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Critical temperature of antikaon condensation in nuclear matter
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We investigate the critical temperature of Bose-Einstein condensation of K− mesons in neutron star matter. This
is studied within the framework of relativistic field theoretical models at finite temperature where nucleon-nucleon
and (anti)kaon-nucleon interactions are mediated by the exchange of mesons. The melting of the antikaon
condensate is studied for different values of antikaon optical potential depths. We find that the critical temperature
of antikaon condensation increases with baryon number density. Further it is noted that the critical temperature
is lowered as antikaon optical potential becomes less attractive. We also construct the phase diagram of neutron
star matter with K− condensate.

DOI: 10.1103/PhysRevC.78.065804 PACS number(s): 26.60.−c, 21.65.−f, 97.60.Jd, 95.30.Cq

I. INTRODUCTION

In the pioneering work of Kaplan and Nelson [1], it was
demonstrated within the SU (3)L × SU (3)R chiral perturbation
theory that antikaon (K− meson) condensation might be
possible in dense baryonic matter formed in heavy ion
collisions as well as in neutron stars. The underlying idea is
that the Bose-Einstein condensation of K− mesons is driven by
the strongly attractive K−-nucleon interaction. Consequently,
the attractive antikaon-nucleon interaction reduces the ef-
fective mass (m∗

K ) and in-medium energy (ωK−) of K−
mesons. The s-wave K− condensation sets in when ωK−

equals to the K− chemical potential µK− which, in turn,
is equal to the electron chemical potential µe for neutron
(neutrino-free) star matter in β equilibrium. The threshold
density for K− condensation which sensitively depends on
the nuclear equation of state (EoS) and the strength of the
attractive antikaon optical potential depth, is about (2 − 4)n0,
where n0 is the normal nuclear matter density.

There was considerable interest in the study of the proper-
ties of kaons (K) and antikaons (K̄) in dense nuclear matter
as well as neutron star matter after the work of Kaplan and
Nelson. Antikaon condensation in neutron star interior was
studied in great details in the chiral perturbation theory [2–6]
as well as meson exchange model [7–16]. The net effect of
K− condensation in neutron star matter is to soften the EoS
leading to a smaller maximum mass neutron star than that of
the case without the condensate.

There is a growing interplay between the physics of dense
matter formed in heavy ion collisions and the physics of
neutron stars. The study of dense matter in future experiments
at FAIR in GSI might reveal many new and interesting results.
It would be possible to produce matter with baryon density
a few times normal nuclear matter density and temperature a
few tens of MeV at FAIR. Under these circumstances, antikaon
condensation might occur in dense matter as it was predicted
by Nelson and Kaplan [1]. In this case one has to investigate
antikaon condensation at finite temperature.

Antikaon condensation at finite temperature was already
studied in connection with neutron [17] and protoneutron

(newly born and neutrino trapped) stars [18]. These studies
were either related to dynamical evolution of the condensation
or metastability of protoneutron stars. However, the melting
of antikaon condensate in nuclear matter is so far not looked
into. This motivates us to investigate the critical temperature
of K− condensation in neutron star matter. Further, we wish
to construct a phase diagram of nuclear matter involving K−
condensate.

The organization of the paper is the following. We discuss
the composition and EoS involving K− condensate at finite
temperature in Sec. II. Results are discussed in Sec. III and a
summary is given in Sec. IV.

II. COMPOSITION AND EQUATION OF STATE

We consider a second order phase transition from hadronic
to K− condensed matter in neutron stars where both the
hadronic and K− condensed matter are described within the
framework of relativistic field theoretical models. Constituents
of matter are neutrons (n), protons (p), electrons, muons in
both phases, and also (anti)kaons in the condensed phase. The
baryon-baryon interaction is mediated by the exchange of σ, ω

and ρ mesons. Both phases maintain local charge neutrality
and β-equilibrium conditions. The baryon-baryon interaction
is described by the following Lagrangian density:

LB =
∑

B=n,p

�̄B(iγµ∂µ − mB + gσBσ − gωBγµωµ

− gρBγµtB · ρµ)�B + 1

2

(
∂µσ∂µσ − m2

σ σ 2
) − U (σ )

− 1

4
ωµνω

µν + 1

2
m2

ωωµωµ

− 1

4
ρµν · ρµν + 1

2
m2

ρρµ · ρµ. (1)

Here ψB denotes the Dirac bispinor for baryons B with
vacuum mass mB and the isospin operator is tB . The scalar
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self-interaction term [19] is

U (σ ) = 1
3g2σ

3 + 1
4g3σ

4. (2)

The thermodynamic potential per unit volume for nucleons
is given by [20]


N

V
= 1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4 − 1

2
m2

ω ω2
0 − 1

2
m2

ρρ
2
03

− 2T
∑
i=n,p

∫
d3k

(2π )3

[
ln

(
1 + e−β(E∗−νi )

)

+ ln
(
1 + e−β(E∗+νi )

)]
. (3)

Here the temperature is defined by β = 1/T and E∗ =√
(k2 + m∗2

N ). The effective baryon mass is m∗
N = mN −

gσNσ . Neutron and proton chemical potentials are given
by µn = νn + gωNω0 − 1

2gρNρ03 and µp = νp + gωNω0 +
1
2gρNρ03. The number density of i(= n, p)th baryon is ni =
2
∫

d3k
(2π)3 ( 1

eβ(E∗−νi )+1
− 1

eβ(E∗+νi )+1
). The pressure due to nucleons

is given by PN = −
N/V . The explicit form of the energy
density is given below:

εN = 1

2
m2

σ σ 2 + 1

3
g2σ

3 + 1

4
g3σ

4 + 1

2
m2

ω ω2
0 + 1

2
m2

ρ ρ2
03

+ 2
∑
i=n,p

∫
d3k

(2π )3
E∗

(
1

eβ(E∗−νi ) + 1
+ 1

eβ(E∗+νi ) + 1

)
.

(4)

We can calculate the entropy density of nucleons using
SN = β(εN + PN − ∑

i=n,p µini). The entropy density per
baryon is given by SN/nb where nb is the total baryon density.
Similarly, we calculate number densities, energy densities and
pressures of electrons, muons and their antiparticles using the
thermodynamic potential per unit volume


L

V
= −2T

∑
l

∫
d3k

(2π )3

[
ln

(
1 + e−β(El−µl )

)

+ ln
(
1 + e−β(El+µl )

)]
. (5)

We treat the (anti)kaon-baryon interaction in the same
footing as the baryon-baryon interaction. The Lagrangian
density for (anti)kaons in the minimal coupling scheme is
[7,14]

LK = D∗
µK̄DµK − m∗2

K K̄K, (6)

where the covariant derivative is Dµ = ∂µ + igωKωµ +
igρKtK · ρµ and the effective mass of (anti)kaons is m∗

K =
mK − gσKσ .

We adopt the finite temperature treatment of antikaon
condensation by Pons et al. [18] in our calculation. Once the
antikaon condensation sets in, the thermodynamic potential
for antikaons is given by


K

V
= T

∫
d3p

(2π )3

[
ln

(
1 − e−β(ωK− −µ)

)

+ ln
(
1 − e−β(ωK+ +µ)

)]
. (7)

The in-medium energies of K± mesons are given by

ωK± =
√(

p2 + m∗2
K

) ±
(

gωKω0 + 1

2
gρKρ03

)
, (8)

and µ is the chemical potential of K− mesons and is given by
µ = µn − µp. The threshold condition for K− condensation
is given by µ = ωK− = m∗

K − gωKω0 − 1
2gρKρ03 .

The meson field equations in the presence of the condensed
are

m2
σ σ = −∂U

∂σ
+

∑
B=n,p

gσNnS
B + gσK

(
nC

K + nS
K

)
, (9)

m2
ωω0 =

∑
B=n,p

gωNnB − gωKnK, (10)

m2
ρρ03 =

∑
B=n,p

gρNI3BnB − 1

2
gρKnK, (11)

where isospin projection for baryons B is I3B .
Scalar densities for baryons and (anti)kaons are,

respectively,

nS
B = 2

∫
d3k

(2π )3

m∗
B

E∗

(
1

eβ(E∗−νB ) + 1
+ 1

eβ(E∗+νB ) + 1

)
,

(12)

nS
K =

∫
d3p

(2π )3

m∗
K√

p2 + m∗2
K

×
(

1

eβ(ωK− −µ) − 1
+ 1

eβ(ωK+ +µ) − 1

)
. (13)

The net (anti)kaon number density is given by

nK = nC
K + nT

K, (14)

where nC
K gives the condensate density and nT

K represents the
thermal density. Again the thermal (anti)kaon density is given
by

nT
K =

∫
d3p

(2π )3

(
1

eβ(ωK− −µ) − 1
− 1

eβ(ωK+ +µ) − 1

)
. (15)

It is straightforward to calculate the pressure of thermal
(anti)kaons PK = −
K/V . The condensate does not con-
tribute to the pressure. The energy density of (anti)kaons is
given by

εK = m∗
KnC

K +
(

gωKω0 + 1

2
gρKρ03

)
nT

K

+
∫

d3p

(2π )3

(
ωK−

eβ(ωK− −µ) − 1
+ ωK+

eβ(ωK+ +µ) − 1

)
. (16)

The first term is the contribution due to K− condensate
and second and third terms are the thermal contributions to
the energy density. The total energy density in the condensed
phase is ε = εN + εK + εl . The entropy density of (anti)kaons
is given by SK = β(εK + PK − µnK ). The total entropy per
baryon is given by S = (SN + SK + Sl)/nb, where Sl is the
entropy density of leptons [18].

It is to be noted that for s-wave K̄ condensation at T = 0,
the scalar and vector densities of antikaons are same and those
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are given by [7]

nC
K = 2

(
ωK− + gωKω0 + 1

2gρKρ03
)
K̄K = 2m∗

KK̄K. (17)

Further we impose the charge neutrality and β equilibrium
conditions which are given by

np − nK − ne − nµ = 0, (18)

µn − µp = µe. (19)

III. RESULTS AND DISCUSSION

Nucleon-meson coupling constants are calculated by re-
producing the nuclear matter saturation properties such as
binding energy −16 MeV, saturation density (n0) 0.153 fm−3,
asymmetry energy coefficient 32.5 MeV, effective nucleon
mass (m∗

N/mn) 0.70, and incompressibility K = 300 MeV.
This parameter set is known as GM1 set [21]. We have taken
these nucleon-meson couplings from Table I of Ref. [14].

The kaon-scalar meson coupling is determined from the
real part of antikaon optical potential depth at normal nuclear
matter density

UK (n0) = −gσKσ − gωKω0. (20)

Kaon-vector meson coupling are obtained from the quark
model and isospin counting rules. They are given by

gωK = 1
3gωN, gρK = gρN . (21)

The value of antikaon optical potential depth is a debat-
able issue. The analysis of kaonic atom data yielded the
real part of antikaon optical potential depth UK = −180 ±
20 MeV at normal nuclear matter density [22–24]. On the
other hand, the chiral model suggests the strength of the optical
potential ∼ −60 MeV [25]. However, the K− condensation
sets in when the magnitude of antikaon optical potential
depth is ∼100 MeV or more. We perform this calculation for
UK = −100,−160 MeV and the corresponding kaon-scalar
coupling constants are taken from Table II of Ref. [14].

We study the evolution of a hot neutron star after the
emission of trapped neutrinos to the cold neutron star in
this calculation. As the temperature varies from the center
to the surface, we consider certain fixed entropy per baryon
situations corresponding to the hot neutron star. Here we
consider second order antikaon condensation for both values
of UK = −100,−160 MeV. It was already noted by Pons
et al. [18] that the phase transition which was first order
at zero temperature for moderate values of antikaon optical
potential depth, became second order phase transition at
finite temperature. Further they observed that when the
antikaon condensation was a first order phase transition at
finite temperature for strongly attractive antikaon potential,
its pressure-energy density relation was similar to that of a
second order phase transition. We show the temperature as
a function of baryon density for S = 2 and UK = −100,

−160 MeV in Fig. 1 Temperature increases with baryon
density for both cases. The temperature for UK = −160 falls
below that of UK = −100 MeV case due to the early onset of
K− condensation in the former case.
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FIG. 1. Temperature is plotted with normalized baryon density
for entropy per baryon S = 2 and antikaon optical potential depth at
normal nuclear matter density UK̄ = −100, −160 MeV.

At zero temperature, the threshold density of K− conden-
sation is 3.4n0 for UK = −100 MeV whereas it is 2.4n0

for UK = −160 MeV. Finite temperature effects shift the
threshold of the condensation to higher density [18]. For
S = 2 and UK = −100,−160 MeV, threshold densities of
K− condensation are 4.0n0 and 2.7n0, respectively. In Fig. 2
the populations of thermal (anti)kaons (dotted line) and K−
mesons in the condensate (dashed line) in β-equilibrated
matter are shown with baryon density for S = 2 case and
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FIG. 2. Kaon number densities nK in β-equilibrated nuclear mat-
ter including K− condensate are shown as a function of normalized
baryon density for entropy per baryon S = 2 and antikaon optical
potential depth at normal nuclear matter density UK̄ = −160 MeV.
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FIG. 3. The ratio of the density of K− mesons in the condensate
at a nonzero temperature to that of zero temperature is plotted with
temperature for fixed baryon number densities and antikaon optical
potential depth at normal nuclear matter density UK̄ = −160 MeV.

UK = −160 MeV. The total density of (anti)kaons is given
by the solid line. The thermal (anti)kaons are populated
well before the threshold of the condensate. As soon as the
condensation sets in, the density of K− mesons takes over the
thermal contribution. It is worth mentioning here that the onset
of antikaon condensation for a particular value of UK is shifted
to higher density for larger value of S.

Now we focus on the determination of critical temperature
(TC) for antikaon condensation. The condensate does not exist
for temperatures T > TC . The density of K− mesons in the
condensate is a function of baryon density and temperature. We
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FIG. 4. Same as Fig. 3 but for antikaon optical potential depth at
normal nuclear matter density UK̄ = −100 MeV.
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FIG. 5. Entropy per baryon is plotted with temperature for fixed
baryon number densities and antikaon optical potential depth at
normal nuclear matter density UK̄ = −160 MeV.

find that the density of antikaons in the condensate increases
with baryon density and temperature as it is evident from
Figs. 1 and 2. The ratio of the density of K− mesons in the
condensate (nC

K (T )) at finite temperature to that (nC
K (T = 0))

of zero temperature is plotted with temperature for several
fixed baryon densities and UK = −160 MeV in Fig. 3 Each
curve in the figure corresponds to a fixed baryon density.
In each case, the density of antikaons drops with increasing
temperature and the condensate melts down at certain tem-
perature which is defined as the critical temperature of the
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FIG. 6. Same as Fig. 5 but for antikaon optical potential depth at
normal nuclear matter density UK̄ = −100 MeV.
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FIG. 7. Phase diagram of nuclear matter with K− condensate.
The solid and dashed lines correspond to critical temperatures of K−

condensation for antikaon optical potential depths at normal nuclear
matter density UK̄ = −100, −160 MeV, respectively.

condensation. We note that the critical temperature increases
as baryon density increases. Similar investigation is done for
UK = −100 MeV and different fixed baryon densities. These
results are shown in Fig. 4 As in Fig. 3 we obtain the same
feature of the critical temperature as a function of baryon
density for UK = −100 MeV. However, the comparison of
same fixed baryon density curve, for example 4n0 in Figs. 3
and 4, shows that the critical temperature for UK = −100 MeV
is much smaller than that of UK = −160 MeV case. It is to
be noted here that the hot neutron star after trapped neutrinos
are emitted has a maximum entropy per baryon S = 2 [18].
However, we have obtained large values of temperatures for
certain fixed baryon densities in Figs. 3 and 4 which correspond
to S > 2. Such high temperature or the corresponding entropy
per baryon might not be relevant for a protoneutron star but
it could be important for dense matter formed in heavy ion
experiments in upcoming accelerator facilities.

Entropy per baryon is plotted with temperature for UK =
−160,−100 MeV in Figs. 5 and 6, respectively. Each curve
in both figures corresponds to a fixed value of baryon density.
The end point of each curve in Figs. 5 and 6 indicates the

corresponding critical temperature as it is obtained in Figs. 3
and 4, respectively. For UK = −160 MeV, we vary entropy
per baryon from S = 0 to 5.5 to get critical temperatures
whereas we use S = 0 to 2.75 for the calculation with UK =
−100 MeV.

Now we know the critical temperature as a function of
baryon density. It is straight forward to construct a phase dia-
gram of nuclear matter with K− condensate. Figure 7 displays
temperature versus baryon density for β equilibrated nuclear
matter with the antikaon condensate. The critical temperature
lines for UK = −160 MeV (solid line) and UK = −100 MeV
(dashed line) separate two phases. The condensed phase exists
below the critical temperature lines and the nuclear matter
phase above them. Similarly a phase diagram with antikaon
condensate could be constructed for heavy ion collisions which
might be probed in future experiments at FAIR, GSI. It is to
be noted that the attractive antikaon-nucleon interaction drives
antikaon condensation in neutron stars as well as heavy ion
collisions. Heavy ion collisions in compressed baryon matter
(CBM) experiment in FAIR might produce matter with density
a few times normal nuclear matter density and temperature
a few tens of MeV. Such a scenario would be relevant for
medium modification of the mass and energy of K− meson due
to attractive nucleon-antikaon interaction [26]. Consequently,
it might lead to K− condensate at finite temperature. The
formation of an antikaon condensate in heavy ion collisions
might lead to enhanced production of strange hadrons [1].

IV. SUMMARY

We have investigated the critical temperature of K−
condensation in β equilibrated nuclear matter for antikaon
optical potential depths UK = −100,−160 MeV within the
framework of field theoretical models. Critical temperature of
antikaon condensation increases with baryon density. For the
same baryon density, the critical temperature is larger in case of
UK = −160 MeV than that of UK = −100 MeV. We construct
the phase diagram of β equilibrated nuclear matter with
K− condensate. Further we discuss antikaon condensation in
heavy ion collisions and its implications to future heavy ion
experiments at FAIR, GSI.
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