PHYSICAL REVIEW C 79, 014001 (2009)

Variational calculations for K—few-nucleon systems
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Deeply bound KNN, KNNN, and KNNNN states are discussed. The effective force exerted by the K
meson on the nucleons is calculated with static nucleons. Next the binding energies are obtained by solving the
Schrddinger equation or by variational calculations. The dominant attraction comes from the S-wave A(1405)
and an additional contribution is due to £(1385). The latter state is formed at the nuclear peripheries and absorbs
a sizable piece of the binding energy. It also generates new branches of quasibound states. The lowest binding
energies based on a phenomenological KN input fall into the 40- to 80-MeV range for K NN, 90-150 MeV
for KNNN, and 120220 MeV for K« systems. The uncertainties are due to unknown K N interactions in the

distant subthreshold energy region.
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I. INTRODUCTION

In this article a quantitative understanding of antikaon-
few-nucleon quasibound states is attempted. In recent years,
the existence of such states has been vividly discussed. It
was initiated by the KEK finding of peaks in the nucleon
spectra of K~ absorption in *He [1,2]. Additional evidence
was given by the FINUDA measurement of the invariant
mass distribution of the Ap produced in K ~absorption by
light nuclei [3]. The existence of such bound states have
been expected as the kaon-nucleon and the kaon-nucleus
interactions have been known to be strongly attractive [4].
This is now firmly confirmed on the basis of kaonic atom
data [5]. However, the KEK and FINUDA experiments indicate
unexpectedly strong bindings of the order of 100, 150 MeV
in the lightest KNN, KNNN systems. These experiments
require further confirmation. Also, the interpretation of the
observed peaks has been disputed in Refs. [6,7], whereas the
initial interpretation is defended in Ref. [§].

Calculations indicate that such states are expected, albeit
these might be very broad and difficult to detect. The first
calculations performed by Akaishi and Yamazaki in Ref. [9]
were followed by several subsequent publications. These cal-
culations exploited essentially the S-wave resonant attraction
related to the A(1405) state. With an optical model type of
approach it was shown that the K -meson optical potential at the
center of small nuclei may be as strong as 500 MeV, generating
very strong binding of the meson and a strong contraction of
the few-nucleon systems. However, to reproduce the KEK
data, these calculations involved some relaxation of the NN
repulsion at short distances that would allow the existence of
strongly bound and very dense systems. These calculations
raise the important question on how to implement a realistic
short-range N N repulsion in the kaonic systems.

“wycech@fuw.edu.pl
fanthony.green@helsinki. fi

0556-2813/2009/79(1)/014001(15)

014001-1

PACS number(s): 13.75.Jz,21.45.—v, 25.10.+s, 25.80.—¢

Another open question is related to the strength and range
of KN interactions. Any mathematical description of few-
body systems requires knowledge of NN and KN off-shell
scattering amplitudes. Those related to NN interactions are
controlled fairly well in terms of modern NN potentials.
For a bound K meson the amplitudes needed involve the
subthreshold energy region

Jxn = fxn(—EB — Erecoi), (1)

where Ej is the KN separation energy and Ecoi the recoil
energy of the KN pair relative to the rest of the system. If
the separation energy is as large as 100 MeV, meson momenta
become ~250 MeV/c and E. .oy may be as large as 40 MeV.
The energies of interest for (—Ep — Erecoil) are then located
well below the A(1405) state. The amplitudes there are
strongly attractive and so when used in a standard optical
potential approach may support very strong bindings. One
problem that arises at this stage is of a technical character. As
these amplitudes are energy dependent, it is hard to account
for that in the optical model approach. There exists another,
more serious, problem that is common to all approaches. As
the energies involved are far away from the physical region
tested in K N scattering, the uncertainties in the K N scattering
amplitudes are sizable. For instance, if the A(1405) is a KN
bound state, then the amplitude far below the resonance is
given not only by the position of the singularity but to a
greater extent by the Born term, which indicates a strong
dependence on the uncertain interaction range r,. An old
multichannel potential model of Ref. [10] indicates that the
available scattering data do not allow one to fix the precise
value of r,. This unfortunate situation is still actual. The r,
is expected to be close to the inverse vector meson mass.
However, even though a change of 20% in r, would not affect
the scattering region, it results in a 30% change of fx in the
deep subthreshold region. The corresponding uncertainty in
the binding energy then amounts to 230 MeV. As indicated
by few-body calculations of Ref. [11] this problem strongly
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affects the outcome. The uncertainties of fxy require further
coherent experimental and theoretical studies of KN and
K -few-N interactions. It becomes one of the most important
purposes of the K meson physics.

However, there is one consequence of Eq. (1) that is model
independent. If the binding and recoil are so large the fxn
amplitudes involve the energies below the thresholds of meson-
hyperon decay channels. As a consequence the dominant decay
modes are blocked and the lifetimes of nuclear K meson
systems are determined only by multinucleon captures. This
leads to the expectation that such states may live long enough
to be detectable [4].

There exists several calculations of K N N binding energies.
These states are named K~ pp although in reality they
correspond to isospin Iyy = 1 and total isospin Iio = 1/2.
The first prediction by Akaishi and Yamazakiledto (Ep, ') =
(48, 60) MeV [9], but later versions of this model suggest
larger bindings in the 100-MeV region [8]. With a similar,
molecular type method, Dote and Weise [12] obtained Ep <
50 MeV and indicated a strong dependence of this result on
the short-range NN repulsion. However, the recent three-
body calculations based on Faddeev or AGS methods yield
larger bindings. Thus Schevchenko et al. [13,14] obtained
(Eg, ") = (55-70, 95-110) MeV, whereas Ikeda and Sato [15]
calculate (Eg, I') = (~80, ~73) MeV. Later in the text we
show that the discrepancy of these two groups of results is
due to different A(1405) properties, explicit description of
the multiple scattering in decay channels, and possibly to an
incompatible treatment of the N N repulsion.

There are two new elements introduced in this article. First,
the P-wave interactions due to X(1385) have been indicated
as a possible source of the strong binding [16]. Here, these
are introduced explicitly. Second, the stress is put on the
strong K N spacial correlations induced by the S- and P-wave
resonances.

Leaving aside the interpretation of the peaks attributed to
bound KNN and KNNN systems the essential theoretical
questions are:

(1) What is the binding mechanism?
(i1) Are the technical questions under control?
(iii) Can the widths be narrow?

This article attempts to answer these questions and the
following results are obtained:

(i) To account properly for the K N force range, short-range
KN correlations, and the NN repulsion, a two-step
calculation is performed. First a wave function involving
strongly correlated K N subsystems is found in a fixed
nucleon approximation. This step also allows one to
find potentials due to the K meson that tend to contract
the nucleons. Next, these correlated wave functions and
contracting potentials are used as the input in variational
calculations for the K -few nucleon binding. In the K NN
case the binding energy and width are found by solving
the Schrodinger equation.

(ii) Although the dominant mechanism of attraction is
related to the A(1405) state, it is found that another
resonant state, the X(1385), contributes significantly to
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the structure of the bound states but much less to the
binding in K NN and K -few-N systems. In addition the
2 (1385) generates new branches of nuclear states that
could not be generated by the A(1405) alone.

(iii) The binding energy is determined to a large extent by
the attraction and the repulsive core in N N interactions.
With the Argonne NN potential [17] one obtains the
lowest state of K NN bound by about 40-80 MeV and
a K NN N state bound by about 90-150 MeV. Moderate
dependence on the K N interactions is found, provided
these are constrained by the shape of A(1405) and the
value of the K N scattering length. However, the position
of A(1405) itself is not well known and this becomes
the source of a large uncertainty. The effect of X(1385)
on the binding energy is limited, In the states bound
via A(1405) it adds some 5-10 MeV to the KNN
binding and 10-20 MeV to KNNN binding. In this
sense the suggestions of Ref. [16] are not fully supported.
However, the effect of X(1385) on the space structure
of deeply bound kaonic states is strong. The X(1385)
is formed in peripheral regions and it absorbs a large
fraction of the total K meson binding. In consequence
the radii of these systems are fairly large and the nucleon
densities are comparable to those met in the “*He nuclei.

(iv) The problem of uncertainties related to the large recoil
momenta entering Eq. (1) is only partly removed. Large
kaon momenta are hidden inside the resonant structures.
In principle these may be kept under control with the help
of other experiments. In practice it is not the case. The
other sector of large momenta, due to the strong binding,
is partly screened by the short-range NN repulsion.
The main consequence is a strong dependence of the
meson binding energies on the position of the A(1405)
resonance. In principle the shape of A(1405) is tested by
the invariant mass distribution in the decay X7 channel.
In practice it is not so as the relevant energy region is
located close to the ¥z threshold. In this region the
theoretical and experimental uncertainties are large.

(v) These states are very broad if the binding energies are
less than 100 MeV. For stronger bindings, which are
possible under the current values of the K N parameters
the main mesonic decay modes may be closed. The
widths for nonmesonic modes are hard to calculate
and extrapolations from the emulsion data are not very
reliable. New experiments are needed.

A simple physical picture emerges from this approach. The
mesons are strongly correlated to slowly moving nucleons.
The correlations are of the A(1405) type at large densities and
of the £(1385) type in the peripheries. Each KN pair has a
good chance to stay also in the X form. The structure is rather
loose as sizable fractions of the binding energies are hidden in
the short-ranged correlations.

II. THE K NN BOUND STATE

This section presents an introduction to the method used
in this work. Several steps describe the increasing degree of
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precision and also the increasing level of technical complica-
tions:

(i) At first the KNN levels are found within the fixed
nucleon approximation with a simple S-wave KN
interaction.
(i) Thenucleon degrees of freedom and N N interactions are

introduced and a related Schrédinger equation is solved.
(iii)) The method is extended to multiple channel situations.
(iv) Both S- and P-wave K N interactions are allowed.

Consider scattering of a light meson on two identical, heavy
nucleons. To begin with, the nucleons are fixed at coordinates
x;(i = 1, 2) and the wave function is assumed to be in the form

W(X, X{, X2) = Xk (X; X1, X2) Xnn (X1, X2), 2)

where x is the meson coordinate. The notation is simplified
and some possible indices are suppressed. The meson wave
function x is given by the solution of the multiple-scattering
equation

R explip|x —y|]
XKk (X, X1, X2) = xx(X)° — Ei/dyw
T|x =yl
x Ugn(y, Xi) xx (¥, X1, X2) 3)

obtained with fixed positions of the nucleons. An equation
of similar structure with a zero range meson-nucleon pseu-
dopotential U was used by Brueckner [18] to calculate the
scattering length of a meson on two nucleons. For high-energy
scattering it was extensively discussed by Foldy and Walecka,
who used finite-range separable interactions U [19]. With such
interactions equation (3) allows for semianalytic solutions in
the NN, and also in few nucleon cases. Here, the method is
extended to the bound-state problem. One looks for solutions
of Eq. (3) with no incident wave xg(x)°. The momentum
p becomes a complex eigenvalue p(x;) that determines the
energy and width of the system for given nucleon positions x;.

Equation (3) is written in terms of the Klein-Gordon
or Schrodinger propagator. The difference arises when the
relation of energy and momentum is established. Reasons of
simplicity, that will become clear later, favor the nonrelativistic
relation in the K N center of mass system. Thus, the interaction
is presented as Uxy = 2ugn Vi n, where pg y is the reduced
mass. Corrections for relativity may be introduced at a later
stage. The potential Vg for an S-wave interaction is chosen
in a separable form

Vin(x —xi, X' — X)) = L u(X — X)) v(X' — Xj), “)

where v is a form factor and A is a strength parameter. The
eigenvalue equation is now reduced to

explip(Xy, Xp)|x —
Kk (X, xl,xZ)+Ei/\/dy p[z;( LXKV
T|x —y]|
X /dy'v(y/ —xi) Xk (¥, X1, %) = 0. (5)

Equation (5) becomes a matrix equation for wave amplitudes
Y; defined at each scatterer i by

i =X f X V(X — %) Xk (%, X1, X0). ©)
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To find the equations for v; one introduces the off-shell K N
scattering matrices f and matrix elements of the propagator

lx —
G j(xi, X)) = /dy dxv(x — x,-)wv(y —X.).
' dr|x —y| !
@)
The diagonal value, G;; = G, determines the meson-nucleon

scattering matrix ¢ by the well-known (see, e.g., Ref. [19])
relation

H(E) = (14 1G)™'a ®)
and this yields the full off-shell scattering amplitude f
fk, E, k') = v(k) t(E) v(k). €))

Here, k, k' are the initial and final momenta, whereas the form
factor v(k) is given by the Fourier transform of v(r). The
Yamaguchi form v(k) = 1/(1 + k?/«?) with a free parameter
k will be used in this article. At zero momenta and at the
threshold this choice normalizes f (and t) to the scattering
length. Unfortunately, for historical reasons the standard
convention in the K N system is to define the scattering length
by

a+ib=—f(k=0,E=0,k=0)= F0,0,0) (10)

and the capital F will be used in several places to comply with
the standard K N parameters.

To cast Eq. (5) into a standard multiple-scattering equation
for y; one carries out the following three steps: (i) integrate
Eq. (5) over the i-th form-factor v(x — x;), (ii) select the
i-th term from the right-hand side, (iii) multiply Eq. (5) by
(1 +AG)!. In this way the kernel of the multiple-scattering
equation can be expressed in terms of scattering amplitudes ¢;
at each nucleon i and propagators describing the passage from
the nucleon i to the other nucleon j. One now arrives at a set
of linear equations

Vi + X 1;Gi ;Y =0, (11)

which may be solved numerically. For the Yamaguchi form
factors, propagators G; ; allow analytic expressions

Gia(r, k) = %v(k){exp(ikr) — exp(—«r)

KZ + k2
2K

—-r eXp(—Kr)} =G(r, k), (12)
where r = X, — X;. For the sake of illustration, the K N N case
is presented in some detail. The condition for a bound state
with two amplitudes ; leads to a pair of equations

Y1 +tGyr, =0, Yo+1tGy =0. (13)
When the determinant
D=1-@1G)? (14)

is put to zero, the binding “momenta” p(r) may be ob-
tained numerically. Two different solutions corresponding to
14+tG =0 or 1 —tG =0 may exist. The first solution is
symmetric ¥, = ¥ and describes the meson in the S-wave
state with respect to the NN center-of-mass. The second
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solution is antisymmetric ¥, = —; and describes a P-wave
solution. With the rank one separable interaction this latter
solution does not exist in the full range of . However, it arises
with the more complicated rank two interactions discussed
later.

Eigenvalues corresponding to unstable quasibound states
are obtained in the second quadrant of complex p(r) = p =
pr + ipr plane. In this quadrant the kernel

tG=f (p)[eXp(—pzr)exI)(ipRr)

2 2
—exp(—Kr)<1+rK P )}/r (15)
2k

is exponentially damped at large distances as required by the
asymptotic form of the bound-state wave function xg. At short
distances G is regularized by the K N form factor.

The eigenvalue p(r) determines the energy of the K meson
bound to the fixed NN pair

£ p(r)?

= . 16
2ugn (16)

The motivation for this definition of E follows from the
example discussed below. If the K N interaction is dominated
by a quasibound state, such as A(1405), then the related
pole dominates the scattering amplitude and in some energy
region t = y2/(E — E*), where y is a coupling constant and
E* = E, —il',/2isthe A(1405) complex binding energy. The
K NN eigenvalue p(r) is given by the equation 1 +tG = 0,
which now takes the form

E = E* —y*G(r, p). (17)

The solution E(r) = Ep(r) —iI'(r)/2 depends on the NN
separation r. Because Re G(r, p) close to the resonance is
positive, the binding of K to fixed NN is stronger than the K
binding to anucleon, | Eg(r)| > | E,|. Increasing the separation
r — oo one obtains G — 0 and E(r) — E*, ie., the K
meson becomes bound to one of the nucleons. In the same limit
the lifetime of K becomes equal to the lifetime of A(1405).
Hence, the separation energy is understood here as the energy
needed to split the K NN system into the A(1405)N system.
In the next step of this calculation the nucleon degrees of
freedom will be restored. The r — oo asymptotic used here
must be consistent with the corresponding asymptotic in the
Schrédinger equation for K NN. The condition required is
p(0c0) = q,, where g, is the resonant momentum in the KN
center-of-mass system, i.e., qr2/2u x~ = E*. Definition (16)
fulfills this condition automatically in the nonrelativistic limit.
The difference between the binding at a given separation
r and its asymptotic value generates a potential Vi (r), which
contracts the nucleons to a smaller radius. It is defined as

Re Vk(r) = Ep(r) — Eg(00), (18)
whereas the corresponding imaginary part is
ImVg(r) = —il'(r)/2. 19)

A typical profile of Ep(r) is plotted in Fig. 1 as Ep s. The
asymptotic value Eg(00) is obtained at separations r > 2 fm.
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FIG. 1. Binding energies E(r) of a K + NN pair fixed at a
distance r apartinthe Iyy = 1, Ixyy = 1/2 state with the symmetric
meson wave function. The Eg ¢ line shows the binding for the S
wave K N interactions. The E sp one follows from the S + P-wave
interactions. The upper curve —I" shows 2 ImE(r) for the S-wave
case. These results are based on the A. Martin amplitudes [20].

The limits » — 0in Eqgs. (12) and (15) are regular. However,
a joint limit of zero-range K N interactions, k — 00, and r —
0 is singular and the K NN system collapses. Therefore, some
care is necessary when this limit is taken. Here, we stay withina
phenomenological approach and the standard expectation that
the range of K N interactions is determined by vector-meson
exchange. In Eq. (12) for G the range of interactions enters
twice, first as a cutoff at small distances and second in terms
of the form factor v(k)>. We find in a numerical way that
these two effects cancel and ¢G is very stable within the range
3<k<6fm!.

A. Schrodinger equation

The solution of the full K N N bound-state problem is given
by equation

Be A1 B2y Vews 4 Vi | = EW
om oM M KN1 KN2 NN = .
(20)
The wave function is assumed in the form W =

xk (x, x;)xyn(r) as given in Eq. (2). Multiplying Eq. (20) on
the left by yx and integrating over the meson coordinate x one
obtains the Schrodinger equation for the N N wave function

Koo (F) = / dx (v, x)W(x, x,) @

in the form

[—A1/2M — A2 /2M + Vyy + E(r) — E]lxnwN
—AEginxny =0. (22)

This is an eigenvalue equation despite the fact that at large
distances the “fixed nucleon binding” term E(r) tends to
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a constant value that describes the binding of KN into
A(1405) in the A(1405)N asymptotic state. The basic question
concerning the asymptotic form of yyy, i.e., the existence
or nonexistence of a K NN bound state is determined by
the contracting potential ReVk(r) defined in Eq. (18). If
such a bound state exists, then the total binding is due to
both effects—the contracting force and the formation of the
asymptotic A(1405). It has to be added that the structure of
A(1405) changes with decreasing N N separation. Its shape is
described by the meson propagator G of Eq. (15). The smaller
the N N distance r the larger the eigenvalue p;(r) and the range
of propagation is reduced. In this sense the A(1405) shrinks
in dense nuclear systems.

The last term A Ey;, in Eq. (22) is a correction to the kinetic
energies. It is small due to the choice of the meson kinetic
energies. In the Schrodinger equation (20) it is given by the
meson mass m. However, to determine the A(1405) properties
and to solve the scattering equation (3) the reduced mass gy
is used. Due to this, the correction term A Ey;, is of the order
of 1/M. In addition, the meson wave function satisfies the
relation

Acxk =Y Nixk, (23)
i

which may be obtained by partial integration over coordinate

y in Eq. (5). In this way

1
AEginXnn = —ME,' /dX XK?iXK?iXNNv 24

which is very small due to angular averaging and sign changes
in the derivatives. In more detail this correction reduces to

AEGnXNN
2 /d ér G —1)o:G(&)
= —— é—
M &r [dnlG(n —r)+ G()?

and is suppressed by the angular average over £ and at large
r by the small overlap of G(§ —r) and G(§). The AEy,
makes a contribution ~0.2 MeV to the binding energy. Such
twice-damped, small terms of similar type arise also in more
involved versions of this calculation. The A Ey;, is of the same
order but is given by very lengthy formulas. Because it is
very small in comparison to the dominant uncertainties in Vg
it is dropped, leading to a significant simplification of the
variational approach.

As the next step, Eq. (22) is solved with an S-wave interac-
tion based on the more realistic N N potential of Argonne [17].
This solution is also compared to another, variational solution
with the intention of checking the variational method used in
heavier systems. The actual interaction used, in the notation
of Ref. [17], has the form

v(NN) = vBM(NN) + v (NN) + vR (N N),

O xnn(), (25)

(26)

where the electromagnetic part vEM includes only the dominant
term proportional to F¢(r) in Eq. (4) of Ref. [17], the OPE term
v” is given by Eq. (18) of Ref. [17] and the phenomenological
short range term v® from Eq. (20) with the parameters in
Table II—again, all from Ref. [17]. This gives directly the
S-wave T =1, § = Ointeractionv(S — wave, T =1, § = 0).
However, in the T = 0, § = 1 deuteron channel, the effect
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of the tensor interaction v,(T =0, S = 1) on the central
component v.(T =0, S = 1) is incorporated by the closure
approximation to give

V(Swave, Deuteron) = v (T =0,5 = 1)

8u, (T =0,S = 1)?
Den

)

where the energy denominator was adjusted to Den =
338 MeV to ensure the correct binding energy of the deuteron.

The precision of variational estimates for £ (used in the
next sections) may be checked against numerical solutions of
the Schrodinger equation. It is about 0.3 MeV, compared with
the overall binding of ~50 MeV. The width of the state is
calculated as

I'/2 = —{xy~nImVk|xnn). (28)

B. Interactions in the decay channels

The decay channel X7 coupled to the basic K N channel is
now introduced explicitly. The wave function at each scattering
center has two components, one in the K N and the other in the
Y channel. The scattering amplitudes are two-dimensional
vectors y; — WfiK, Y] at each nucleon. Multiple-scattering
equations given in the previous section are now changed
accordingly. One has

WIK_FIK,KGK.KWZK _’_tK,T[GT[,T[w;:O
lﬂ?—FGﬂ’nl‘ﬂ’ﬂl//g—}—l‘ﬂ’KGK’KI/fzK =0

(29)
(30)

and an analogous pair with 1 <> 2. The notation has been
changed to describe channel indices and the 2 x 2 scattering
matrix f. The determinant related to these equations gives
the complex eigenvalue p(x;) in the KN channel. The
eigenequation is now more complicated. Introducing a new
notation in channel indices U%? = G*%t** the determinant
becomes

D — [(1 + UK,K)(] + UT[,T[) _ Uﬂ,KUK,ﬂ][(l _ UK,K)
x (1 —-U™") - Uk y=ky, (31)

The D = 0 condition is more transparent close to the singu-
larity in the case of a scattering amplitude given by

YaVb

L — 32
E—E,+il/2 32)

fa,b ~

Consistency requires the width to be I'/2 = p, (yx)?, where
P is the momentum in the decay channel. The singular term
(32) permits one to find a solution of Eq. (31) in a fairly simple
form. It is presented below in the limit of zero range K N (and
¥ ) force. The binding energy

5 COS(pRT) 5€OS(prt)

Re E = E, — (yk) exp(—pir) — (Vx)

(33)

becomes larger than the binding of the resonance but the
collisions in the decay channel induce oscillations. This
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oscillatory behavior is also seen in the width of the system

sin(pnr)}

Prt

IME = —(y2)*px [1 +

- (m)zw exp(—pir). (34)
The effect of KN scattering represented by the second term
enlarges the width as pg is negative. The contribution from
multiple scattering in the decay channel is sizable in general
but it oscillates and may under some conditions reduce the total
width. That is an effect of interference in the decay channel.
Scattering in the decay channel turns out to be constructive
in the K NN case but it is not necessarily so in some heavier
systems.

C. S- and P-wave interactions

With the K N interactions allowed in both S and P waves
the scattering equation (11) is a4 ® 4 matrix equation relating
four amplitudes ;. The amplitudes for S waves are now
denoted by ¥}, /5. For P-wave interactions the corresponding
amplitudes are vectors. As there is only one vector in the NN
system, the relative separation, the P amplitudes are chosen
to be ryr{ and ry5 . The scattering is now described by three
types of propagators G%” related to consecutive collisions in
the (S, S) (S, P), and (P, P) waves. The scattering equations
are

Ui+ fEGYYs — PGPy =0 (35)
Y3+ £G4+ G =0 (36)
Yl + fPGPPy + PGPy =0 (37)
V3 + fPGY — fPGTY =0, (38)

where the propagation in between two P wave interactions
is described by G”? = G?’ + r*G/". Indices numbering the
nucleons have been suppressed. The propagator G** is given
in Eq. (12) and explicit formulas for G**, GV, G}’ may be
found in the Appendix. All these functions are regular in the
r — 0 limit. The determinant D of this system factorizes into
two terms

D = DsDp, (39)

where
Ds=(1+G"f)1 =G fr)—=GPrf* 7. (40)
Dp = (1= G* )1+ G fP) — GPr2 fS fP. (41)

Let us consider the solution of Dg = 0 close to the A(1405)
resonance. It is given by an equation analogous to (17)

2 GspP 2rp
E = E* — b*G*r, p(E)]|:1 - %] (42)

The second term in parentheses describes the effect of P-wave
interactions. At energies below X(1385) the amplitude f7 is
negative and generates an additional attraction.

Isospin symmetry simplifies the algebraic structure of the
scattering equations which are (see next sections) expressed
by appropriate isospin combinations of the isospin KN
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scattering amplitudes f. Equations (35)—(38) allow for a
simple symmetry of the total K NN wave function. Thus,
under the eigenvalue condition (40) the coordinate wave
function becomes symmetric with respect to the exchange of
nucleon coordinates. This condition allows solutions in terms
of two amplitudes ¥* = ¢f = ¢35 and ¢P =y = —yl.
Wave functions for the K N N system have the form

W(r, x) = xyv(HIGX —1/2) + GX +1/2)|Ys + xnn(r)
x P T Gx—1/2) — G4/,  (43)

where x is the meson coordinate in the NN center-of-mass
system and xyn(7) is the NN wave function. To make this
formula more transparent the zero-range force limit is taken.
The two terms in Eq. (43) follow the K N interactions in S and
P waves. The weight of the P-wave contribution is given by

Yy fPG¥
U 1= frG

which becomes dominant close to the zero of the denominator
in this equation. At large NN separations it happens almost
at the singularity in f,. In this region the lowest energy,
symmetric, solution of Dg = 0 is given essentially by the
situation 1 — GP? f? ~ (0. Such a solution exists for r >
1.6 fm in the proper quadrant of the complex momentum. This
implies that, at large separations, it is energetically profitable
for the K N N system to exist in the N X(1385) configuration,
with the nucleon and X(1385) weakly repelling each other.
At shorter distances the condition 1 + G*° f* ~ 0 determines
the attraction generated by A(1405). Despite repulsive effects
of the P-wave interaction such a solution yields the strongest
binding, because a large piece of the binding energy is hidden
within the structure of X (1385).

The KNN system is built on short range KN and NN
correlations and the W(r, x) contains a large number of partial
waves coupled to zero total angular momentum. In Jacobi
coordinates (r, s) the L, ® L; decomposition of the first term
of W(r, x) is mainly S ® S. Both terms involve even values
of L, and the spin-isospin structure of the NN pair is either
Iny =0, Syy = lorIyy = 1, Syy = 0. Both types of states
may be formed.

Other solutions are determined by Dp = 0. This condition
allows amplitudes of different symmetry ¥* = ] = —y;
and ¥? = ¥ = ¢. In comparison with Eq. (43), the wave
functions for the K NN system

W(r, %) = xan(NIGX — 1/2) — GX + 1/2)1; + xwn(r)
X P 3G —1/2) + Gx+r1/DlY, (45

(44)

are now antisymmetric in the nucleon coordinates and contain
odd angular momenta L,, L, in the L, ® L; decomposition.
The spin-isospin structure of the NN pair is either Iyy =
0,Syy =0 or Iyy =1, Syy = 1. The NN interactions in
the Iyy = 0, Sy = O states are repulsive and do not support
any K NN bound states. However, Iyy = 1, Syy = 1 states
may be formed.

The results of the two previous subsections may be unified.
The notation used in Eq. (31) is now extended to include
the partial wave index in channel K N: U = GPPt5, USP =
G*5tP, UPP = GPPtP USS = UK-K | The last equivalence
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indicates that the P-wave multiple scattering is included only
in the basic KN channel. For the determinant of scattering
equations one obtains D = DgDp where now

Ds =[(1+ U +um") —vm*ucm1a + Uurr)
—[(1 = U™™UPSU*P] (46)
Dp =[1-U"1-v") —vm*Uurmia+urr)
— [+ U™™HUPSUSP]. 47

The solutions of the corresponding eigenvalue equations retain
the symmetries indicated in the previous section.

The addition of KN P-wave interactions changes the
asymptotics. The lowest separation energy is now due to
KNN — Z(1385)N because the X(1385) mass is smaller
than the A(1405) mass. The difference is visualized in Fig. 1,
which indicates typical binding energies E(r) for the sym-
metric solutions. For the S-wave K N interaction, the energy,
denoted by Ep g, reproduces the separation energy related to
the KNN — A(1405)N asymptotics. In the case of S and P
interactions the binding energy (denoted by E g sp) reflects the
3 (1385)N asymptotic state. Let us notice, however, that the
contracting potentials E(r) — Ep(00) are very similar in both
situations. Thus the main effect of the X (1385)N is to provide
stronger binding due to the X (1385) type of correlations
formed predominantly at large internucleon distances.

II. KN INTERACTIONS

The coupled multichannel KN, £, Am system is the
easiest to describe in terms of the K matrix related to the
scattering matrix 7' by the algebraic Heitler equation

T=K-RiOT, (48)
where Q is a diagonal matrix of channel momenta in the center-
of-mass system. Early parametrizations involved constant
K-matrix elements chosen to fit the scattering data. Later
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these were improved by an effective range expansion. As the
data were (and still are) poor such fits were supplemented
by additional consistency conditions formulated in terms of
dispersion relations [20,21]. Such solutions can be tested above
the K N threshold and to some extent in the ¥ channel. For
the dominant isospin O interactions there are two types of
solutions. These are given in Table I in terms of the inverse
M = K~ matrix that in turn determines the scattering matrix

T'=M+i0. (49)

Extrapolations into the complex energy plane display a
similar A(1405) pole position. However, the physics in both
solutions indicates different interplay of the main KN with
the hyperon pion channels. The position of the singularity is
given essentially by the attractive and, in both cases, large
Kk kn element. This allows one to interpret A(1405) as a
K N quasibound state. In principle there exists an alternative
possibility—the A as a quark state. If this is the case it
may be introduced into the K matrix as an external pole in
K ~ 1/(E — E*). However, the scattering data exclude such
a term or limit it to a very small contribution [20]. Amplitudes
below the KN threshold may be tested indirectly, either in
the elastic £ channel or in the KN — X7 transitions on
bound nucleons [33]. These reactions support the bound-state
interpretation but are not very restrictive on the position of the
singularity. In particular, the analysis of Dalitz and Deloff [23]
shows that several models offer comparable descriptions of the
¥ data in the resonance region. The M-matrix model given
in the DD column of Table I is only slightly favored by the
authors of Ref. [23].!

The KWW column in Table I comes from a quasirelativistic
separable potential model. It belongs to a second type of
solutions and was based on the B. Martin-Sakitt solution. The

'"We thank Andrzej Deloff for supplying amplitudes of the DD
model.

TABLE I The semiphenomenological I = 0 K N scattering parameters. First three lines give M matrices at
the K N threshold (fm~!). Next two lines give the A(1405) pole position (E*, I"/2) in the complex energy plane
(MeV). The K N scattering length a, + ib, and amplitudes at 100 MeV below the threshold Re F_ oy + iImF_ g
are given in units of fm. The next column KWW* corresponds to the KWW model modified to change the
A(1405) parameters. The first solution AM, will be referred to as type one, and the solutions BM, DD, KWW,
and KWW~ as type two. The AY column shows results from a potential model of Ref. [34] while the last column
shows typical results from the chiral SU(3) approach. The F_;o, amplitudes in the last two columns marked
by ~ are taken from Fig. 15 of Ref. [27] and may not be very precise. The HW model generates two poles as

indicated below and discussed in the text.

Solution AM[20] BM[21] DDI[23] KWWIJ[I0] KWW* AY [34]  HW[27]
Myy xy —0.07 —1.21 —1.136 —-1.27 —-1.27

My ax ~1.02 1.53 1.254 1.50 1.50

My 5 1.94 —-3.05 —2.205 -3.05 -3.05

E* 1411 1415 1404.9 1409 1405 1406 1428,1400
r/2 17 13 26.6 22 24 25 17,76
a, ~1.70 —1.55 —1.54 ~-1.52 —-1.52 —-1.70

b, 0.68 0.58 0.74 0.60 0.60 0.68

Re F_100 234 —~1.33 —8.132 —2.64 —5.38 ~—44 ~—12
ImF_ 100 0.10 0.06 1.11 0.22 0.86 ~2.1 ~0.2
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KKW model is successful in the reproduction of the kaonic
hydrogen atom 1S level shift and width. The old prediction
[24]: AE = 0.33keV (repulsion) and I = 0.26 keV compares
very well with the average of two experimental results by KEK
(AE =323£63+11 eV I' =407 £208 £ 100 eV) [25]
and by DEAR (AE =193+37+6eV I' =247+111+
30 eV) [26]. This model is extended here by a small change
of the range parameter (and related change in effective range)
with the intention to move the A(1405) position to the PDG
recommended 1405 MeV. As shown in Ref. [10] the results
above the K N threshold are essentially the same. The elastic
amplitudes obtained in this way are very close to the recent
version of the Yamazaki and Akaishi phenomenological local
potential approach (the [AY] entry in Table I). In the K~ pp
system, where comparison is possible, the KKW* and AY
models give similar binding energies and widths.

The last entry in Table I indicates a few properties of
SU(3) chiral models. The results of Hyodo and Weise [27]
are presented although this model is also developed by
other groups [28,29]. The results differ dramatically from the
phenomenological description. The main difference is that the
basic X7 interaction is strongly attractive in the chiral SU(3)
model, repulsive in most of the phenomenological approaches
(BM, KKW, DD, other models in Ref. [23]) or negligible (YA).
As a consequence the chiral model generates a broad resonance
in the X7 channel which takes away the strength of interaction
in the K N channel. The A (1405) state becomes weakly bound
and weakly coupled. Subthreshold K N scattering amplitudes
are smaller and the K~ pp system is weakly bound [12].

The selection of the correct model description is difficult
due to the low quality of the old scattering data. The
standard test of the A(1405) profile is the shape of the Xx
mass spectrum. However, as shown in Ref. [23], several
models of the type two give very good representation of this
spectrum. The chiral models are perhaps less successful but
as rightly argued in Ref. [27], the data do not represent pure
isospin O state. At this point we suggest another check—the
measurement of the K~ p — X7t /K~ p — T+~ ratio
that is strongly energy dependent in the subthreshold region.
Some otherwise unpublished nuclear data of Keane exist in
Ref. [33], where this problem is discussed.

A. The separable off-shell extension

The three-channel or two-channel separable model is used
here to extend the phenomenological S-wave K N interactions
off the energy shell. This method is standard in momentum
space but here we have already used the coordinate represen-
tation. In a single K N channel case the potential equivalent to
those of Eq. (3) is described by

Vk, k') = awk)vk'). (50)

The Yamaguchi form factors v(k) = lcz/(/c2 + k?) are con-
venient to perform explicit analytic calculations in both
representations. The related Fourier transforms are of Yukawa
form v(r) = k2 exp(—«r)/(4mwr) and are normalized to §
functions in the limit of zero range forces. The off-shell
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scattering amplitude becomes
v(kv(k)
A1+ G(E)

With the nonrelativistic form of the kinetic energy Eyi, =
q?/(2uuk v) one obtains

Sxkn = (51)

B v(t)? _ K
6® = [ 5= = T

At the KN threshold energy E, = Mg + My, the standard
convention requires one to define the scattering length as a,, +
ib, = — fxn(E;). Below the threshold 1/A 4+ G is forced to
have a zero corresponding to the A(1405) state. The complex
momentum at this point is

A K3 1/2
p3=< 52 ) —«. (53)

(52)

The next step to improve the absorptive part is to guarantee
that it vanishes below the X7 threshold. That is achieved
by scaling the absorption strength ImA by a phase-space
factor f, = gxx(E)/qz(E;), where gz, is the momentum
in the decay channel. The values Ag = —0.602 exp(i 0.12 f,)
fm and « = 4.5 fm~! give a good reproduction of the PDG
recommended E = 1405 and I" = 50 MeV values [23,32].

This one channel amplitude may serve as a guide, but
to describe finer details and for a better comparison with
the scattering data one needs multichannel separable models.
Below, two types of multi-channel reaction matrices are
extrapolated off the energy-shell.

(i) One solution has been given by Krzyzanowski et al. [10]
in terms of a quasirelativistic multichannel separable
potential. The G(E) used there differs from the solution
(52) by an invariant momentum phase space and the
use of quasirelativistic intermediate meson energies E =
q%/(2My) + /m? + ¢2. This solution was motivated by
the early B. Martin and Sakitt [21] K matrix (BM in
Table I) and as may be seen in this table it offers similar
on-shell parameters.

(ii)) Another solution is based on the commonly used A.
Martin’s K matrix [20]. However, in the decay channels
this matrix is not well reproduced by simple rank one
separable potentials. Instead, we use the extrapola-
tion K°(k, E, k') = v(k)K°"v(k’), with the Yamaguchi
form factors and k = 4.5 fm ™! as obtained above in the
one-channel case.

B. P-wave meson-nucleon interactions

To account for the P-wave interactions dominated by
2 (1385) the scattering amplitude of Eq. (9) is generalized to

fxn = fs+ fp = fs+2kK fi. (54)

The last term is a consequence of the j = [ + 1/2 total spin of
3(1385). It involves an [ + 1 factor instead of 2/ + 1 typical
for spin-zero situations. The omitted piece contains spin-flip
amplitudes and is expected to be small in the few-body
context. The f Ilf term is described here by a separable
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single-channel K matrix that in the KN channel is given by
kK vp(k)vp (k')

Kk, K)=y; T_E fir. 2 (55)
where the form factor is
K4
v = o (56)

and E, is a phenomenological parameter that determines
the position of X(1385). The width I'; is strongly energy
dependent:

F” = y[%nq?\n + yénq%n (57)

In these equations the ¢’s are the channel momenta and y are
couplings of the resonance to the ¥ and An channels. The
latter are determined by the experimental decay width of about
36(42) MeV and the X7 branching ratio of 0.13(%0.01) [32].
For the coupling to the KN channel the SU(3) value
y,% N/ yéﬂ = 2/3 is taken. This value is consistent with the
experimental result of Brown, which yields 0.57(30.18) [30].

The coupling to the KN channel generates the off-shell
scattering amplitude

2KK vp (K)0p ()i
E = Eo+ yin [ 552285 +1T/2

nz(rszfm)
= KK vp (k) fp (E)vp (k). (58)

Let us notice that below the KN threshold the integral in
Eq. (58) deforms significantly the shape of the resonance
profile. The range parameter k =3.8 fm~! and E, =
1505.2 MeV are used to reproduces the profile tested experi-
mentally by Cameron et al. [31] in the Ax channel. For further
applications the coordinate representation is needed, which is
given by equation

frk, EK) =

—_
F&EX) = hp 3 0p(0) fr(E)op(x) (59)

in terms of the Fourier transforms of form factors (56).

IV. FEW-NUCLEON SYSTEMS

The procedure presented in the KNN section is now
extended to systems consisting of several nucleons. Practical
calculations are done for three and four nucleons. At first
the multiple-scattering equations similar to Egs. (3)—(5) in
the previous section are solved in fixed nucleon systems. The
bound K-meson wave function g is a solution of

exp(ik|x —yl|)

X — Xj)a
drlx—y| XX

Xk(X, X1+ x,) = _Eizﬂ/dy

X )"aﬁv(y - Xz)ﬂ XK(yv Xy xn), (60)

where indices «, 8 denote channels and partial waves of the
meson-baryon pair. An index related to the symmetry of x is
suppressed. By analogy with Egs. (6) and (7), Eq. (60) may be
reduced to a matrix equation for the wave amplitudes defined
at each scatterer as

YUE =3y / dy 2P oy — x;)p xx (¥, ). (61)
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The kernel of the scattering equation can be now expressed
in terms of scattering amplitudes fi“’ﬁ at each nucleon i and
propagators describing the passage from nucleon i to another
nucleon j. The latter are given by

exp(ik|x —yD)

pr— vy —x;)p.  (62)

Gf‘jﬂ = /dy dx v(X — X;)y
The procedure explained in Sec. II leads to a set of linear
equations

U+ S5, 2 PGy =0, (63)

which are solved numerically. This matrix equation is sim-
plified as the G’s are diagonal in channel indices and the f
are diagonal in the partial wave index. Still, the corresponding
determinants are complicated algebraic expressions involving
functions G and f. Numerical solutions become a difficult
problem. It has been solved in the following approximate way.
The determinant consists of many terms that are arranged
according to the number of collisions. With up to four
collisions in the main channel we retain the structure found
in the K N N situation and the determinant D of this system is
presented as

D=1+ EpairS(DSDP - 1) + Ohigher orders (64)

where Dg and Dp are defined in Eqs. (46) and (47). The main
term is composed of collisions in the K NN subsystems that
allows one to keep track of the wave function symmetry. The
terms of higher order in f are dropped.

The solution of the full K-few-N bound-state problem is
given by the equation

A, A;
[EJFEJFZw_ZVKM

_ ZVNiNj:|\IJ(x,x1,...,xn)=0. (65)
i,j

Again we assume the wave function to be given by Egs. (2)

and (60), ie., xx(x,x;---x,)xn(x1,...,x,). Projecting

Eq. (65) on ¥k one obtains the Schrodinger equation for the

few-nucleon wave function

XN(Xi)Z/dXXK(X,Xi)q’(X,Xi) (66)
in the form
A;
E — E“(x; — =)V, AEkinxn =0,
|: (x)+Xi:2M Z NN]XN‘F kin XN

(67)

where A Ey, is a correction to the nucleon kinetic energies.
As in Eq. (24) it is given by

1
AEinxn = —MzifdxailﬂKaqu (68)

and as before turns out to be very small due to angular
averaging and sign changes in both the derivatives. As
discussed in the KNN situation this correction has been
dropped. In deriving equation (67) a special form (60) of the
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meson wave function is used. As in Eq. (23) it satisfies the
relation

Acxx =Y Aixk. (69)

In the next step, equation (67) is solved by a variational
method with the NN potential of Argonne [17]. The trial
wave function is of the form

XN = H [1 — exp (—Ag(xi — xj)z)]
i J,i#]

x exp(—A[x; — X;[)/[x;i — X1, (70)

where A, A; are variational parameters. This form is chosen
to give the correct asymptotic limit for large |x; — x| and also
gives a vanishing wave function for small |x; — X;| as expected
for a strong repulsion in the N N potential.

V. RESULTS
A. KNN

In this section the calculations of K NN levels are pre-
sented. The sensitivity to K N input parameters is studied and
the states of different symmetry are discussed.

Contracting potentials Vi (r) were calculated with several
solutions for the phenomenological S-wave KN reaction
matrices presented in Table I. The solutions of second type
may be well fitted with a rank one separable potential. Here,
the calculations are done with the quasirelativistic model
of Ref. [10]. This model is based on the K matrix of B.
Martin [21]. Numerically it is fairly close to the separable
potential of Ref. [22]. For the first type of solutions in
Table I, due to A. Martin [20] no satisfactory rank one
separable approximation is found. This difficulty is related to
the large effective range parameters involved in this K matrix.
To retain the physics involved, a simple off-shell extension is
adopted K; ; — v(k;)K; jv(k;). The Yamaguchi form factors
have been used and the inverse range parameter k¥ was varied
over the range of 3—6 fm~!. The actual value of « affects
the multiple scattering via propagator G (k, r) of Eq. (12).
Larger values reduce the form factor v(k) but enhance the
significance of the small r region in G (k, r). On average
these two effects balance very well and one finds a very weak
(~1MeV) dependence of the total binding energy on the actual
value of «. The results given in Fig. 1 and in the tables that
follow are obtained with k = 4.5 fm™".

The energies of the most strongly bound KNN, [y =
1/2, Iny = 1, quasibound states are given in Tables II and III.
The first table describes several steps of the approximation,
whereas the second table indicates the dependence of binding
on the KN input parameters.

The first line in Table II is determined essentially by
the effects of A(1405) excitations described in the elastic
channel only. The second line describes additional effects
due to multiple scattering in the Xm channel. The other
two lines include the P-wave interactions. The energies of
Loy = 1/2, Iyn = 1 states given by the S-wave interactions
and described by multiple scattering in the single, K N, channel
span the region of 30-50 MeV. These results are consistent

PHYSICAL REVIEW C 79, 014001 (2009)

TABLE II. Binding energies and widths (in MeV) of the
KNN, Iy, = 1/2, Iny = 1 space-symmetric states. The results on
the left are based on AM parameters, and the results on the right
follow KWW parameters discussed in Table I. The first column
specifies the channels explicitly involved in the multiple-scattering
and meson-nucleon partial waves. Ry, is the radius mean squared of
the N N separation (in fm). The last line is obtained with the simplest
separable potential discussed in the text and the /¢y = 1 amplitudes
from AM.

Solution AM [20] KWW [10]

Eb’ r ers Eb’ r ers
KN; S 27 36 3.1 35.5 37 2.4
KN,Zm; 8 37 42 2.5 431 47 2.1
KN:S, P 49 36 3.7 49.7 36 3.3
KN,Xm;S, P 52 37 2.9 56.5 39 2.3
KN: S 47 47 2.3

with the findings of Akaishi and Yamazaki [9] and Dote and
Weise [12] obtained with different methods. The differences
within this range are due to a different K N and/or NN input.
As seen in the second and fourth rows, significant changes
arise with the explicit inclusion of the multiple scattering in
the X7 channels. The binding rises by 10 to 20 MeV and the
effect of collision broadening is large.

Table III shows binding energies obtained with the
“canonical” A pole position E = 1405 MeV [23,32] that is
lower than the position obtained in other parametrizations. The
result given in the second line of this table is comparable to the
results obtained, with a similar input, by Schevchenko et al.
[13]. The latter work employs a superior Faddeev technique,
but a more detailed comparison of results is not easy because
that calculation uses a rank one separable potential to describe
the NN interactions.

The same position of the A pole is used by Yamazaki and
AKkaishi. In the recent calculation [34] these authors find similar
deeply bound states. It is also shown there that the strength of
the repulsive NN core has a limited effect on these binding
energies. We confirm this finding. With the method used here
this is due to the shrinking of the meson propagation range for

TABLE III. Binding energies and widths (in MeV)
of the KNN, I, = 1/2, Iyy = 1 space-symmetric states.
These results are based on KWW [10] parameters modified
to set the pole of A(1405) at 1405 MeV and the width at
48 MeV and given in Table I (KWW?*). The first column
specifies the channels explicitly involved in the multiple
scattering and the meson-nucleon partial waves. R is the
radius mean squared of the N N separation (in fm).

Solution KWW*

EB r ers
KN;S 50 51 2.05
KN,Xm;S 71 85 1.81
KN;S, P 65 43 2.09
KN,Tm;S, P 78 60 1.88
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TABLE IV. Binding energy and width (in MeV) of
the KNN, Iy =1 /2, Iyy = 0 space-symmetric states.
Results on the left are based on A. Martin parameters and
do not support a bound state (no b.s.). The results on the
right follow the KWW parameters. This result involves S +
P-wave interactions and external interactions in two
meson-nucleon channels. R, is the radius mean squared
of the NN separation (in fm).

EB F ers EB r ers

no b.s. - - 47.1 36 ~7

short NN separations. Presumably the same happens when a
separable N N interaction is used in the Faddeev equations.

The inclusion of resonant P-wave interactions increases
the binding by some 10 MeV. There is some room for
different values as the experimental K N ¥(1385) coupling is
not certain. However, the main effect of ¥(1385) is a change
of structure in the K NN systems. A sizable portion of the
binding energy is contained in the structure of this resonance.
However, the system is dissolved as the inclusion of P waves
enlarges the NN separation and the formation of ¥(1385)
is essentially a peripheral effect. The KN correlations for
r > 1.6 fm are mostly of the X (1385) type. The other effect of
P-wave interactions is a formation of additional K N N states.
These are given in Tables IV and V and discussed below.

The energies of K NN quasibound states with Iyy =0
given in Table IV are determined essentially by the X(1385)
excitations. Let us notice that the result is unstable against the
K N input. The state is still more likely to exist with a lower
value of the A(1405) energy. In any case it is a very loose
structure that might be a quasibound or a virtual state.

The energy of an asymmetric quasibound state is given
in Table V. It is determined essentially by the X(1385)
excitations. The table in Appendix B indicates that the K ~nn
state has the largest possible ¥ component that offers the
strongest £ (1385) N attractive potential. It reaches a maximum
depth of about —10 MeV at a distance of 1 fm, but it
is not strong enough to overcome the NN P-wave barrier
and generate a quasibound state. To obtain real binding,
assistance from the Ix y = 1 S-wave state and the NN P-wave
attraction is necessary. Thus, the NN interactions repulsive
at large distances in the Iyy =0, Syy =0, Lyy = 1 waves
do not support bound states. However, such states may be
generated by Iyy = 1, Syy = 1, Lyy = 1 interactions. Here,
the analysis becomes more subtle as the NN interaction
is strongly spin dependent. The energy given in Table V
corresponds to J = 2 (* P) wave in the N N subsystem where

TABLE V. The binding energy and width (in MeV) of the K N N
Liow = 3/2, Iyy = 1 space-asymmetric states. In the NN subsystem
25+1],; = 3 P,. The last column gives the radius mean squared of the
N N separation (in fm).

Innk Iny Ep (MeV) ' (MeV) Ry (fm)

K~ nn 3/2 1 48.5 36 4.9
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TABLE VI. Binding energies and widths (in MeV) of the
I« = 0, KNN N, space-symmetric states obtained with the two-
channel K N, ©r-channel multiple-scattering formulation. The
results on the left are based on the KWW [10] parameters.
The results on the right are calculated with modified KWW*
parameters that set the A(1405) set to 1405 MeV. The first column
specifies meson-nucleon partial waves involved. The widths do
not describe nonmesic capture modes.

Eg r Ep r
S 103 29 142 25
S+ P 119 23 153 21

the interaction is the most attractive. This K NN system is
large and loosely bound, by about 1.5 MeV in the £ (1385)N
configuration. In this calculation the S-wave parameters come
from AM [20] and the calculated energy is uncertain, as the
involved K ~n parameters are poorly known. The experimental
detection would be very difficult, nevertheless, a more precise
analysis of the spin and isospin structure of such states is of
interest in the context of K~ D atoms and will be performed
elsewhere.

B. KNNN and KNNNN systems

The discussion of these systems is limited to the states of
the simplest symmetry. The fixed nucleon model generates a
contracting potential that in K NNN systems may be, to a
good approximation, presented in the form

E°(R:, Ry, R,)
= _VNNN{] - Cexp[_)\s(Rx + Ry + Rz)]}[exp(_)‘le)
+ exp(—A; + Ry) + exp(—A R,)] — V(00), 71)

where R,, R,, R, are the internucleon distances. The short
range behavior at the triple coincidence may be obtained
analytically and C = 0.42, other parameters being numerical.

With the K N parameters of Refs. [10,20] and I;;; = 0 the
parameters are obtained in the range Vyyy ~ 150-200 MeV,
Ay >~ 4.5 fm, A; ~ 1.8-1.9 fm. For I;o; = 1 one has Vyyn ~
50-60. V (00) is the binding of K N into A(1405) in the S-wave
case or x(1385) in the S + P-wave case. For I, = 0 the
corresponding binding energies are given on the left side of
Table VI. These numbers may be compared to the simplest
version of this model—the S-wave interactions described by
the single K N channel—which produce 91-MeV binding.

The modified version of the KWW model with parameters
from Table I fixed to set the A(1405) energy to 1405
MeV yields much stronger contracting forces, Vyyn ~ 250—
350 MeV and A; ~ 2.1-2.3 fm. The states indicated on the
right side in Table VI are bound very deeply. The basic
NNN systems obtained with our variational wave function
are overbound by about 2 MeV and this value has already
been subtracted from the numerical K NN N energies.

There may exist a number of states in the KNNNN
systems. In Tables VI-VIII one finds only the states with the
simplest symmetry, which involve wave functions symmetric
under exchange of the nucleon coordinates. In the absence of
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TABLE VII. Binding energies and widths (in
MeV) of the I, = 1, KNN N, space-symmetric
states obtained with the two-channel KN, -
channel multiple-scattering formulation. These
states are formed as a result of the P-wave
interactions with some assistance of the S-wave
attraction.

Eg r

S+ P 63 38

the K meson the basic « particle structure is used and only
the S-wave NN interactions are included. With the tensor
interactions described by Eq. (27) this « system is overbound
by about 10 MeV, and this value has been subtracted from the
calculated K NNN N levels.

C. Level widths

Level widths are calculated as twice the expectation value
of ImVg. The KN resonant lifetimes are strongly energy
dependent, being very short at the resonance, becoming longer
below the resonant energies, and staying infinite below the
thresholds of the decay channels. This trend is reflected by
ImVg in Fig. 1. The energy dependence contained in the
amplitude fxn(—Ep — Erecoit) of Eq. (1) is traded into the
space dependence fxn(Vk). These two types of averaging
give fairly close results provided the final binding energy is
located well above the threshold of the decay channels. Let us
indicate some consequences of this relation.

The states generated by the P-wave interactions given in
Tables IV, V, and VII correspond to a fairly loosely bound
3(1385) and the widths of quasibound states are essentially
equal to the width of the ¥(1385). This comes as a result
of the peripheral binding and weak effects of the collision
broadening in the P-wave resonances. In these states, the Vg
underestimates slightly the average —Ep — Ecoil and the real
widths might be smaller. For the binding energies in the range
60-90 MeV the Vi is too small at large distances and too
large at small distances with a reasonably good average. Let us
notice that the level widths generated by the S + P interactions
are smaller than those generated by the S waves alone. This
is due to three factors: the width of A(1405) is larger than
the width of X(1385), the collision broadening in P waves
is small and the systems due to the S + P interactions are
less compressed. Let us also notice very strong sensitivity
to the input KN amplitudes. The few examples of ImFjn

TABLE VIIL. Binding energies and widths (in MeV) of the
KNNNN, space-symmetric, Siy = 0, I;o; = 1/2 states. See captions
to Table VI.

Eg r Ep r
S 121 25 170 10
S+ P 136 20 172 10
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given in Table I and the differences of the widths in the /i, =
1/2, Iyy =0, KN N state visualize this point.

In cases of very large binding, in the range of 120-200 MeV,
one (X) or two (X, Am) decay channels are blocked and
the widths calculated here are overestimated. Such a situation
is likely to happen in the K« state. To account for that effect,
the calculation of the contracting potential was repeated in
an optical potential manner. So, the momenta in the decay
channels ¥, Am were related to the binding energy Ep and
allowed no outgoing waves. Such a calculation results in a
stronger binding. In the KWW* model one obtains binding
of 220 instead of the 170 given in Table VIII. The real decay
width is now given by the multinucleon capture mode.

The multinucleon captures are initiated by the nonmesic
KNN — YN mode and the branching ratio for this process
is known from emulsion studies to be about 20% in light
nuclei [35]. The emulsion data are obtained with stopped K
mesons and pertain to the nuclear surfaces. An extrapolation
in terms of a characteristic nuclear densities p and two-body
phase-space L

Coati =~ Lo®y (72)

for this decay was attempted in Ref. [4]. A constant y may
be fixed to the emulsion branching ratio and a 20-MeV level
width in the nuclear matter at 90-MeV binding was obtained.
In the strongly bound, few-body systems the kinematics of
the decay is different because the residual nucleons also take
sizable recoil energies. Roughly, for a three body decay L ~
Q? where Q is the decay energy. Again, an extrapolation from
the emulsion data in terms of the available phase space and
the involved nuclear density yields nonmesic capture widths
in Ko in the 10- to 30-MeV range. These estimates are some
what larger than the 12 MeV obtained for the K NN N system
in Ref. [9]. Unfortunately such extrapolations are uncertain as
the energy dependence in y might be large and the Q value is
not known. Help from new experiments is necessary to settle
these questions.

VI. CONCLUSIONS

In this article a new method to calculate the deeply bound
KNN,KNNN, and KNNNN states has been presented.
The calculation consists of two steps. First a wave function
involving strongly correlated K N subsystems is found in a
fixed nucleon approximation. This step also allows one to
find potentials due to the K meson that tend to contract the
internucleon distances. Next, these correlated wave functions
and contracting potentials are used as input in the Schrédinger
or variational calculations for the K -few-nucleon binding.

The lowest binding energies based on a phenomenological
K N input fall into the 40- to 80-MeV range for K NN, 90—
150 MeV for KNNN, and 120220 MeV for Ka systems.
The uncertainties are due to unknown K N interactions in the
distant subthreshold energy region.

We obtain at least partial answers to the basic questions
presented in the introduction.

(i) The binding mechanism: the dominant mechanism of
the attraction is related to the A(1405) state. This fact
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has been known for a long time. In addition, it is found
here, that the X(1385) contributes significantly to the
structure of the K-few-N bound states but much less to
the actual binding energies. The bound states are built
from the strongly correlated K N subsystems. At central
densities these correlations resemble the A(1405) and
at peripheries the correlations are made by the quasifree
3(1385). Sizable fractions of the binding energies are
contained in the K N correlations. One consequence is
that even with the strong bindings the nucleon densities
are not dramatically enhanced as in Ref. [9] but can
become a factor 2—4 larger than the standard nuclear
matter density p,.

The presence of X(1385) resonances in the few-
nucleon systems generates new states. These are pre-
dominantly P-wave states or states built on the P-wave
NN interactions and are usually broad and loosely
bound developing long tails built from the X(1385)
correlation.

(i) The control of technical questions: the choice of corre-
lated wave functions removes the difficulties related to
the uncertain KN interaction range and allows one to
use realistic NN interactions. The recoil energy of the
K N subsystems with respect to the residual nucleons is
described only in an average sense. This seems to be the
weakest part of this method.

(iii) The widths are related to the lifetimes of the A(1405)
and X(1385) enhanced by the collision broadenings.
Under the phenomenological KN interactions (the A
pole located at 1412-17i MeV) the K -few-N states are
~40 MeV wide.

However, the models with the A pole located at ~1405 —
25i MeV generate K -few-N states that are more deeply bound.
These may be either very broad or quite narrow. With the
binding energies in the 60—80 MeV range (the K N N case) very
broad—up to 90 MeV—states are obtained. However, with
the bindings of 120 MeV (K NN N) or 170 MeV (KNNN N)
the single-nucleon decay modes are effectively blocked. The
widths are strongly reduced and the main decay modes are due
to multinucleon K captures. These widths are hard to predict,
a simple model suggested here generate widths of about
20 MeV.

A simple physical picture emerges from this approach. The
mesons are strongly correlated to slowly moving nucleons.
The correlations are of the A (1405) type at large densities and
of the £(1385) type in the peripheries. Each K N pair has a
good chance to stay also in the £ form. The structure is rather
loose as sizable fractions of the binding energies are hidden in
the short-ranged correlations.
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APPENDIX A: PROPAGATORS

Several formulas for kernels of multiple-scattering equa-
tions are collected in this appendix.

For Yamaguchi form factors, the propagators G; ; yield
analytic expressions. Thus for two consecutive S-wave inter-
actions one has

G(r, k) = Lu(kf[exp(ikr) — exp(kr)
4y
k2 + k?
2k
where r = x; — Xx; and the indices i, j referring to the nucleon

sites are suppressed. For an initial S-wave scattering followed
by a P-wave scattering G becomes a vector

G(r, k)® =rG™(r, k),

—r exp(—xr)], (A1)

(A2)

G® = %v(kf{ exp(ikr)(ikr — 1) — exp(kr)
r

1
X[ +kr+ ) P

rz(Kz +k2) N r3(K2 +k2)2”'
(A3)

For two consecutive P-wave interactions the propagator is a

tensor of the form
G, k)PP |y = V(&) (8,m G + rarnGYY).  (A4)

These functions may be expressed in terms of basic integrals

4 ) K2 " 1
Gy dp exp(ikr) a1 ) e (A5)

which give by recurrence

gn(r) =

_ exp(ikr) — exp(kr)

81(r) " ,
2 4 g2 (A)
&) =&1(r) - exp(—kr)
2 4 p2y2
:(r) = g2(r) — %a + ) exp(—kr),
2 4 12)3 2 (AT)
_ (k= + k%) (kr)
84(”)—83(")—W L+wr+ exp(—«r)
and finally
G = g4(r)” G = ga(r)" g4(;)’. (A8)

r2 r

APPENDIX B: ISOSPIN SYMMETRY

It is assumed here that the isospin is conserved in the
quasibound states of K mesons. In the lowest S-wave states
of the K NN systems the isospin wave functions may be built
on isosinglet or isotriplet NN states. From the experimental
point of view, the most interesting one seems to be

\Ijll/z — {{NN}IK}I/Z
= V3/2({NK}°N}'? + 12{{NK}'N}'/2, (BD)
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where in \1111 /% the upper index denotes isospin Iy, and the
lower index denotes the spin of the two nucleons. On the
right side the isospin content in the KN subsystem is given.
This state is a mixture of K~ pp and K°np and is frequently
named K~ pp because it can be experimentally accessed via
this entrance channel. The NN spin in this state is S =0
and the effective KN interaction amplitude obtained from
Eq. (B1) becomes

frn =3/Afgn +1/4fgy. (B2)

Another K N N state of interest is built on the N N isosinglet
v,/? = (NN K2

= —12{{NKYN}/? +V3/2{{NK}' N}'/2.  (B3)

This state is a mixture of K np and K°n that might be
reached by the K ~np entrance channel. Now the NN spin is
S =1 and the effective KN interaction amplitude obtained
from Eq. (B3) becomes

frn = 1/4fen +3/4fkn (B4)

The S-wave KN interaction in the \Il(i/ ? state is much less

attractive than in the \Ifll /% state since the A(1405) contribution
is reduced. However, this is offset by the strong short-range
attraction in the NN system due to the tensor force. An
additional attractive force is due to a larger contribution from
the X (1385) resonance.

Finally one may have total isospin 3/2 states of the type
K nnorK°pp

W2 = ((NNY KPP = ((NKY' NP2 (BS)

Those states, involve weakly attractive and uncertain, S-wave
KN I =1 amplitudes. A deeper state can in principle be
built on the stronger P-wave interactions. Its existence and the
chances for detection present a situation that is more difficult
than the other cases.

For the three-nucleon problem we retain the dominant
structure of the triton and helium isospin symmetry. The
K N NN wave function is assumed to be of the form

1
U= ——({{IVN) N2 + ((NNYONYIRYT, (BO)
V2
where the pair of indices denote spin and isospin of the NN
pair. _
Recoupling to the K N system leads in the total T = 0 state
to the relation

w0 = /12NN NK} + (NNP{NKY  (BT)
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TABLE IX. Isospin composition of antikaon nucleon scattering
amplitudes. [, = total isospin, /,, = isospin of nucleons, f; =
K N amplitudes of isospin, i.

System Imt Inucl fKN

KNN 2 1 Si

KNN % 1 %fo + ifl
KNN % 0 %fo + %fl
KNNN 0 ! Lho+1if
KNNN 1 ! th+ 2
RNNNN 1 0 Shot+3h

and in this case the K N interaction amplitude is

I =1/2fgn +1/2fgn- (B8)
Likewise for the total isospin 1 system
F=1/6fgn+5/6fxy- (BY)

These amplitudes are collected into Table IX.

APPENDIX C: THREE NUCLEONS, S-WAVE
INTERACTIONS

The energy eigenvalue is obtained by the simultaneous
solution of three equations

Ui+ G Y+ G f Y3 =0 (€D
vy + G5 f Y3 + G Y =0 (623
V3 + G Y + G Y3 =0, (©3)

which require the eigenvalue condition
D3 =1~ (f*)*(G,GY, + G565 + G3,G5))

+2(f*)G},G5,GY, = 0. (C4)

This equation is to be solved numerically. A helpful guide to
find the symmetry of two physically meaningful solutions is
the situation of two equal N N separations rj, = ry3. Dropping
the upper indices one obtains the factorized form

Dy, =(1— fG1)(1+ fG1»—2f*G5).  (C5)

The first factor corresponds to an antisymmetric solution
with the meson sticking to two nucleons only. The second
factor generates a solution symmetric with the interchange of
nucleons 1 and 2. These solutions are a direct continuation of
the two solutions obtained in the K NN systems.
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