these
suppression mechanisms within the QRPA with the realistic
residual interaction that is the main thrust of this work.

The calculated matrix elements M2ν
GT are shown in

Figs. 5 and 6 as functions of the parameter gpp and for different
deformations of initial and final nuclei. The parameters β2, gph,
and χ used are the same as in the study of the Gamow-Teller
distributions. Again, in the left panels (labeled “Realistic”) the
results of the present work using the realistic nucleon-nucleon
interaction (Bonn-CD force) are shown and in the right panels
(labeled “Separable”) the results using separable interaction
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of the p-p interaction for which the value of M2ν

exp is fitted. The upper (case I) and lower (case II) panels correspond to the calculations with the
shifted and unshifted QRPA spectrum, respectively, as explained in the text.

are presented. The upper panels represent the results obtained
with the shifted calculated QRPA spectrum [case I; see the
explanation after Eq. (10)] and in the lower ones the results
obtained with the usual unshifted QRPA spectrum (case II)
are shown. The solid lines in Figs. 5 and 6 represent the

matrix elements M2ν
GT calculated in the spherical limit whereas

the dashed ones (and dot-dashed in Fig. 6) represent M2ν
GT

calculated for realistic deformations. The dotted horizontal line
corresponds to the corresponding experimental M2ν

exp values
obtained in Ref. [19] by using the unquenched value of the
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axial-vector coupling constant gA = 1.25. The points A and
B (and C for 150Nd → 150Sm) in each panel specify the
values of the p-p interaction for which the value of M2ν

exp is
reproduced for spherical and deformed cases, respectively
(with the corresponding values of gpp and κ listed in
Table I). The calculated M2ν

GT decreases faster in the spherical
case than in the deformed one as gpp increases, and the fitted
value of gpp is usually larger in the case of deformation
than that for the spherical limit. Another interesting feature
is that for nonzero deformation the calculated M2ν

GT is smaller
at gpp = 0 than those in the spherical limit, in agreement with
the previous results of Refs. [17,18]. This suppression already
holds when initial and final nuclei are equally deformed
and gets stronger with increasing difference in deformation
between initial and final nuclei (as the BCS overlap plays
an important role in the reduction of M2ν

GT , as discussed in
Refs. [17,18]). It is also worth mentioning that the calculated
M2ν

GT for the 150Nd → 150Sm transition (Fig. 6) comes out
rather small when the experimental deformation parameters
from Ref. [25] are used, whereas by using the deformation
parameters of Ref. [26] the corresponding M2ν

exp can be fitted for
a reasonable value of gpp. Also, the values of M2ν

GT calculated
with the shifted QRPA spectrum, though a little bit larger
at gpp � 1 than the unshifted ones, fit the corresponding
experimental values at almost the same gpp (see Table I).

IV. CONCLUSIONS

In the present work the two-neutrino double β decay
(g.s.-to-g.s. transitions) and relevant Gamow-Teller strength
distributions are calculated within the QRPA for the nuclear
systems 76Ge → 76Se and 150Nd → 150Sm by taking into
account effects of nuclear deformation. For the first time a
realistic residual two-body interaction based on the Brueckner
G matrix (for the Bonn-CD force) is implemented in deformed
calculations. The G-matrix elements in the deformed Wood-
Saxon basis are calculated by expanding the deformed single-
particle wave functions over the spherical harmonic oscillator
ones. The effect of deformation on the observables is studied
within this framework. The suppression of the calculated M2ν

GT,
resulting from both nonzero deformation and the interaction
in the particle-particle channel, is observed, in accordance
with previous calculations with separable forces [17,18]. The
present work marks the first important step toward using
QRPA calculations of the neutrinoless double β decay of
deformed nuclei such as 150Nd with a realistic nucleon-nucleon
interaction.
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APPENDIX: CALCULATION OF THE OVERLAP
INTEGRALS

In this Appendix we describe how the deformed harmonic
oscillator wave functions can be decomposed over the spher-

ical ones by calculating the corresponding spatial overlap
integrals.

The normalized wave equation of the three-dimensional ax-
ially deformed harmonic oscillator in cylindrical coordinates
(ρ, z, φ) are given by a product of three functions:

|Nnz
〉 = ψ |
|
nρ

(ρ)ψnz
(z)

ei
φ

√
2π

, (A1)

where 
 is the projection of the orbital angular momentum on
the z (symmetry) axis and N is the principal quantum number,
which is defined as N = nz + 2nρ + |
|. The radial function
ψ

|
|
nρ

is usually written in terms of a dimensionless coordinate
η as

ψ |
|
nρ

(ρ) = C|
|
nρ

η
|
|
2 e− η

2 L|
|
nρ

(η), (A2)

with η = ρ2

b2
⊥

, where b⊥ =
√

h̄
mω⊥

is the oscillator length for the
motion perpendicular to the z axis, C

|
|
nρ

= ( 2nρ !
(nρ+|
|)!b2

⊥
)

1
2 is a

normalization factor, and L
|
|
nρ

(η) are the associated Laguerre
polynomials. The z-dependent function ψnz

is similarly written
in terms of a dimensionless variable ξ as

ψnz
(z) = Cnz

e− ξ2

2 Hnz
(ξ ), (A3)

with ξ = z
bz

, where bz is oscillator length in the direction of

the z axis, Cnz
= (

√
π2nznz!bz)−

1
2 is a normalization factor,

and Hnz
(ξ ) are the Hermite polynomials.

The normalized wave functions of the three-dimensional
isotropic harmonic oscillator in spherical polar coordinates
(r,θ,φ) are given as

|Nl
〉 = ψnr l(r)Yl
(θ, φ), (A4)

where nr is the radial quantum number, Yl
 is the spherical
harmonic, and l is the orbital angular momentum. The radial
part ψnr l is written in terms of a dimensionless coordinate ν as

ψl
nr

(r) = Cnr lν
l/2e− ν

2 L
(l+ 1

2 )
nr

(ν), (A5)

with ν = r2

b0
2 , where b0 is the spherical oscillator length,

Cnr l = ( 2nr !
(nr+l+ 1

2 )!b3
0
)

1
2 is a normalization factor, and L

(l+ 1
2 )

nr
(ν2)

are the associated Laguerre polynomials.
The wave functions |Nnz
〉 of the deformed harmonic

oscillator can be decomposed over the spherical ones |Nl
〉
as

|Nnz
〉 =
∑
nr l


ANl
Nnz


|Nl
〉, (A6)

where ANl
Nnz


= 〈Nl
|Nnz
〉 is the spatial overlap integral,
which can be numerically calculated in the spherical coordi-
nate system as follows:

ANl
Nnz


=
√

2π

∫ ∞

0

(∫ π

0
ψ |
|

nρ
(r sin θ )ψnz

(r cos θ )

×Y ∗
l
(θ, φ = 0) sin θdθ

)
ψnr l(r)r2dr. (A7)
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[23] F. Šimkovic, G. Pantis, and A. Faessler, Prog. Part. Nucl. Phys.

40, 285 (1998); Phys. At. Nucl. 61, 1218 (1998).
[24] W. A. Kaminski and A. Faessler, Nucl. Phys. A529, 605 (1991).
[25] P. Raghavan, At. Data Nucl. Data Tables 42, 189 (1989).
[26] P. Moeller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, At. Data

Nucl. Data Tables 59, 185 (1995).
[27] M. S. Yousef, V. Rodin, and A. Faessler, Prog. Part. Nucl. Phys.

59, 494 (2007).
[28] G. Audi and A. H. Wapstra, Nucl. Phys. A729, 337 (2003).
[29] R. Madey, B. S. Flanders, B. D. Anderson, A. R. Baldwin,

J. W. Watson, S. M. Austin, C. C. Foster, H. V. Klapdor, and
K. Grotz, Phys. Rev. C 40, 540 (1989).

[30] V. Rodin and A. Faessler, Phys. Rev. C 77, 025502 (2008).
[31] A. Faessler, G. L. Fogli, E. Lisi, V. Rodin, A. M. Rotunno, and

F. Simkovic, J. Phys. G 35, 075104 (2008).

014314-9


