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Ab initio no-core full configuration calculations of light nuclei
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We perform no-core full configuration calculations for a set of light nuclei including 16O with a realistic NN

interaction, JISP16. We obtain ground-state energies and their uncertainties through exponential extrapolations
that we demonstrate are reliable in 2H, 3H, and 4He test cases where fully converged results are obtained directly.
We find that 6He, 6Li, and 8He are underbound by about 600 keV, 560 keV, and 1.7 MeV, respectively. 12C is
overbound by about 1.7 MeV and 16O is overbound by about 16 MeV. The first excited 0+ states in 12C and 16O
are also evaluated but their uncertainties are significantly larger than the uncertainties for the ground states.
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I. INTRODUCTION AND MOTIVATION

The rapid development of ab initio methods for solving
finite nuclei has opened a range of nuclear phenomena that can
be evaluated to high precision using realistic nucleon-nucleon
(NN ) and three-nucleon (NNN ) interactions. Such advances
define a path for testing fundamental properties of the strong
interaction such as their origins from QCD via chiral effective
field theory [1–4]. In addition, they prepare a foundation for
nuclear reaction theory with unprecedented predictive power.

Here we investigate the direct solution of the nuclear many-
body problem by diagonalization in a sufficiently large basis
space that converged binding energies are accessed—either
directly or by simple extrapolation. Our choice is a traditional
harmonic oscillator (HO) basis so there are two basis space
parameters, the HO energy h̄� and the many-body basis space
cutoff Nmax. Nmax is defined as the maximum number of
total oscillator quanta allowed in the many-body basis space
above the minimum for that nucleus. We obtain convergence
in this two-dimensional parameter space (h̄�,Nmax), where
convergence is defined as independence of both parameters
within evaluated uncertainties.

Because we treat all nucleons equivalently and we achieve
convergence within evaluated uncertainties, we refer to our
approach as the no-core full configuration (NCFC) method.
The NCFC is both related to and distinct from the no-core
shell model (NCSM) [5] that features a finite matrix truncation
and an effective Hamiltonian renormalized to that finite space.
The regulator, Nmax, appears in our NCFC, where it is taken
to infinity, and in the NCSM, where it also appears in the
definition of the effective Hamiltonian. In both NCFC and
NCSM, this choice of many-body basis regulator, Nmax,
is needed to preserve Galilean invariance—to factorize all
solutions into a product of intrinsic and center-of-mass motion
components. With Nmax as the regulator, both the NCFC
and the NCSM are distinguished from the full configuration
interaction (FCI) method in atomic and molecular physics that
employs a cutoff in single-particle space.

The NCFC results should agree with the NCSM and no-core
FCI results when the latter results are obtained in sufficiently
large basis spaces. In the case of NCSM, larger cluster sizes
for the effective Hamiltonian may be employed to accelerate
convergence.

Given the rapid advances in algorithms and computers, as
well as the development of realistic nonlocal NN interactions
that facilitate convergence, we are able to achieve converged
results, either directly or through extrapolation, without re-
course to renormalization of the interaction. That is, with our
adopted interaction, we do not need to soften the NN inter-
action by treating it with an effective interaction formalism.
Renormalization formalisms necessarily generate many-body
interactions that significantly complicate the calculations and
are often truncated for that reason. Renormalization without
retaining the effective many-body potentials abandons the
variational upper bound characteristic that we prefer to retain.
Furthermore, convergence with increasing model space is
generally neither uniform nor monotonic when applying
renormalization without retaining the induced many-body
potentials. This leads to challenges for extrapolation to infinite
model spaces.

Our NCFC approach requires methods to reliably extrap-
olate results obtained in a finite basis space to the infinite or
complete basis space limit. This need for extrapolation tools
mirrors similar situations in other fields of science where
a sequence of results with increasing resolution must be
extrapolated to the limit of infinite resolution. The resulting
high-precision results of the NCFC do not agree exactly
with experiment. Indeed, no known realistic NN interactions
provide exact descriptions of a similar range of nuclear data
that we examine and it is probable that NNN and higher-body
interactions are needed.

To further motivate our efforts to develop robust extrap-
olation tools, we show in Fig. 1 the Hamiltonian matrix
dimensions for a set of representative light nuclei. We employ
the “m-scheme” where each HO single-particle state has its
orbital and spin angular momenta coupled to good total angular
momentum, j , and magnetic projection, m. The many-body
basis states are Slater determinants in this HO basis and
are limited by the imposed symmetries—parity and total
angular momentum projection (M), as well as by Nmax. In
the natural-parity cases for even nuclei shown, M = 0 enables
the simultaneous calculation of the entire spectrum for that
parity and Nmax.

The nearly exponential growth in matrix dimension with
increasing Nmax is clearly evident in Fig. 1. To achieve
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FIG. 1. (Color online) Representative Hamiltonian matrix dimen-
sions for total magnetic projection M = 0 states in the single-particle
m-scheme as a function of the maximum total oscillator quanta of
excitations specified by Nmax. The natural-parity matrix dimensions
are represented by the specific points while unnatural-parity matrix
dimensions would lie close to the interpolating lines at odd values of
Nmax.

NCFC results for the heavier of these nuclei by extrapolation,
using realistic interactions, we would need to diagonalize
matrices that are beyond the reach of present technologies.
However, in cases up to and including 16O, we may expect
to obtain systematic results for the first few increments of
Nmax. To use the sequence of results obtained with Nmax values
that are currently accessible, we need to investigate suitable
extrapolation tools.

To better understand the scale of computational effort
needed for no-core microscopic nuclear structure studies, we
consider the memory storage demands as a function of matrix
dimension. For several representative nuclei, we enumerate
the number of nonvanishing matrix elements of the resulting
many-body Hamiltonian matrix (its lower triangle only for
efficiency) and display the resulting counts as a function of the
matrix dimension in Fig. 2. We present results for the case of a
two-body input Hamiltonian (NN interaction only) and for the
case of a three-body Hamiltonian (NN + NNN interactions).
In spite of the very large memory requirements, the various
curves display an encouraging trend. Specifically, the number
of nonvanishing many-body matrix elements follows a D3/2

growth rate, where D is the dimension of the matrix. That
is, the matrices exhibit a very sparse character and this is the
property that allows us to diagonalize the large matrices that
we can presently solve.

II. SELECTION OF HAMILTONIAN INGREDIENTS AND
EXAMPLE NUCLEI

To carry out the NCFC calculations, we require a realistic
NN interaction that is sufficiently weak at high-momentum
transfers that we can obtain a reasonable convergence trend.
The conventional Lee-Suzuki-Okamoto renormalization pro-

FIG. 2. (Color online) Number of nonvanishing many-body
Hamiltonian matrix elements for representative light nuclei as a
function of the basis space dimension. The points represent sample
cases that have been solved and correspond to those indicated in the
legend. The curves approximate a D3/2 power law where D is the basis
space dimension. The vertical arrow measures a factor of 30 between
the two-body Hamiltonian (rank = 2) and three-body Hamiltonian
(rank = 3) cases for 12C at the same dimension corresponding to
Nmax = 6. Note the logarithmic scales.

cedure of the ab initio NCSM [5] develops soft, Nmax-
dependent, effective interactions that provide answers close
to experimental observations. However, the convergence trend
of the results with increasing Nmax is often not uniform
and leads to challenges for extrapolation to infinite model
spaces. Nevertheless, there is also encouraging progress in
extrapolating NCSM ground-state energies of light nuclei
using different strategies [6,7]. Of course, as the basis space
increases, one expects the NCSM and NCFC methods to arrive
at the same exact result. Thus, the choice of method, NCSM or
NCFC, will ultimately depend on the underlying Hamiltonian
selected for the application. In the NCFC approach discussed
here, we seek to obtain the ground-state energy of the original,
or “bare” [8], Hamiltonian in the infinite model space with
evaluated uncertainties. To this end, we incorporate systematic
and reliable extrapolation tools as needed.

We compare in Fig. 3 the ground state of 4He using the
next-to-next-to-next-to leading-order (N3LO) chiral interac-
tion, [3,9], with the ground-state energy using the J-matrix
inverse scattering potential (JISP16) [10,11] and plotted as a
function of Nmax to ascertain convergence rates. All our results
include the Coulomb interaction between protons. Each point
represents the ground-state energy from an Nmax truncation
of the full infinite matrix problem. Hence, all points are
strict upper bounds on the exact ground-state energies for the
respective Hamiltonian. Figure 3 shows that JISP16 provides
a faster convergence rate and a ground-state energy in closer
agreement with the experimental energy of −28.296 MeV.
JISP16 also produces spectra and other observables in light
nuclei that are in reasonable accord with experiment [10].
Indeed, this interaction was designed to possess these specific
properties while retaining an excellent description of the NN
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FIG. 3. (Color online) Calculated ground-state energy of 4He as
a function of Nmax at various values of the oscillator energy, h̄�, as
indicated in the legend. The results are connected by straight-line
segments to guide the eye. The results with chiral N3LO are from
Ref. [9]. The results for JISP16 are closer to convergence even in
rather modest basis spaces. No extrapolations are needed in these
cases as converged results are obtained directly.

data. The interaction is nonlocal but this is no limitation
for NCFC, which also preserves all the symmetries of the
underlying NN interaction.

With JISP16 for our NN interaction, we perform ab initio
calculations of the ground-state energies of 2H, 3H, 4He,
6He, 6Li, 8He, 12C, and 16O. The three lightest nuclei serve
as test cases to demonstrate that the extrapolation methods,
using results in limited basis spaces, are able to predict the
fully converged results and to demonstrate that our assessed
uncertainties are realistic. We limit ourselves to examples for
which a sufficient set of results could be achieved within our
current computational resource limits.

III. FINITE BASIS SPACE EXPANSIONS

Our results in finite basis spaces satisfy the variational
principle and show uniform and monotonic convergence from
above to the exact eigenenergy with increasing Nmax. That is,
the results for the energy of the lowest state of each spin and
parity, at any Nmax truncation, are upper bounds on the exact
converged answers and the convergence is monotonic with
increasing Nmax. This guarantee of monotonic convergence
from above to the exact energy facilitates our choice of
extrapolating function.

We carefully investigate the dependence of the results on
the basis space parameters, Nmax and h̄�. Our goal is to achieve
independence of both of these parameters as that is a signal for
convergence—the result that would be obtained from solving
the same problem in a complete basis.

Before proceeding, let us explain some additional features
of the many-body regulator, Nmax. As introduced above, Nmax

is the maximum number of oscillator quanta shared by all
nucleons above the lowest HO configuration for the chosen
nucleus. Its use allows us to factorize eigenfunctions into

intrinsic and center-of-mass (c.m.) components for ease of
eliminating spurious center-of-mass motion effects on all
observables. One unit of oscillator quanta is one unit of the
quantity (2n + l), where n is the principle quantum number
and l is the angular quantum number. If the highest HO
single-particle state of this lowest HO configuration has N0

HO quanta, then Nmax + N0 identifies the highest HO single-
particle states that can be occupied within this many-body
basis. Note that because Nmax is the maximum of the total

HO quanta above the minimal HO configuration, we can have
at most one nucleon in such a highest HO single-particle state.

The precise method of achieving the factorization of
the center-of-mass and intrinsic components of the many-
body wave function follows a standard approach, sometimes
referred to as the Lawson method [12]. In this method, one
selects the many-body basis space in the manner described
above and adds a Lagrange multiplier term to the many-body
Hamiltonian λ(Hc.m. − 3

2h̄�), where Hc.m. is the harmonic
oscillator Hamiltonian for the center-of-mass motion. With
λ chosen positive (10 is a typical value), one separates the
states of lowest center-of-mass motion (0S 1

2
) from the states

with excited center-of-mass motion by a scale of order λh̄�.
The resulting low-lying states have wave functions that are
assured to have the desired factorized form.

It is important to note that our NCFC results for the ground-
state energy for A = 2, 3, 4 are obtained directly as we achieve
sufficient independence of Nmax and h̄�. For the other nuclei
studied here, we characterize the approach to convergence by
the dependence of results on both Nmax and h̄� and investigate
the shape of that convergence in detail. The degree of residual
dependence on these two parameters provides a measure of the
difference from the exact result, an estimate of the numerical
uncertainty in the extrapolation.

We employ the parallel-processor code MANY-FERMION

DYNAMICS–NUCLEAR (MFDn) [13] that sets up the many-body
basis space, evaluates the many-body Hamiltonian matrix,
obtains the low-lying eigenvalues and eigenvectors using the
Lanczos algorithm, and evaluates a suite of experimental
observables. Working in the single-particle HO m-scheme,
the lowest 15 states here are usually obtained with 300–600
iterations, depending on Nmax and the nucleus involved. The
required number of iterations grows with Nmax.

The largest matrix we diagonalize for this work corresponds
to 16O in the Nmax = 8 space with a basis dimension about
1 billion. We obtain the lowest 8 eigenstates and a suite
of observables in 4.5 hours on 12,090 processors using the
Franklin supercomputer at the National Energy Research
Supercomputer Center (NERSC). The second largest case
is 12C with a basis dimension of about 600 million for
which we obtain the lowest 15 eigenstates and a suite of
observables in 2.3 hours on 12,720 processors using the Jaguar
supercomputer at Oak Ridge National Laboratory (ORNL).
The above times correspond to calculations at a single value
of h̄�. For calculations as a function of h̄� in the same basis
spaces, we use internally generated and stored index arrays
amounting to many terabytes of data so that the second and
subsequent h̄� values each take about 2/3 the time of the first
case.

014308-3



P. MARIS, J. P. VARY, AND A. M. SHIROKOV PHYSICAL REVIEW C 79, 014308 (2009)

Following the completion of the calculations reported here,
further speedups have been accomplished with the code so
that the above-mentioned times are reduced by a factor of 2 in
future calculations of the same type [14].

IV. EXTRAPOLATING THE GROUND-STATE ENERGY

A. Simple illustration

Here we illustrate the convergence properties for the nuclear
ground-state energy in a HO basis with a simple model.
Although the properties of the HO basis are useful for many
purposes, such as the exact treatment of the center-of-mass
motion and the ease of transforming between relative and
single-particle coordinates, the asymptotic HO wave functions
are Gaussians while wave functions of finite nuclei will have
exponentially decreasing amplitudes at large distances. Cor-
rect long-range behavior is important for precision evaluation
of energies and for many other experimental properties such
as electromagnetic moments and transition rates. To achieve
converged long-range observables, we expect to require an
optimal choice of the h̄� value and sufficiently large values
of Nmax to generate good asymptotic properties. To investigate
these issues, we evaluate the properties of fermions in a finite
phenomenological potential, the picture that underlies the
successful nuclear shell model, using a HO basis expansion.

Consider the properties of a single Slater determinant
composed of the lowest A-particle orbits of the Saxon-Woods
central potential plus a nuclear spin-orbit potential. This
corresponds to a standard mean-field description of the nucleus
with A nucleons and we refer to this simple model as the
extreme single-particle model (ESPM). Instead of solving
for the single-particle states by numerical integration, we
diagonalize the one-body model Hamiltonian in a HO basis
to simulate the procedures of a no-core finite HO basis
calculation.

We adopt 12C as an example and we perform this diago-
nalization as a function of Nmax and h̄�. In this way, we are
studying how the lowest s-state and p-state solutions depend
on Nmax and h̄�. We identify Nmax with the maximum value
of the HO quanta (2n + l) retained in the HO basis expansion
so that Nmax = 0 corresponds to a pure HO approximation,
Nmax = 2 employs two basis HO functions for the occupied
0s states and 0p states, Nmax = 4 employs three basis HO
functions for the occupied single-particle states, and so on.
Note, there is a difference between the use of Nmax in this
model problem from our NCFC approach. Here, since we
work entirely in a single-particle basis, all particles have
simultaneous access to the range of basis states dictated by
Nmax while in our NCFC, the many-body basis is restricted so
that as one particle takes more quanta, the remaining particles
take fewer quanta.

It should be noted that our model problem more closely
simulates the traditional FCI approach used in quantum
chemistry where orbits are equally accessible in the many-
body basis states up to some single-particle cutoff. The origin
of this difference is our need to retain an exact treatment of the
center-of-mass motion in our no-core methods for finite nuclei
(NCFC and NCSM). In spite of this difference in cutoffs, we

find that this simple model is useful for illustrating how proper
asymptotic wave function properties influence convergence
rates for self-bound nuclei in the HO basis.

We adopt Saxon-Woods central, U (r), and spin-orbit,
Uso(r), potentials similar to a standard choice [15] where, for
simplicity, we use the same parameters for the neutrons and
the protons of 12C

U (r) = U0

1 + exp[(r − R)/a0]

Uso(r) = S · L
(

h̄

mπc2

)2 1

r

d

dr

Uso

1 + exp[(r − R)/aso]
,

with R = r0A
1/3 and ( h̄

mπ c2 )2 = 2.0 fm2. Our parameters
selected for this demonstration are U0 = −32 MeV, r0 =
1.25 fm, a0 = 0.65 fm, Uso = 15 MeV and aso = 0.47 fm. For
the protons we add the Coulomb field of a uniformly charged
sphere of radius R.

We add the energies of the occupied orbits, taking into
account degeneracies, to obtain the total energy of the system
in the ESPM. The resulting ESPM ground-state energy for 12C
is displayed in Fig. 4 as a function of h̄� for a range of Nmax val-
ues up to and including Nmax = 20. The line segments connect
the results calculated at selected values of h̄�. Here we observe
a pattern that is typical of our no-core basis space results
presented below—a sequence of curves with energy decreasing
as a function of increasing Nmax, consistent with the property
dictated by the variational principle. With increasing Nmax, one
approaches convergence signaled by achieving simultaneous
independence of both Nmax and h̄�. In the ESPM, we achieve
the total energy converged to within 10 keV at Nmax = 20 over
the range h̄� = 6−11 MeV. For the optimal value of h̄� =
7 MeV, we achieve a total energy to within 170 keV of the

FIG. 4. (Color online) Calculated ground-state energy of 12C in
the ESPM as a function of h̄� and Nmax, the maximum value of
the HO states’ quanta, 2n + l, used in expanding the Saxon-Woods
single-particle states. The curve closest to convergence corresponds
to the value Nmax = 20 and successively higher curves are obtained
with Nmax decreased by 2 units for each curve.
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FIG. 5. (Color online) Calculated ground-state energy of 12C in
the ESPM as a function of Nmax for selected values of h̄� used in
defining the basis states. The points correspond to h̄� values ranging
from 5 to 30 MeV in 2.5-MeV increments. The curves represent an
exponential plus a constant fit to each set of results at fixed h̄�,
excluding the Nmax = 0 result. Each point carries equal weight.

exact answer already at Nmax = 8, yielding an upper bound
within 0.25% of the exact result.

For the purpose of exploring potential extrapolation tools,
we use the results of the ESPM to map out the convergence
pattern of the total energy in the present work. In subsequent
efforts, we will investigate other observables in a similar
fashion. Thus, we present in Fig. 5 the total energy as a function
of Nmax at fixed values of h̄� spanning the minima of the
curves in Fig. 4. Specifically, the points correspond to h̄�

values ranging from 5 to 30 MeV in 2.5-MeV increments. We
find that, once we exclude the Nmax = 0 result, the calculated
points appear to represent an exponential convergence pattern.
To confirm this, we fit an exponential plus constant to each set
of results as a function of Nmax, excluding Nmax = 0, and the
resulting fits are displayed in Fig. 5 as smooth curves. That
is, for each set of points at fixed h̄�, we fit the ground-state
energy with three adjustable parameters using the relation

Egs(Nmax) = a exp(−c Nmax) + Egs(∞). (1)

In these fits, we assign equal weight to each point and perform
a regression analysis.

Overall, we conclude that the exponential plus constant fits
the results rather well. Thus, one observes that the HO basis
provides a rapidly converging sequence of total energies in
the ESPM, one well-represented by exponential convergence
in Nmax toward the the asymptotic total energy, Egs(∞). It
appears reasonable to expect this convergence pattern of the
HO basis treatment of the ESPM to be representative of
HO basis expansion behavior in our no-core applications, we
will adopt this functional form as a foundation for further
developing our extrapolation methods below. In the following
sections, we will use additional arguments to improve on this
tool and test it in light nuclei where converged results are
obtained directly.

We note that a similar exponential behavior for HO basis
space calculations of a cold trapped Fermi gas has been
observed [16]. In that case, the same type of single-particle-
space regulator was employed as we use here in the ESPM
application.

The exponential plus constant was also employed as an
extrapolation tool in more conventional shell-model studies
[17]. In those applications, the variable is the matrix dimension
rather than Nmax.

B. NCFC test case: deuteron

Next, we turn to the NCFC calculations for light nuclei
using JISP16, where we can achieve nearly exact results in
large model spaces. In this and the following subsections, we
investigate the convergence rates for the ground-state energies
as a function of Nmax and h̄� for 2H, 3H, and 4He. We discuss
two extrapolation methods, which allow us to obtain estimates
of the converged NCFC results from finite model spaces. We
also introduce the assessed uncertainties for our extrapolated
results.

The sequence of curves in Fig. 6 for 2H illustrates the
trends we encounter in our calculations when evaluating the
ground-state energy with JISP16. Our purpose with 2H is only
to illustrate convergence trends and test the extrapolation tool
because the exact answer is also available from the direct
solution of the Schroedinger equation [18] and agrees with
experiment. The Nmax = 18 curve reaches to within 9 keV
of this exact result; the Nmax = 20 curve reaches to within
5 keV. We note that the weak binding of 2H leads to a slow
progression of the curves toward independence of h̄� and
contrasts the stronger binding situation obtained for 4He
discussed below in Sec. IV C.

FIG. 6. (Color online) Calculated ground-state energy of 2H as
a function of the oscillator energy, h̄�, for selected values of Nmax

used in defining the basis states. The curve closest to experiment
corresponds to the value Nmax = 20 and successively higher curves
are obtained with Nmax decreased by two units for each curve. The
curves are formed by straight-line segments joining calculated results.
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FIG. 7. (Color online) Calculated ground-state energy of 2H as a
function of Nmax at h̄� values that bracket the best upper bound as
described in the text. The smooth curves are fits by Eq. (1) to the
four data points shown at each value of h̄� with each point weighted
equally.

1. Global extrapolation method

We use these 2H results to test our “global extrapolation
method” (referred to as “extrapolation A”) as illustrated in
Fig. 7. Here, we fit only four calculated points at each value
of h̄� in the range Nmax = 6−12, representative of the limited
results that we expect to encounter in slightly heavier systems.
We select the values of h̄� to include in the analysis by
first taking the value at which the minimum (with respect
to h̄�) occurs along the highest Nmax curve included in the
fit, then taking one h̄� value lower by 2.5 MeV and three h̄�

values higher by successive increments of 2.5 MeV. Because
the minimum occurs along the Nmax = 12 curve at h̄� =
12.5 MeV as shown in Fig. 6, this produces the five curves
spanning a range of 10 MeV in h̄� shown in Fig. 7. We
perform a linear regression for each sequence of four points at
fixed h̄� using an independent exponential plus constant for
each sequence and observe a small spread in the extrapolants
as is evident in Fig. 7, which is indicative of the uncertainty in
this method.

We recognize that this window of results in h̄� values is
arbitrary. Our only assurance is that it seems to provide a
consistent set of extrapolations in the nuclei examined in the
present work.

For the global extrapolation we chose sets of four points
due to a desire to minimize the fluctuations arising from
certain “odd-even” effects already visible in Fig. 4. These
effects are most pronounced in weakly bound systems and
may be attributed to the fact that HO wave functions fall off
too fast: wavefunctions of finite nuclei decrease exponentially
at large distances. To mimic such an exponential decrease with
HO basis functions, one needs HO basis functions with both
even principle quantum number n (even number or nodes in
radial wave function) and with odd principle quantum number
n (odd number or nodes in radial wave function). Because
N = (2n + l), a set of four successive Nmax points (with

Nmax even) implies we incorporate two highest allowed HO
single-particle states with even values of the principal quantum
number and two highest allowed with odd values. Thus, a set
of four consecutive Nmax points instead of three points (the
minimal number of points for an exponential extrapolation)
averages out some of these “odd-even” effects. We will come
back to this point when we discuss the extrapolation method
B, using sets of three points at fixed h̄�.

Next, we consider what weight to assign to each calculated
(Nmax, h̄�) point. The fits in Fig. 7 are obtained with equal
weights for each of the points. However, as Nmax increases, we
are approaching the exact result from above with increasing
precision. Hence, the importance of results grows with
increasing Nmax and this should be reflected in the weights
assigned to the calculated points used in the fitting procedure.
With this in mind, we adopt the following strategy: define a χ2

function to be minimized and assign a σNmax to the ground-state
energy at each Nmax value that is the change in the calculated
energy from the next lower Nmax value

σNmax = Egs(Nmax) − Egs(Nmax − 2).

To complete these σ assignments, the σ for the lowest
Nmax point on the Nmax curve is assigned a value three times
the sigma calculated for the second point on the same fixed-h̄�

trajectory. As a final element to our global extrapolation
strategy, we invoke the minimization principle to argue that
all curves of results at fixed h̄� will approach the same exact
answer from above. Thus all curves will have a common
asymptote and we use that condition as a constraint on the
χ2 minimization.

When we use exponential fits constrained to have a common
asymptote and weights based on the local slope, we obtain
curves close to those in Fig. 7. The differences are difficult to
perceive in a graph so we omit presenting a separate figure for
them in this case. It is noteworthy that the equal weighting of
the linear regression leads to a spread in the extrapolants that
is still modest.

The sequence of asymptotes for the 2H ground-state energy,
obtained with the global extrapolation, by using successive
sets of four points in Nmax and performing our constrained
fits to each such set of four points, is shown in Fig. 8 as
extrapolation A. We employ the independent fits such as
those in Fig. 7 to define the uncertainty in our asymptotes.
In particular, we define our uncertainty, or estimate of the
standard deviation for the constrained asymptote, as one-half
the total spread in the asymptotes arising from the independent
fits with equal weights for each point. On rare occasions, we
obtain an outlier when the linear regression produces a residual
less than 0.999 that we discard from the determination of the
total spread. Also, on rare occasions, the calculated upper
uncertainty reaches above the calculated upper bound. When
this happens, we reduce the upper uncertainty to the upper
bound as it is a strict limit.

One may worry that the resulting extrapolation tool contains
several arbitrary aspects and we agree with that concern. One
recourse is to cross-check these choices with the solvable
NCFC cases in the present subsection and following subsec-
tions. We seek consistency of the constrained extrapolations as
gauged by the uncertainties estimated from the unconstrained

014308-6



Ab INITIO NO-CORE FULL CONFIGURATION . . . PHYSICAL REVIEW C 79, 014308 (2009)

8 12 16 20
Nmax

-2.2

-2.1

-2.0

G
ro

u
n

d
 S

ta
te

 E
n

er
g

y 
 (

M
eV

)

experiment
variational bound
extrapolation A
extrapolation B

2
H

FIG. 8. (Color online) Extrapolated ground-state energies and
variational upper bounds from each set of four (extrapolation A)
or three (extrapolation B) successive Nmax values as a function of the
largest value of Nmax in each set. Error bars are dominated by the
uncertainties in the extrapolations and are obtained as described in
the text. Note the expanded scale and the reasonable consistency of
the extrapolated results: for Nmax � 10 all but one are within their
uncertainty range of the exact answer.

extrapolations described above. Indeed, our results, such as
those shown in Fig. 8, demonstrate that consistency. The de-
viation of any specific constrained extrapolant from the result
at the highest upper limit Nmax appears well characterized by
the assigned uncertainty.

2. Extrapolation at fixed h̄�

In addition, we also employ an extrapolation at fixed
values of h̄� using only three successive values of Nmax,
the minimal number of points for such an extrapolation
(referred to as extrapolation B). Under the assumption that
the convergence is indeed exponential, such an extrapolation
should get more accurate as Nmax increases; the difference
between the extrapolated results from two consecutive sets of
three Nmax values is used here as our estimate of the numerical
uncertainty associated with the extrapolation.

In Fig. 9 we illustrate this extrapolation for 2H based
on calculations with Nmax = 8, 10, and 12. As we can see,
this extrapolation gives h̄�-dependent results. We therefore
consider the value of h̄� where the extrapolation is most stable
(i.e., for which the difference between the extrapolated value
and the result at the highest Nmax is minimal) as the best or
most reliable h̄� for this extrapolation method. This h̄� value
is usually at or slightly above the variational minimum.

Because this extrapolation uses sets with only three Nmax

points, the “odd-even” effects may be significant, in particular
for weakly bound nuclei. This is indeed what we find for 2H
as seen in Fig. 8. Nevertheless, within the estimated error
bars, the results are consistent with extrapolation method
A and with the exact result. In addition, as we proceed to
applications in heavier nuclei and more deeply bound nuclei,
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FIG. 9. (Color online) Calculated ground-state energy of 2H for
Nmax = 8, 10, 12, and the extrapolated ground-state energy using
method B, as function of the oscillator energy, h̄�. Error bars are
obtained from the difference with the extrapolation using Nmax = 6, 8,
and 10 calculations.

this extrapolation becomes more stable and useful, as we will
see below.

C. More NCFC test cases: A = 3, 4

The ground-state energies of 3H using JISP16 are shown in
Fig. 10 as a function of the HO energy for the same sequence
of basis spaces as for 2H. We again observe a converging
sequence of upper bounds with an indication of a small amount
of underbinding compared with experiment. We note that the
curves show a greater region of approximate independence of
h̄� than found in the case of 2H as may be expected from the

FIG. 10. (Color online) Calculated ground-state energy of 3H as
a function of the oscillator energy, h̄�, for selected values of Nmax.
The curve closest to experiment corresponds to the value Nmax = 20
and successively higher curves are obtained with Nmax decreased by
two units for each curve.
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FIG. 11. (Color online) Calculated ground-state energy of 3H as a
function of Nmax at h̄� values that bracket the best upper bound. The
smooth curves are fits of an exponential plus a constant [see Eq. (1)]
to the four data points shown at each value of h̄�. There is a 5-keV
spread in these asymptotes that is used to assign the uncertainty to the
asymptote derived from the constrained fit as described in the text.
The asymptote of the constrained global fit (extrapolation A) is quoted
in the figure and the experimental result is shown for comparison.

stronger binding relative to the first breakup threshold in the
present situation.

We use the case of 3H to illustrate again the utility of the
global extrapolation (A). Results of independent fits with equal
weights for each calculated point are shown in Fig. 11 to
demonstrate the nearly identical asymptote when results are
available at sufficiently high Nmax values. We depict in Fig. 11
both the experimental value and the asymptote of the global
extrapolation using the four-point sequence up to Nmax = 18.
The span of h̄� values is selected in the same manner as in the
2H case, the procedure we will use throughout this work.

As for the case of 2H, we also present the sequence of
extrapolated results for the 3H ground-state energy in Fig. 12
using both extrapolation methods A and B, together with the
variational bound. Both extrapolation methods appear to be
consistent with each other and give numerical error bars that
decrease with increasing Nmax. The extrapolation B, using
only three successive Nmax points at fixed h̄�, shows a rather
strong “odd-even” effect. Nevertheless, all extrapolated results
agree, within error bars, with each other, and with our best
results at Nmax = 18. These results are also quoted in Table I.
We conclude that JISP16 underbinds 3H by approximately
113 keV.

Our calculations for 3He show a similar convergence pattern
as those for 3H. At Nmax = 18, our results are within a few keV
of full convergence, as can be seen from Table I, and we find
JISP16 underbinds 3He by about 52 keV.

As a final test of our extrapolations we consider 4He.
We present our calculations as a function of h̄� at fixed
values of Nmax in Fig. 13. The results clearly indicate
rapid convergence in both Nmax and h̄�; at Nmax = 16 the
ground-state energy is converged to within 1 keV over
the range 20 MeV � h̄� � 25 MeV. Furthermore, the fully
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FIG. 12. (Color online) Extrapolated ground-state energies and
variational upper bounds from each set of four (extrapolation A)
or three (extrapolation B) successive Nmax values as a function of
the largest value of Nmax in each set. Error bars are dominated by the
uncertainties in the extrapolations and obtained as described in the
text. Note the consistency of the extrapolated results.

converged NCFC ground-state energy is within 3 keV of the
experimental energy as shown in Table I. As illustrations of
our extrapolations, we demonstrate in Fig. 14 the independent
fits used to assess uncertainties of extrapolation A based on
Nmax = 2 to Nmax = 8 results. In addition, Fig. 15 shows
extrapolation B at fixed values of h̄� using Nmax = 8, 10, and
12 results.

We also confirm that the dependence on Nmax at fixed h̄�

is nearly a pure exponential as illustrated best in Fig. 16 where
we show a wider range of the calculated results. Here, we

TABLE I. Binding energies in MeV of nine nuclei and of the
first excited 0+ states in 12C and 16O from experiment and theory.
The experimental values are from Refs. [19–24]. The uncertainties in
the rightmost digits of an extrapolation are quoted in parenthesis. The
bounds for the binding energies follow from the variational upper
bounds for the ground-state energies. The rightmost column provides
the uppermost value of Nmax used in the quoted extrapolations.

Nucleus
(J P )

Exp. Extrap.
A

Extrap.
B

Variational
bound

Max
Nmax

2H (1+) 2.225 2.223(5) 2.226(6) 2.220 20
3H ( 1

2

+
) 8.482 8.369(1) 8.3695(25) 8.367 18

3He ( 1
2

+
) 7.718 7.665(1) 7.668(5) 7.663 18

4He (0+) 28.296 28.299(1) 28.299(1) 28.298 16
6He (0+) 29.269 28.68(12) 28.69(5) 28.473 14
6Li (1+) 31.995 31.43(12) 31.45(5) 31.185 14
8He (0+) 31.408 29.74(34) 30.05(60) 28.927 12
12C (0+

1 ) 92.162 93.9(1.1) 95.1(2.7) 90.9 8
12C (0+

2 ) 84.508 80.7(2.3) – – 8
16O (0+

1 ) 127.619 143.5(1.0) 150(14) 134.5 8
16O (0+

2 ) 121.570 130.6(7.6) – – 8
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FIG. 13. (Color online) Calculated ground-state energy of 4He as
function of the oscillator energy, h̄�, for a sequence of Nmax values.
The curve closest to experiment corresponds to the value Nmax = 16
and successively higher curves are obtained with Nmax decreased by
2 units for each curve.

provide regression analyses for each set of results spanning
Nmax = 2−16 at fixed h̄� values ranging from 15 to 35 MeV.
For both basis space parameters, this is a significantly wider
range of parameter values than we use in our applications
below.

We present the NCFC results of both extrapolation methods
in Fig. 17 along with the experimental and variational upper
bound energies. In this case the results produce very rapid
convergence with uncertainties that drop precipitously with
increasing Nmax as seen in the figure. We note that the error
bars conservatively represent the extrapolation uncertainties

FIG. 14. (Color online) Calculated ground-state energy of 4He
for Nmax = 2−8 at selected values of h̄�. Each set of four points
is fit, using equal weights, with an exponential plus constant [see
Eq. (1)] producing the solid curves. Half the resulting spread in the
asymptotic values is used to determine the uncertainty assigned to the
first point in Fig. 17 for extrapolation A as described in the text.
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FIG. 15. (Color online) Calculated ground-state energy of 4He
for Nmax = 8, 10, 12, and the extrapolated ground-state energy using
method B, as function of the oscillator energy, h̄�. Error bars are
obtained from the difference with the extrapolation using Nmax = 6, 8,
and 10 calculations.

because all the extrapolated results are, within their error bars,
consistent with each other and with the fully converged NCFC
result. The largest Nmax points define the results quoted in
Table I, a ground-state overbound by 3 ± 1 keV.

We have seen in this section that the NCFC results for
three light nuclei provide sufficiently converged ground-state
energies to allow us to test our extrapolation methods and
confirm the validity of their assigned uncertainties. In what
follows, we present NCFC calculations for five nuclei using
both extrapolations A and B. The five nuclei selected for this
initial application consist of stable and unstable even nuclei
that span the p shell. We include two loosely bound nuclei,

FIG. 16. (Color online) Calculated ground-state energy of 4He
for Nmax = 2−16 for JISP16 at selected values of h̄�. Each set of
eight points at fixed h̄� is fit by Eq. (1) producing the solid curves.
Each point is a true upper bound to the exact answer. The asymptotes
Egs(∞) are the same to within 35 keV of their average value and they
span the experimental ground-state energy.
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FIG. 17. (Color online) Extrapolated ground-state energies and
variational upper bounds from each set of four (extrapolation A) or
three (extrapolation B) successive Nmax values as a function of the
largest value of Nmax in each set. Error bars represent the assessed
uncertainties in the extrapolations and are obtained as described in
the text. Note the consistency of the extrapolations: the exact answer
is well within the uncertainty range of the extrapolations for all Nmax

points, with the uncertainty diminishing with increasing Nmax.

6He and 8He, anticipating that they will provide challenges for
achieving a converged ground-state energy.

D. NCFC results for 6He, 6Li, and 8He

By comparing Figs. 6, 10, and 13 we observe clearly the
marked correlation between binding energy and convergence
rate—the more deeply bound ground states exhibit greater
independence of h̄� at fixed Nmax. A more complete picture
of this correlation is seen below, for example, with the 6He and
6Li results where one observes that the relevant energy scale
governing the rate of convergence is the binding with respect
to the nearest threshold. Our physical intuition supports this
correlation because we know the asymptotic tails of the bound-
state wave functions fall more slowly as one approaches a
threshold for dissociation. This same intuition tells us to expect
Coulomb barriers and angular momenta to play significant
roles in this correlation.

Consider first the weakly bound nucleus 6He presented in
Figs. 18, 19, and 20. In the largest basis spaces achieved,
Nmax = 14, we obtain net binding with respect to the breakup
threshold as seen in Fig. 18. However, the results appear farther
from convergence than the case for 4He in the same Nmax

spaces depicted in Fig. 13. Note the proximity of the 4He + 2n

breakup threshold to the calculated ground-state energies that
suggests the importance of achieving results at Nmax = 16 as
well as obtaining improved nuclear Hamiltonians that better
reproduce the experimental binding of 6He.

To examine this situation in some detail, we present in
Fig. 19 results as a function of Nmax that covers a range of
15 MeV in h̄� values. We also present the linear regression
analyses for the range of Nmax = 2−14 to show that the

FIG. 18. (Color online) Calculated ground-state energy of 6He as
function of the oscillator energy, h̄�, for selected values of Nmax. The
figure displays also the experimental result, the common asymptote
from the global extrapolation (A), and the experimental threshold for
the α + 2n breakup. The curve closest to experiment corresponds to
the value Nmax = 14 and successively higher curves are obtained with
Nmax decreased by two units for each curve.

exponential fit appears to maintain its validity. Thus, we
proceed with the extrapolation methods as developed and
tested in previous sections and display the results in Fig. 20.

Because we use only three Nmax points for our
extrapolation B, at fixed values of h̄�, we also include
extrapolated results based on Nmax = 2, 4, and 6; with an error

max

FIG. 19. (Color online) Calculated ground-state energy of 6He
for Nmax = 2−14 for JISP16 at selected values of h̄�. Each set of
points at fixed h̄� is fit by Eq. (1) using equal weights producing the
solid curves. Each point is a true upper bound to the exact answer. The
resulting asymptotes Egs(∞) are the same to within 600 keV of their
average value. The figure displays the experimental result and the
common asymptote from the global extrapolation (A) as described in
the text.
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FIG. 20. (Color online) Extrapolated ground-state energies and
upper bounds from sets of successive Nmax values as a function of
the largest value of Nmax in each set. Uncertainties are determined for
each value of h̄� as described in the text. Note the consistency of the
extrapolated results as they fall well within their uncertainty ranges
along the paths of converging sequences.

estimated based on the difference between the Nmax = 6
calculation and the extrapolated result. Such an extrapolation,
based on a rather small model space, can be useful for larger
nuclei, and it turns out to be quite reasonable. However, we do
see a rather significant “odd-even” effect with extrapolation B
for this nucleus.

The results from the highest value of the upper limit in
Nmax are provided in Table I. We again observe consistency
in the results the the global and fixed h̄� extrapolations. The
JISP16 interaction yields about 600 keV underbinding in 6He
that implies the theoretical proton rms radius will likely be too
large compared with experiment.

Next, we turn our attention to 6Li and present our NCFC
results using extrapolations in Figs. 21, 22, and 23. As in the
6He case, there is a low-lying threshold for breakup—here
about 1.47 MeV above the experimental ground state. Both
our Nmax = 12 and 14 curves drop below this threshold over a
range of h̄� values as seen in Fig. 21.

Our global extrapolation for 6Li is depicted in Fig. 22
where we select the case with the highest upper limit in
Nmax to portray. The minimum in h̄� at Nmax = 14 occurs at
h̄� = 20 MeV. According to our global extrapolation, we
then perform the constrained fit on the results in the span
h̄� = 17.5−27.5 MeV in 2.5-MeV increments to obtain
the fits shown in Fig. 22. The asymptote, the extrapolant
(−31.43 MeV), becomes the last data point on the right in
Fig. 23 where the uncertainty is obtained in the manner
described above. We also perform our extrapolation at fixed
values of h̄� and find results consistent with our global
extrapolation; see Fig. 23.

The extrapolated results are entered in Table I and compared
with experiment. We find that 6Li is underbound by about
560 keV with the JISP16 interaction, similar to the amount
of underbinging for 6He; the rate of convergence and error

FIG. 21. (Color online) Calculated ground-state energy of 6Li as
function of the oscillator energy, h̄�, for selected values of Nmax. The
curve closest to experiment corresponds to the value Nmax = 14 and
successively higher curves are obtained with Nmax decreased by two
units for each curve. The figure displays also the global extrapolation
(A) and the threshold for the α + d breakup.

estimate in our final answer are also similar. However, the
“odd-even” effect we found with extrapolation B for the other
nuclei (including 8He below) is absent in 6Li.

Next, let us consider another weakly bound nucleus, 8He.
In Fig. 24 we show our results for the 8He ground-state energy
as function of h̄� for several values of Nmax, together with the
extrapolated results at fixed h̄� and our result from the global
extrapolation. The extrapolated energies and their uncertainties
are presented in Fig. 25 as function of Nmax, together with the
variational upper bounds. For comparison, we also show the
experimental value, and the thresholds for α + 4n breakup
and for 6He + 2n breakup.

FIG. 22. (Color online) Calculated ground-state energy of 6Li for
Nmax = 8−14 at values of h̄� that span the minimum at Nmax = 14.
Curves define the fits using the global extrapolation (A) that produces
a common constant, the asymptote, labeled by “Extrap”.
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FIG. 23. (Color online) Upper bounds and extracted asymptotes
for the ground-state energy of 6Li from each set of successive
Nmax values as a function of the largest value of Nmax in each set.
Uncertainties in the asymptotes are determined as described in the
text. Note the consistency of the extrapolated results as they fall
well within their uncertainty ranges along the paths of converging
sequences.

Clearly, the results are not as well converged as those for
lighter nuclei, because we are limited to a smaller model
space, Nmax = 12. Nevertheless, the variational upper bound
on the ground-state energy is well below the α + 4n threshold.
Furthermore, the extrapolations are consistent with each other,
and the error bars decrease with increasing Nmax. Our final
NCFC result is not only below the α + 4n threshold but also
below the experimental 6He + 2n breakup threshold, even
taking into account the uncertainty in the extrapolation, as can
be seen from Fig. 25 and Table I. Compared to the experiment,
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FIG. 24. (Color online) Calculated ground-state energy of 4He for
Nmax = 6, 8, 10, 12, and the extrapolated ground-state energies using
method B, as well as the result from extrapolation method A, with
error bars. For comparison, we also show the experimental value, and
the threshold for α + 4n breakup.
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FIG. 25. (Color online) Upper bounds and extrapolated ground-
state energies of 8He from each set of successive Nmax values as a
function of the largest value of Nmax in each set. Uncertainties in the
asymptotes are determined as described in the text.

we find that 8He is underbound by about 1.6 ± 0.4 MeV with
JISP16.

V. NCFC RESULTS FOR 12C AND 16O

Having illustrated the application of our methods with a
range of light nuclei, we finally turn to heavier nuclei, and
perform NCFC calculations for 12C and 16O. For these nuclei,
we can only go to Nmax = 8, so we have to rely on the
extrapolation methods.

A. Extrapolating 12C

The dimension of the model space for 12C with Nmax =
8 and limited to total M = 0 states in the m-scheme is
594,496,743; and the total number of nonzero matrix elements
in the lower triangle of the extremely sparse many-body
Hamiltonian matrix is 539,731,979,351 with NN interactions
only. Thus, storage of one vector in this model space requires
2.4 GB, and storage of the lower triangle of the matrix
requires 4.3 TB. The dimension of the Nmax = 10 basis space
is 7,830,355,795, which is beyond our present capabilities.

In Fig. 26 we show our results for 12C for Nmax = 0
through Nmax = 8. Because Nmax = 0 is generally not very
reliable for our extrapolations, we have only the extrapolation
from the Nmax = 2−8 results. To illustrate the details of
our uncertainties, we depict in Fig. 27 the linear regression
analyses of our results spanning the minimum in h̄� obtained
at Nmax = 8. Our global extrapolation A produces a ground-
state energy of 93.9 ± 1.1 MeV, whereas the extrapolation
B at fixed h̄� = 27.5 MeV (where it is most stable) gives
95.1 ± 2.7 MeV. Given the “odd-even” effect that often
plagues extrapolation B, in combination with the smaller
error bar obtained with extrapolation A, we conclude that
JISP16 produces a binding energy of about 94 MeV with an
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FIG. 26. (Color online) Calculated ground-state energy of 12C as
function of the oscillator energy, h̄�, for selected values of Nmax. The
curve closest to experiment corresponds to the value Nmax = 8 and
successively higher curves are obtained with Nmax decreased by 2
units for each curve.

uncertainty of 1% to 2%; or in other words, it overbinds 12C
by about 1.8 MeV.

For a speculative application, we also consider the first
excited 0+ state of 12C, the “Hoyle state” or “triple alpha”
state as it has come to be known. Because experimentally, this
state, with EHoyle = −84.51 MeV, is just above the threshold
for breakup into three α’s, 3 Eα = −84.89 MeV, it may be
poorly converged. However, our calculations for both 6He and
8He at Nmax = 2−8 are above breakup into α plus neutrons,
but the extrapolations from these points produce results with
error bars of about 1 MeV and agree with our best calculations

FIG. 27. (Color online) Calculated ground-state energy of 12C for
Nmax = 2−8 at selected values of h̄� as described in the text. For each
h̄� the data are fit by Eq. (1). These independent asymptotes Egs(∞)
provide a measure of our uncertainty within the global extrapolation
(A). The figure displays the experimental ground-state energy and the
common asymptote obtained in the global extrapolation.

FIG. 28. (Color online) Calculated energy of 12C first excited
0+ state (Hoyle state) for Nmax = 2−8 at selected values of h̄�

as described in the text. For each h̄� the data are fit by Eq. (1).
These independent asymptotes Egs(∞) provide a measure of our
uncertainty within the global extrapolation (A). The figure displays
the experimental energy and the common asymptote of the global
extrapolation.

at Nmax = 12. Encouraged by these results for 6He and 8He
at Nmax = 8, we apply the global extrapolation method A
to the first excited 0+ state of 12C. The calculated results
and extrapolation are shown in Fig. 28 and summarized in
Table I. Our extrapolation gives EHoyle = −80.7 ± 2.3 MeV,
corresponding to an excitation energy of 13 ± 3 MeV, com-
pared to an experimental excitation energy of 7.654 MeV. It
remains to be seen how reliable the extrapolation is for this
(and similar) states. One may even expect this extrapolation to
be unreliable as solutions obtained in our present, very limited,
basis spaces may not accommodate all the essential physics
of such excited states. Nevertheless, assuming that our error
estimates are realistic, our conclusion is that JISP16 overbinds
the ground state of 12C by an MeV or two, but underbinds the
first excited 0+ state by about 2 to 6 MeV. When combined,
that means it produces an excitation energy that is significantly
too large.

B. Extrapolating 16O

Finally, we consider 16O with Nmax = 8. The dimension of
the corresponding model space is 996,878,170; and the total
number of nonzero matrix elements in the lower triangle of the
many-body matrix is 805,811,591,748 with NN interactions
only. Thus, storage of one vector in this model space requires
4.0 GB, and storage of the lower triangle of the matrix requires
6.5 TB.

The results for 16O are shown in Figs. 29 and 30, and
summarized in Table I. As in the case of 12C, we only attain
the results through Nmax = 8 with our current capabilities.
Thus, we have a single extrapolant using Nmax = 2, 4, 6, and 8
(extrapolation A) or use extrapolation B for Nmax = 4, 6, and
8. The extrapolation B gives a lower estimated ground-state
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FIG. 29. (Color online) Calculated ground-state energy of 16O as
function of the oscillator energy, h̄�, for selected values of Nmax. The
curve closest to experiment corresponds to the value Nmax = 8 and
successively higher curves are obtained with Nmax decreased by 2
units for each curve.

energy with a significantly larger uncertainty (10%) compared
to extrapolation A. We anticipate that this difference is due
to the “odd-even” effect we have seen in most light nuclei
using extrapolation B and expect that the results obtained with
extrapolation A are more realistic for this case. Also note
that the variational upper bound on the ground-state energy is
below the experimental ground state. That implies that JISP16
produces an overbinding of at least 7 MeV and more likely
about 15 to 18 MeV for 16O.

For another speculative application, we also consider the
first excited 0+ state of 16O, believed to have a significant
cluster structure. Experimentally, this state is very close to

FIG. 30. (Color online) Calculated ground-state energy of 16O
for Nmax = 2−8 at selected values of h̄� as described in the text.
For each h̄�, the data are fit to an exponential plus a constant, the
asymptote. The figure displays the experimental ground-state energy
and the common asymptote obtained in the global extrapolation (A).

FIG. 31. (Color online) Calculated first excited 0+ state energy
of 16O as function of the oscillator energy, h̄�, for selected
values of Nmax. The curve closest to experiment corresponds to
the value Nmax = 8 and successively higher curves are obtained
with Nmax decreased by 2 units for each curve. The figure displays
the experimental excited state energy and the common asymptote
obtained in the global extrapolation (A).

threshold for breakup into 12C plus an α particle. Applying
extrapolation A, we find Eexcited = −130.6 ± 7.6 MeV, show-
ing an even larger extrapolation uncertainty than for the Hoyle
state in 12C. Compared to experiment, we find an excitation
energy of 13 ± 8 MeV compared to 6.05 MeV experimentally.
Given the large uncertainty in the extrapolation for this state,
we cannot draw any conclusions without results in larger model
spaces regarding this excited state.

VI. CONCLUSIONS AND OUTLOOK

We present in Table I a summary of our results, using
extrapolations, performed with methods introduced here and
compare them with the experimental results. In all cases, we
used the calculated results to the highest Nmax available with
the bare JISP16 interaction. In the cases of the lightest nuclei,
the extrapolations were rather modest as nearly converged
results were obtained directly. The uncertainties apply to the
least significant digits quoted in the table.

Our overall conclusion is that these results demonstrate
sufficient convergence is achieved for ground-state energies of
light nuclei to allow extrapolations to the infinite basis limit and
to estimate their uncertainties. Thus, we have achieve ab initio
NCFC results for these nuclei with our chosen Hamiltonian.

The convergence rate reflects the short-range properties
of the nuclear Hamiltonian. Fortunately, new renormalization
schemes have been developed and applied that show promise
for providing suitable nuclear Hamiltonians with good conver-
gence properties [25]. Additional work is needed to develop
the corresponding NNN interaction. Also, further work is
in progress to develop extrapolation tools for the rms radii.
Of course, the rms radii present a greater challenge because
they are more sensitive than the energies to the asymptotic
properties of the wave functions.
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