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Charge radii in macroscopic-microscopic mass models of reflection asymmetry
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We show that the charge radii of reflection-asymmetric nuclei calculated in the frame of the finite-range
droplet model are in better agreement with measured charge radii when reflection asymmetry is taken into
account. However discrepancies between experimental and calculated changes in mean square charge radii still
remain for some isotopic chains. These discrepancies cannot be removed by empirically including dynamic
contributions to the quadrupole deformation.
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Nuclear mass models which have predictive power and can
describe several properties of all nuclei with a consistent set
of parameters are required for many applications. Modeling
the properties of the thousands of nuclei involved in stellar nu-
cleosynthesis processes, as the rapid-neutron capture process,
is just one of the examples. The finite-range droplet model
(FRDM) and the finite-range liquid-drop model (FRLDM)
[1–5] are presently the most sophisticated and successful
macroscopic-microscopic approaches to mass models. Within
the FRLDM, Möller and co-workers performed in 1995
the first calculations of ground-state reflection asymmetry
for nuclei across the nuclear chart [5]. Their calculation of
reflection asymmetry involved two steps: In the initial step
the ground-state ε2 and ε4deformations were determined from
the potential energy surfaces calculated as a function of these
deformation parameters; then, in the second step, the energy
was minimized with respect to reflection asymmetry (ε3), both
with ε2and ε4 held fixed at their previously determined values.
Later they also considered axial-asymmetry effects within the
same model, and found that, for those nuclei where reflection
or axial asymmetry was found, a systematic deviation between
calculated and measured masses was removed [6]. Recently
they have refined the calculation of reflection asymmetry
considerably by identifying the lowest minimum in a four-
dimensional deformation space in the coordinates ε2, ε3, ε4,
and ε6. Deformation parameters determined in this fashion are
tabulated in Ref. [7].

Since octupole deformation also affects directly the rms
charge radius, it is certainly interesting to investigate a
possible improvement between predicted and experimental
radii using the new extended data set for nuclear ground state
deformations from Ref. [7]. Such a comparison serves at the
same time as a cross check of the reliability of the models
used, since rms charge radii are easily obtained from mass
models, but are not included as input data when the optimum
model parameters are determined. In our earlier paper [8], we
have investigated how the rms charge radii are affected when
axial asymmetry is included in the FRDM calculations. In the
present report we present the reflection asymmetry effect on
charge radii in the same format that we used for the calculation
of the axial-asymmetry effects. This type of statistical analysis
has not been performed before.

None of the FRDM [4,5] or FRLDM [2,3,5] mass tabulation
gave charge radii, although they can easily be calculated by
using the prescriptions outlined in the paper of Myers and
Schmidt (MS) [9]. Our previous calculations [8,10,11] of
FRDM charge radii were based on that paper. In the FRLDM
the rms charge radii are given by simplified forms of the MS
expressions, both compression and Coulomb-redistribution
effects being absent. We have pointed out previously that
using the FRLDM gives a significantly worse agreement with
measured charge radii [12]. Thus, in this work, we use the
FRDM to calculate the new rms charge radii from the tabulated
deformation parameters [7] including reflection asymmetry,
although these parameters were obtained in the FRLDM. The
deformation parameters can be assumed to be not dependent
on whether they are found by using the FRDM or FRLDM.
This is the same assumption we made in our previous study
on axial-asymmetry effects [8], where the FRDM was used
to calculate the charge radii from the deformation parameters
determined in the FRLDM. Also in mass calculations, Möller
and co-workers determined the deformation parameters by
using the FRLDM, and then calculated the masses with the
FRDM from these deformations [5].

Because the detailed expressions for calculating the rms
charge radii are given in our previous papers [10,11], we simply
recall that the mean-square charge radius (R2) is written as

R2 = 〈r2〉u + 〈r2〉r + 3b2 + s2
p, (1)

where 〈r2〉u is the contribution from the size of the uniform
distribution, 〈r2〉r the contribution from the Coulomb redis-
tribution, b the surface-diffuseness parameter (b = √

2aden,
where aden is given in Ref. [5]), and sp = 0.8 fm is the
rms charge radius of the finite proton. The values of the
model parameters used in the calculations are taken from
the 1995 mass fit [5] as it was also done in Ref. [11]. Only
the surface-diffuseness parameter is reduced from the original
value of b = 0.99 fm [5] to 0.93 fm, because the radius
calculated by the FRDM is always larger than the experimental
value [11]. This new b value was determined in our previous
work [8] by adjusting R2 to all of the available experimental
charge radii (a total of 782), and was used to calculate the
charge radii of axially asymmetric nuclei.
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In order to examine how reflection asymmetry influences
the rms charge radii, we include octupole deformation (β3)
and describe the shape of the proton distribution (r) by

r = nRZ(1 + β2Y20 + β3Y30 + β4Y40), (2)

where n ensures volume normalization and RZis the sharp ra-
dius for the proton distribution. We assumed axial asymmetry
because the calculated decrease in energy due to triaxiality is
less than 0.01 MeV for the nuclei which we study here [7]. By
defining the shape as given in Eq. (2), the uniform-distribution
part of the mean-square radius can be expressed as

〈r2〉u = 3
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where

αl =
√

2l + 1

4π
βl. (4)

Equation (3) is the same as given in Ref. [13], except that we
added the α4

2 term so that it reduces to Eq. (22) of MS [9] for
reflection-symmetric nuclei (α3 = 0). For the redistribution
part of the mean-square radius, we use the same expression as
that of MS [9]. Since in Ref. [7] the deformation parameters
are tabulated in terms of ε2, ε3, and ε4, we transform the ε

parameters to the α parameters in Eq. (3) by using Eq. (4)
and the relations between ε and β given in Refs. [14,15]. By
using integration given by Eq. (38) in Ref. [5], Möller also
converted ε to β [16]. Since there is no significant difference
between the results of our conversion and Möller’s, we use the
β parameters by Möller [16] to calculate the charge radii.

Möller and co-workers calculated masses for several thou-
sands of nuclei from very light (16O) to the heaviest nuclei,
and found that there are about 410 nuclei for which reflection
asymmetry lowers the mass (�Eε3) by �Eε3 � 0.01 MeV [7].
Among those, we study 53 nuclei for which experimental
charge radii are available from the most recent and most
comprehensive compilation of charge radii [17]. Our results for
the difference between the experimental (Rexp) and calculated
(Rth) charge radii of these 53 nuclei are shown in Fig. 1. In
the upper part of the figure we present the difference Rexp −
Rth when Rth is calculated including reflection-asymmetric
shapes. For comparison we have also calculated the difference
Rexp − Rth neglecting reflection asymmetry. The deformation
parameters used for the calculation of Rth were taken from
Möller’s table [16], which were found in a three-dimensional
deformation space (ε2, ε4, and ε6), with ε3 set to zero. The
results are shown in the lower part of Fig. 1.

In Fig. 1 the rms deviation σ and mean deviation ε for
(Rexp − Rth) of the 53 nuclei considered here is indicated. If we
calculate Rth without taking into account reflection asymmetry,
we obtain an rms deviation of σ = 0.0220 fm and a mean
deviation of ε = 0.0137 fm. When reflection asymmetry is
included in the calculation of Rth, these deviations reduce
to σ = 0.0181 fm and ε = 0.0050 fm as shown in Fig. 1,
implying an improved agreement with the experimental radii.
However it is evident from Fig. 1 that systematic deviations
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FIG. 1. (Color online) Difference between experimental (Rexp)
and calculated (Rth) rms charge radii, when the FRDM calculation for
Rth (i) does not include reflection-asymmetric shape (bottom panel) or
(ii) does account for reflection-asymmetric shape (top panel), versus
A. The plots include 53 nuclei where reflection asymmetry lowers
the ground-state mass by more than 0.01 MeV [7].

are still present for nuclei with mass around A = 150. The
Pearson-Goriely collaboration has constructed a series of mass
models based on the Hartree-Fock-Bogoliubov method with
Skyrme forces, the force parameter being fitted to the mass
data. Their latest model is HFB-15 [18], within which they
have calculated the charge radii for several thousands of nuclei
across the nuclear chart. For the 53 nuclei considered here,
the deviations corresponding to this model are found to be
σ = 0.0159 fm and ε = −0.0001 fm. It is surprising that such
a good agreement is achieved since the octupole degree of
freedom is not included in the HFB-15 calculation.

For an additional comparison of the predictions of the
FRDM calculations with the experimental values of the charge
radii, we now consider relative values δR2 along isotopic
chains. Since in the FRDM the surface-diffuseness does not
have any isotopic dependence, and since the rms charge radius
of the finite proton, sp is constant too, such a comparison
is independent of these parameters. In Fig. 2 we compare
experimental changes of mean-square charge radii (δR2) for
several isotopic chains to the results of the FRDM calculations
with and without reflection asymmetry. The experimental
data is obtained from Ref. [17]. We take the isotope with
N = 82 or 126 as the reference isotope, which are the
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FIG. 2. (Color online) Experimental results for changes of mean-
square charge radii, together with two FRDM predictions for the Xe,
Cs, Ba, Ce, Nd, Rn, Fr, and Ra isotope chains. The open circles rep-
resent the experimental data points. The predictions not considering
reflection-asymmetric shape are shown by the solid line. The filled
squares represent the predictions when the octupole degree of freedom
is taken into account in the calculations. Only nuclei for which reflec-
tion asymmetry lowers the mass by more than 0.01 MeV are included
in the plots. For some even-even nuclei, where β2 was obtained from
the B(E2) values, the predictions are indicated as filled triangles.

same reference isotopes as chosen in the compilation of the
experimental data in Ref. [17] except for 137Cs and 213Fr. As
before, we have considered only nuclei where the masses are
lowered by more than 0.01 MeV when reflection-asymmetric
shapes are taken into account. Overall, when the effect of
reflection asymmetry is taken into account, the agreement of
the theoretical predictions with the experimental data becomes
better. For some nuclides such as the Xe isotopes, the Rn
isotopes with N > 134, and the Fr isotopes with N > 139,
there still remain discrepancies between experimental and
calculated δR2. Often those discrepancies are attributed to the
omission of dynamic contributions to mean-square charge radii
in the calculations, since the β parameters from the FRLDM
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FIG. 3. (Color online) Changes of mean square charge radii for
the Xe, Cs, Ba, Ce, Nd, Rn, Fr, and Ra isotopes given by the HFB- 15
(solid line) and RMF (closed circle) calculations. Open circles refer
to measured values.

calculations contain only static deformations. However the
reduced electric quadrupole transition probability, B(E2),
from the ground state to the first excited 2+ state of even-even
nuclides provide direct information on deformation including
shape fluctuation, and have been measured for many nuclei.
In order to include the dynamic properties in the radius
calculations, we replace the β2 parameters determined in the
FRLDM, with those deduced from the experimental B(E2)
values using

β2 = 4π

3ZR2
0

√
B(E2) (5)

with R0 = 1.2A1/3. Experimental B(E2) values are taken
from the compilation in Ref. [19]. The B(E2) values for
138,142,144Xe, 148Ba, 212,218Rn, and 214,220,230Ra are predictions
based on an empirical relation between the excitation energy
of the first-excited 2+ state and B(E2) [19]. As to β3 and β4,
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we use the static deformation determined with the FRLDM
mass formula [5,7]. The results are shown by the filled
triangles in Fig. 2. The difference between the predictions
from the B(E2) and those using the β2 parameters determined
within the FRLDM is small. This means that the remaining
discrepancies between experimental and calculated δR2 are
not due to dynamical-deformation effects but represent rather
a limitation of the FRDM model.

In Fig. 3 we compare the changes of mean-square charge
radii calculated by the HFB-15 mass model [18] to the
experimental values. The agreement is comparable to that
obtained by the FRDM including reflection asymmetry. Also
shown in Fig. 3 for even-even nuclei are the results of the
relativistic mean-field (RMF) calculations using the effective
force NL3 [20]. The changes of mean-square charge radii
predicted from this model are close to the prediction from
the HFB-15. As stated for the absolute charge radii, it is
surprising that the HFB-15 and RMF calculations reproduce
well the experimental data because these models do not take
into account reflection asymmetry. It would be interesting how
much the mean-square charge radii are affected when reflection
asymmetry is included into these calculations.

In conclusion, we have calculated the FRDM charge
radii using the deformation parameters determined with the
FRLDM mass formula considering reflection-asymmetric
shape. Absolute charge radii, calculated including the octupole
degree of freedom are in better agreement with experimental
results than those calculated without taking into account
reflection asymmetry. The changes of charge radii along
isotope chains also show that the inclusion of reflection
asymmetry in the radius calculations better reproduces the
experimental data. By using the β2 parameters deduced from
the experimental B(E2) data, we confirmed that the remaining
discrepancies between experimental and calculated relative
charge radii can not be accounted for by shape fluctuations. It
is also found that charge radii calculated by the HFB-15 and
RMF are in good agreement with experimental data, although
these models do not consider octupole deformations.
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the manuscript carefully. We also thank J. M. Pearson for
providing the HFB-15 radii and for clarifying our question
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[1] P. Möller and J. R. Nix, Nucl. Phys. A361, 117 (1981).
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[3] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213

(1988).
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