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Green’s function Monte Carlo calculations of magnetic moments and M1 transitions including two-body
meson-exchange current (MEC) contributions are reported for A � 7 nuclei. The realistic Argonne v18 two-
nucleon and Illinois-2 three-nucleon potentials are used to generate the nuclear wave functions. The two-body
meson-exchange operators are constructed to satisfy the continuity equation with the Argonne v18 potential. The
MEC contributions increase the A = 3, 7 isovector magnetic moments by 16% and the A = 6, 7 M1 transition
rates by 17–34%, bringing them into very good agreement with the experimental data.
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I. INTRODUCTION

In a recent paper [1], we reported quantum Monte Carlo
(QMC) calculations of electroweak transitions in A = 6, 7
nuclei. The QMC method is a two-step process, with an initial
variational Monte Carlo (VMC) calculation to find a good trial
function, followed by a Green’s function Monte Carlo (GFMC)
calculation to refine the solution. When used with the Argonne
v18 two-nucleon [2] (NN ) and Illinois-2 three-nucleon [3]
(3N ) potentials, the final GFMC results reproduce the ground-
and excited-state energies for A � 10 nuclei [4–7] very well.

In Ref. [1], we studied magnetic dipole (M1) and electric
quadrupole (E2) transitions and nuclear β-decay (Fermi
and Gamow-Teller) rates. These were the first off-diagonal
matrix element calculations using the nuclear GFMC method.
However, only one-body transition operators were used to
calculate the matrix elements. We noted that two-body meson-
exchange-current (MEC) operators are known to increase
isovector magnetic moments by 15–20% for A = 3 nuclei [8],
while a previous VMC calculation for the width of the first
M1 transition in 6Li was also increased by 20% [9]. In this
paper, we use GFMC wave functions to investigate MEC
contributions to magnetic moments for the ground states of
A = 2–7 nuclei as well as a number of M1 transitions in
A = 6, 7 nuclei. We find significant isovector contributions
from the MEC operators and overall very good agreement
with experiment.

A brief review of the QMC calculational method is given
in Sec. II. The electromagnetic current operator is discussed
in detail in Sec. III. Results and conclusions are given in
Secs. IV and V.
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II. QUANTUM MONTE CARLO METHOD FOR
TRANSITIONS

We evaluate the diagonal magnetic moment matrix element
〈�(Jπ ; T )|O|�(Jπ ; T )〉 and the off-diagonal transition ma-
trix element 〈�f (Jπ ′

; T ′)|O|�i(Jπ ; T )〉, where O is the full
electromagnetic operator. The nuclear wave function with a
specific spin-parity Jπ and isospin T is denoted as �(Jπ ; T )
and is a solution of the many-body Schrödinger equation

H�(Jπ ; T ) = E�(Jπ ; T ). (1)

The Hamiltonian used here has the form

H =
∑

i

Ki +
∑
i<j

vij +
∑

i<j<k

Vijk, (2)

where Ki is the nonrelativistic kinetic energy, and vij and Vijk

are, respectively, the Argonne v18 (AV18) [2] and Illinois-2
(IL2) [3] potentials. The VMC trial function �T (Jπ ; T ) for
a given nucleus is constructed from products of two- and
three-body correlation operators acting on an antisymmetric
single-particle state of the appropriate quantum numbers. The
correlation operators are designed to reflect the influence of
the interactions at short distances, while appropriate boundary
conditions are imposed at long range [10,11]. The �T (Jπ ; T )
has embedded variational parameters that are adjusted to
minimize the expectation value

EV = 〈�T |H |�T 〉
〈�T |�T 〉 � E0, (3)

which is evaluated by Metropolis Monte Carlo integration [12].
Here E0 is the exact lowest eigenvalue of H for the specified
quantum numbers. A good variational trial function has the
form

|�T 〉 =

1 +

∑
i<j<k

ŨTNI
ijk





S

∏
i<j

(1 + Uij )


 |�J 〉. (4)
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The Jastrow wave function �J is fully antisymmetric and
has the (Jπ ; T ) quantum numbers of the state of interest,
while Uij and ŨTNI

ijk are the two- and three-body correlation
operators. More details may be found in Ref. [1]. The error in
the variational energy EV is of order |�0 − �T |2/|�T |2, where
�0 is the exact lowest-energy eigenstate of H for a given set
of quantum numbers. Other expectation values calculated with
�T have errors of order |�0 − �T |/|�T |.

The GFMC method [13,14] reduces the VMC errors by
using the relation

�0 = lim
τ→∞ exp[−(H − E0)τ ]�T ; (5)

that is, the operator exp[−(H − E0)τ ] projects �0 out of
�T . If the maximum τ actually used is large enough, the
eigenvalue E0 is calculated exactly, whereas other expectation
values are generally calculated neglecting terms of order
|�0 − �T |2/|�T |2 and higher [11].

In the following, we present a brief overview of the nuclear
GFMC method; much more detail may be found in Refs. [11,
15]. We start with the �T of Eq. (4) and define the propagated
wave function �(τ ) as

�(τ ) = e−(H−E0)τ�T = [
e−(H−E0)�τ

]n
�T , (6)

where we have introduced a small time step, τ = n�τ ;
obviously, �(τ = 0) = �T and �(τ → ∞) = �0. Quantities
of interest are evaluated in terms of a “mixed” expectation
value between �T and �(τ ):

〈O(τ )〉M = 〈�(τ )|O|�T 〉
〈�(τ )|�T 〉 . (7)

The desired expectation values would, of course, have �(τ )
on both sides; by writing �(τ ) = �T + δ�(τ ) and neglecting
terms of order [δ�(τ )]2, we obtain the approximate expression

〈O(τ )〉 = 〈�(τ )|O|�(τ )〉
〈�(τ )|�(τ )〉

≈ 〈O(τ )〉M + [〈O(τ )〉M − 〈O〉V ], (8)

where 〈O〉V is the variational expectation value.
For off-diagonal matrix elements relevant to this work, the

generalized mixed estimate is given by the expression

〈�f (τ )|O|�i(τ )〉√
〈�f (τ )|�f (τ )〉

√
〈�i(τ )|�i(τ )〉

≈ 〈O(τ )〉Mi
+ 〈O(τ )〉Mf

− 〈O〉V , (9)

where

〈O(τ )〉Mi
=

〈
�

f

T

∣∣O|�i(τ )〉〈
�i

T

∣∣�i(τ )
〉

√√√√ 〈
�i

T

∣∣�i
T

〉
〈
�

f

T

∣∣�f

T

〉 , (10)

and 〈O(τ )〉Mf
is defined similarly. For more details, see

Eqs. (19)–(24) and the accompanying discussions in Ref. [1].

III. THE ELECTROMAGNETIC CURRENT OPERATOR

The model used for the nuclear electromagnetic current
operator j(q) is based on the study of Ref. [16]. It represents

j(q) as a sum of one-, two-, and three-body terms that operate
on the nucleon degrees of freedom, i.e.,

j(q) =
∑

i

ji(q) +
∑
i<j

jij (q) +
∑

i<j<k

jijk(q), (11)

q being the three-momentum transfer. The one-body operator
ji(q) is derived from the nonrelativistic reduction of the
covariant single-nucleon current, by expanding in inverse
powers of the nucleon mass m. In the notation of Ref. [8],
it is written as

ji(q) = εi

2m
{pi , e

iq·ri } + i

2m
µiσ i × q eiq·ri , (12)

where {. . . , . . .} denotes the anticommutator, the quantities εi

and µi are defined as

εi = 1
2

[
GS

E

(
q2

µ

) + GV
E

(
q2

µ

)
τi,z

]
, (13)

µi = 1
2

[
GS

M

(
q2

µ

) + GV
M

(
q2

µ

)
τi,z

]
, (14)

and p, σ , and τ are the nucleon’s momentum, Pauli spin, and
isospin operators, respectively. Finally, GS

E(q2
µ)[GS

M (q2
µ)] and

GV
E (q2

µ)[GV
M (q2

µ)] are the isoscalar and isovector combinations
of the nucleon electric (magnetic) Sachs form factors, respec-
tively, evaluated at the four-momentum transfer q2

µ = q2 − ω2

with ω =
√

q2 + M2
f − Mi , where Mi and Mf are initial

and final nuclear masses (only elastic scattering or inelastic
scattering to discrete final states are considered in the present
work).

The current operator satisfies the current conservation
relation (CCR)

q · j(q) = [H, ρ(q)]. (15)

Here H is the nuclear Hamiltonian consisting of two- and
three-nucleon interactions, the AV18 [2] and IL2 [3] potentials,
respectively, and ρ(q) is the charge operator which, to lowest
order in 1/m, is written as

ρ(q) =
∑

i

ρi(q), (16)

with

ρi(q) = εi e
iq·ri . (17)

To this order, the CCR separates into

q · ji(q) =
[

p2
i

2m
, ρi(q)

]
, (18)

q · jij (q) = [vij , ρi(q) + ρj (q)], (19)

and similarly for the three-body current jijk(q). The one-body
current of Eq. (12) is easily seen to satisfy Eq. (18).

A. Two-nucleon current

The two-body current operator jij (q) is separated into two
parts, labeled model-independent (MI) and model-dependent
(MD), following the scheme of Ref. [17]. The MI two-body
currents have longitudinal components that satisfy the CCR
of Eq. (19) with the NN potential vij , i.e., the AV18 [2]. The
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potential can be written as

vij = vIC
ij + vIB

ij , vIC
ij = v0

ij + v
p

ij , (20)

where vIC
ij and vIB

ij are the isospin-symmetry conserving (IC)
and breaking (IB) parts of the potential, respectively, and
v0

ij and v
p

ij are the momentum-independent and momentum-
dependent parts of the interaction. For the AV18, v0

ij corre-
sponds to the contributions of the static components, including
isospin-independent and isospin-dependent central, spin-spin,
and tensor terms, while v

p

ij retains the contributions from the
spin-orbit and quadratic momentum-dependent components.
The vIB

ij part in the AV18 is parametrized by the four operators

O
p=15,...,18
ij = Tij , σ i · σ j Tij , SijTij , (τi,z + τj,z), (21)

where Sij is the standard tensor operator, and the isotensor
operator Tij is defined as Tij = 3τi,z τj,z − τ i · τ j .

The MI two-body currents arising from v0
ij have

been constructed following the procedure of Ref. [18], which
will be hereafter referred to as the meson-exchange (ME)
scheme. Within this scheme, the isospin-dependent static part
of v0

ij is assumed to be induced by exchanges of effective
pseudoscalar (PS), or “π -like,” and vector (V), or “ρ-like,”
mesons. The propagators associated with these exchanges are
projected out of the (isospin-dependent) central, spin-spin, and
tensor components of v0

ij . The resulting two-body currents
satisfy the CCR with v0

ij by construction. Explicit expressions
can be found in a number of references (see Ref. [16] and
references therein).

The currents arising from v
p

ij have been obtained following
the procedure of Ref. [19], which will be referred to as the
minimal-substitution (MS) scheme, which is reviewed and
generalized in Ref. [16]. We first note that the isospin operator
τ i · τ j can be expressed in terms of the space-exchange
operator Pij , using the relation

τ i · τ j = −1 − (1 + σ i · σ j )Pij , (22)

valid when operating on antisymmetric wave functions. The
operator Pij is defined as Pij = erji ·∇i+rij ·∇j , where the ∇
operators do not act on the vectors rij = ri − rj = −rji

in the exponential. In the presence of an electromagnetic
field, minimal substitution is performed both in the explicit
momentum dependence of the two-nucleon potential as well as
in the implicit momentum dependence implied by τ i · τ j . The
resulting current operators have been derived in Ref. [16]. Here
we only list the final result for the current operators associated
with the isospin-independent and isospin-dependent spin-orbit
interaction. In this case, v

p

ij can be expressed as

v
p

ij = v
p

1,ij + v
p

2,ijτ i · τ j , (23)

where

v
p

1,ij = vls(r) L · S,
(24)

v
p

2,ij = vlsτ (r) L · S,

with L = rij × (pi − pj )/2, S is the total spin of pair ij , and
vls and vlsτ are the spin-orbit parts of the NN potential.
Performing minimal substitution in v

p

1 , we obtain

jij (q; ls) = 1
2vls(r) (εi e

iq·ri − εj e
iq·rj ) S × rij . (25)

For the isospin-dependent term v
p

2 , we first symmetrize it as

v
p

2,ij τ i · τ j = 1
2vlsτ (r) (L · Sτ i · τ j + τ i · τ j L · S), (26)

and the associated current then reads

jij (q; lsτ ) = 1

4
vlsτ (r) S × rij

(
ηje

iq·ri − ηie
iq·rj

)
+ 1

2
vlsτ (r) GV

E

(
q2

µ

)
(τ i × τ j )z

×
(

L · S
∫

γij

ds eiq·s +
∫

γ ′
ji

ds eiq·s L · S
)

, (27)

with ηi = GS
E(q2

µ) τ i · τ j + GV
E(q2

µ)τi,z, and ds is the infinites-
imal step on the generic path γij (γ ′

ji) that goes from position
i (j ) to position j (i). Since the choice of the two integration
paths γij and γ ′

ji is arbitrary, the definition given above for
jij (q; lsτ ) is not unique. However, whatever choice is made,
the corresponding current will satisfy the CCR with v

p

2,ij by
construction. The simplest choice for γij (γ ′

ji) is that of a linear
path (LP), which leads to

jLP
ij (q; lsτ ) = 1

4vlsτ (r) S × rij

(
ηje

iq·ri − ηie
iq·rj

)
+ i

2vlsτ (r)GV
E

(
q2

µ

)
(τ i × τ j )z

× [(L · S) rij fij (q) + rij fij (q) (L · S)], (28)

where fij (q) is defined as

fij (q) = eiq·ri − eiq·rj

q · rij

, (29)

and fij (q = 0) = i. It is interesting to note that, in the limit
q → 0, the two-body current operator derived in the MS
scheme becomes path-independent and hence unique [16].
Therefore, for processes involving small momentum transfers,
the intrinsic arbitrariness of the MS scheme may be of little
consequence.

In earlier works (for example, Refs. [20–24]), the two-
body currents from the spin-orbit interaction were con-
structed within the ME scheme, by assuming that its isospin-
independent components are due to exchanges of “σ -like” and
“ω-like” mesons, while the isospin-dependent ones originate
from “ρ-like” exchanges. The resulting currents, however, are
not exactly conserved. This lack of consistency seems to lead
to a significant discrepancy between theory and experiment
in some of the pd radiative capture polarization observables,
specifically the tensor polarization observables T20 and T21, at
low energies [16].

The MI two-body currents arising from the IB terms are
generated by the operator τ i · τ j present in the isotensor
operator Tij and are easily constructed [16]. However, their
contributions have been found to be negligibly small in the
study of the electromagnetic structure of A = 2 and 3 nuclei.
This is also the case in the present study of electromagnetic
transitions in A = 6 and 7 nuclei.

The MD part of the two-body current is purely transverse
and therefore is not constrained by the CCR. The model
adopted here includes the (isoscalar) ρπγ and (isovector) ωπγ

transition currents, as well as the currents due to excitation
of intermediate � isobars. The latter are obtained within a
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nonperturbative treatment based on the transition correlation
operator approach, reviewed below in Sec. III B.

The ρπγ and ωπγ MD two-body currents are given by

jρπγ (ki , kj ) = i
fπNNgρNNgρπγ

mπmρ

τ i · τ j (ki × kj )

×
[

σ i · ki(
k2
i + m2

π

)(
k2
j + m2

ρ

)
− σ j · kj(

k2
i + m2

ρ

)(
k2
j + m2

π

)]
, (30)

jωπγ (ki , kj ) = i
fπNNgωNNgωπγ

mπmω

(ki × kj )

×
[

σ i · ki(
k2
i + m2

π

)(
k2
j + m2

ω

)τi,z

− σ j · kj(
k2
i + m2

ω

)(
k2
j + m2

π

)τj,z

]
. (31)

Here ki (kj ) denotes the fractional momentum transfer to nu-
cleon i (j ), so that ki + kj = q. The gρπγ , gρNN, gωπγ , gωNN ,
and fπNN are the ρπγ, ρNN,ωπγ, ωNN , and πNN coupling
constants, while mπ,mρ, and mω are the pion, ρ- and ω-meson
masses, respectively. Finally, monopole form factors at the
pion and vector-meson vertices, given by

fa(k) = 
2
a − m2

a


2
a + k2

, a = π, ρ, ω, (32)

are introduced, to take into account the finite size of nucleons
and mesons. The values of all the coupling constants and
the cutoffs 
a adopted in this work are listed in Table I.
In particular, the ρπγ and ωπγ coupling constants are
obtained from the measured widths of the ρ → π + γ [25] and
ω → π + γ [26] decays, while the ωNN coupling constant
and the cutoffs 
π,
ρ , and 
ω are rather soft but still close
to those inferred from models of the NN potential.

In Ref. [16], the currents induced by the three-nucleon
interaction Vijk associated with P -wave two-pion exchange
were also constructed. However, their contribution to A = 3
observables was calculated to be quite small. These currents
are neglected in the present study.

B. Beyond nucleons only

The simplest description of the nucleus views it as being
made up of nucleons and assumes that all other subnucleonic
degrees of freedom may be eliminated in favor of effective
many-body operators acting on the nucleon coordinates. The
validity of such a description is based on the success it
has achieved in the quantitative prediction of many nuclear

observables [8]. However, it is interesting to consider cor-
rections to this picture by including the degrees of freedom
associated with nuclear resonances as additional constituents
of the nucleus. When treating phenomena that do not involve
explicitly meson production, it is reasonable to expect that
the lowest excitation of the nucleon, the � isobar, plays a
leading role. In this approximation, the nuclear wave function
is written as

�N+� = �(NN · · · N ) + �(1)(NN · · ·N�)

+�(2)(NN · · ·N��) + · · · , (33)

where � is the part of the total wave function consisting only
of nucleons, �(1) is the component in which a single nucleon
has been converted into a � isobar, and so on. The nuclear
two-body interaction is taken as

vij =
∑

Bi,Bj =N,�

∑
B ′

i ,B
′
j =N,�

vij (BiBj → B ′
iB

′
j ), (34)

where transition interactions such as vij (NN → N�),
vij (NN → ��), etc., are responsible for generating �-isobar
admixtures in the wave function. The long-range part of vij is
due to pion exchange, while its short- and intermediate-range
parts, influenced by more complex dynamics, are constrained
by fitting NN scattering data at laboratory energy �400 MeV
and deuteron properties [27].

Once the NN,N�, and �� interactions have been deter-
mined, the problem is reduced to solving the N + � coupled-
channel Schrödinger equation. However, this would involve a
large number of N + � channels, and therefore the practical
implementation of this method is very difficult. In a somewhat
simpler approach, known as the transition-correlation-operator
(TCO) method [28], the nuclear wave function is written as

�N+� =

S

∏
i<j

(
1 + U tr

ij

) �, (35)

where � is the nucleons-only wave function, S is a sym-
metrizer, and the transition operators U tr

ij are defined as

U tr
ij = UN�

ij + U�N
ij + U��

ij , (36)

UN�
ij = [

uστ II(rij ) σ i · Sj + utτ II(rij )SII
ij

]
τ i · Tj , (37)

U��
ij = [

uστ III(rij ) Si · Sj + utτ III(rij )SIII
ij

]
Ti · Tj . (38)

Here, Si and Ti are spin- and isospin-transition operators that
convert nucleon i into a � isobar, SII

ij and SIII
ij are tensor

operators in which, respectively, the Pauli spin operators
of either particle i or j , and both particles i and j are
replaced by corresponding spin-transition operators. The U tr

ij

vanishes in the limit of large interparticle separations, since
no � components can exist asymptotically. The functions

TABLE I. Values of the coupling constants fπNN, gρNN , gωNN, gρπγ , and gωπγ and
monopole form factor cutoffs 
π, 
ρ , and 
ω (in GeV) used in the present work.

f 2
πNN/4π g2

ρNN/4π g2
ωNN/4π gρπγ gωπγ 
π 
ρ 
ω

0.075 0.55 16.96 0.56 0.63 0.75 1.25 1.25
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uστ II(r), utτ II(r), etc., are obtained from two-body bound
and low-energy scattering state solutions of the full N + �

coupled-channel problem, with the Argonne v28 (AV28) model
[27] as discussed in Ref. [28].

We note that the perturbation theory (PT) description of �

admixtures is equivalent to the replacements

U
N�,PT
ij = vij (NN → N�)

m − m�

, (39)

U
��,PT
ij = vij (NN → ��)

2(m − m�)
, (40)

where the kinetic energy contributions in the denominators of
Eqs. (39) and (40) have been neglected (static � approxima-
tion). Note that the transition interactions vij (NN → N�) and
vij (NN → ��) have the same operator structure as UN�

ij and
U��

ij of Eqs. (37) and (38), but with the uστα(r) and utτα(r)
functions replaced by, respectively,

vστα(r) = (ff )α
4π

mπ

3

e−x

x
C(x), (41)

vtτα(r) = (ff )α
4π

mπ

3

(
1 + 3

x
+ 3

x2

)
e−x

x
C2(x). (42)

Here α = II, III; x ≡ mπr; (ff )α = fπNNfπN�, fπN�fπN�

for α = II, III, respectively; and the cutoff function
C(x) = 1 − e−λx2

, with λ = 4.09. In the AV28 model [27],
fπN� = 2fπNN . This perturbative treatment has been often
used in the literature to estimate the effect of � degrees of
freedom on electroweak observables. However, it may lead to
a substantial over prediction of their importance [23,28], since
it produces N� and �� wave functions which are too large
at short distance.

The nuclear electromagnetic current is now expanded into
a sum of many-body terms as in Eq. (11). However, here each
term operates not only on the nucleon, but also on the �-isobar
degrees of freedom. Therefore, the one- and two-body currents
(ignoring three-body currents) are written as

j(1)
i (q) =

∑
B,B ′=N,�

ji(q; B → B ′), (43)

j(2)
ij (q) =

∑
Bi,Bj =N,�

∑
B ′

i ,B
′
j =N,�

jij (q; BiBj → B ′
iB

′
j ).

(44)

In the present work, however, we only keep the purely
nucleonic two-body currents discussed in the previous section.

The one-body N → � transition and � currents are given
by

ji(q; N → �) = − i

2m
GγN�

(
q2

µ

)
eiq·ri q × SiTz,i , (45)

ji(q; � → �) = − i

24m
Gγ��

(
q2

µ

)
eiq·ri q × �i(1 + �z,i),

(46)

where �(�) is the Pauli operator for the � spin 3/2 (isospin
3/2), and the expression for ji(q; � → N ) is obtained from that
for ji(q; N → �) by replacing the transition spin and isospin
operators by their Hermitian conjugates. The N� transition
and � electromagnetic form factors, respectively, GγN� and

Gγ��, are parametrized as

GγN�

(
q2

µ

) = µγN�(
1 + q2

µ

/

2

N�,1

)2
√

1 + q2
µ

/

2

N�,2

, (47)

Gγ��

(
q2

µ

) = µγ��(
1 + q2

µ

/

2

��

)2 . (48)

Here the N�-transition magnetic moment µγN� is taken
equal to 3µN , as obtained from an analysis of γN data
in the �-resonance region [29]; this analysis also gives

N�,1 = 0.84 and 
N�,2 = 1.2 GeV. The value used for
the � magnetic moment µγ�� is 4.35µN by averaging results
of a soft-photon analysis of pion-proton bremsstrahlung data
near the �++ resonance [30], and 
�� = 0.84 GeV as in the
dipole parametrization of the nucleon form factor. In principle,
N to � excitation can also occur via an electric quadrupole
transition. Its contribution, however, has been ignored, since
the associated pion photoproduction amplitude is found to be
experimentally small at resonance [31]. Also neglected is the
� convection current.

C. Matrix elements

Matrix elements of the current operator can be written
schematically as

jf i = 〈�N+�,f |j |�N+�,i〉[〈�N+�,f |�N+�,f 〉〈�N+�,i |�N+�,i〉
]1/2 , (49)

where the initial and final state wave functions include both
nucleonic and �-isobar degrees of freedom. It is convenient
to expand �N+� as

�N+� = � +
∑
i<j

U tr
ij� + · · · , (50)

and the matrix element of the current operator becomes

〈�N+�,f |j |�N+�,i〉 = 〈�f |j (N only)|�i〉 + 〈�f |j (�)|�i〉.
(51)

Here j (N only) denotes all one- and two-body contributions
to j(q) which only involve nucleon degrees of freedom, i.e.,
j (N only) = j (1)(N → N ) + j (2)(NN → NN ). The operator
j (�) includes terms involving the �-isobar degrees of
freedom, associated with the explicit � currents j (1)(N →
�), j (1)(� → N ), and j (1)(� → �), and with the transition
operators U tr

ij . The operator j (�) is illustrated diagram-
matically in Fig. 1. The terms (a)–(g) in Fig. 1 are two-
body current operators, while the terms (h)–(j) are to be
interpreted as renormalization corrections to the “nucleonic”
matrix elements 〈�f |j (Nonly)|�i〉, due to the presence of �

admixtures in the wave functions. We note that not included
in j (�) are all remaining connected three-body contributions
of the type of Fig. 2, which are expected to be significantly
smaller than those considered in Fig. 1.

The terms in Fig. 1 are expanded as operators acting on the
nucleon coordinates. For example, the terms (a) and (e) have
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(a) (b) (c) (d)

(e) (f) (g)

(h) (i)  (j)

FIG. 1. Diagrammatic representation of operators included in
j (�) due to one-body currents j (1)(N → �), j (1)(� → N ), and
j (1)(� → �), and transition correlations UN�, U�N,U��, and
corresponding Hermitian conjugates. Wavy, thin, thick, dashed,
and dashed with a × lines denote photons, nucleons, � isobars,

and transition correlations UBB ′
and UBB ′ †

, respectively.

the structure

(a) = j
(1)
i (� → N ) U�N

ij , (52)

(e) = U�N
ij

†
j

(1)
i (� → �) U�N

ij , (53)

which can be reduced to operators involving only Pauli spin
and isospin matrices by using the identities

S† · A S · B = 2

3
A · B − i

3
σ · (A × B), (54)

S† · A � · B S · C = 5

3
i A · (B × C) − 1

3
σ · A B · C

−1

3
A · B C · σ + 4

3
A · (B · σ )C, (55)

where A, B, and C are vector operators that commute with
σ , but not necessarily among themselves. Expressions for the
other terms of Fig. 1 are obtained in a similar fashion.

The denominator of Eq. (49) requires the calculation of the
initial and final state wave function renormalizations, which

(a) (b) (c)

FIG. 2. Diagrams associated with connected three-body terms,
which are neglected in the present work. Wavy, thin, thick, dotted,
dashed, and dashed with a × lines denote photons, nucleons, �

isobars, the two-body current j (2)(NN → NN ), and the transition

correlations UBB ′
and UBB ′ †

respectively.

TABLE II. Wave function renormalizations N� obtained for the
A = 2–7 nuclei, when the TCO calculation based on the AV28
interaction is used with purely nucleonic GFMC wave functions for
the AV18 + IL2 Hamiltonian model.

2H 3H 3He 6Li 7Li 7Be

1.0023 1.016 1.016 1.050 1.071 1.073(1)

are given by

(N�)2 = 〈�N+�|�N+�〉
〈�|�〉

= 〈�|1 + ∑
i<j

[
2 U�N

ij

†
U�N

ij + U��
ij

†
U��

ij

]|�〉
〈�|�〉

+ (three-body terms), (56)

and the three-body terms have been neglected consistently with
the approximation introduced in Eq. (51), as discussed above.
The wave function renormalizations N� for the different
nuclei considered in the present work are listed in Table II.
The TCO approximation of Eq. (50) gives a renormalization
of 1.0023 for the deuteron, whereas the exact coupled-
channel result for the AV28 potential is 1.0026. Note that PT
estimates of the importance of �-isobar degrees of freedom
in photo- and electro-nuclear observables typically include
only the contribution from single N ⇀↽ � transitions [namely,
diagrams (a) and (b) in Fig. 1] and ignore the change in the
wave function normalization.

IV. RESULTS

In Ref. [1], we reported results for 15 electroweak
transitions in A = 6, 7 nuclei. We pointed out that MEC
contributions are expected to be significant in magnetic
moment µ and magnetic dipole M1 transition calculations.
Here we present our results for µ for A = 2–7 and M1
transitions for A = 6, 7 including the MEC contributions. The
first subsection discusses the magnetic moment results for
A = 2–7 nuclei, and the second subsection discusses the M1
transitions in A = 6, 7 nuclei.

The calculation of µ or M1 transitions is fairly straight-
forward. For example, µ is obtained from the diagonal matrix
element

µ = −i lim
q→0

2m

q
〈Jπ ,MJ = J ; T |jy(qx̂)|Jπ ,MJ = J ; T 〉,

(57)

where the momentum transfer q is taken along the x̂ axis,
the nuclear state with angular momentum quantized along the
ẑ axis has MJ = J , and m is the nucleon mass. The VMC
or GFMC wave function for the given (Jπ,MJ = J ; T ) state
is then constructed. Evaluation of the various contributions
is done as a function of the momentum transfer q for several
small values q < 0.05 fm−1 and then extrapolated smoothly to
the limit q = 0. The error due to extrapolation is much smaller
than the statistical error in the Monte Carlo sampling.
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In the tables below, we present the one-body, i.e., impulse
approximation (IA), results and contributions from various
pieces of the two-body MEC operators separately: pseu-
doscalar + vector (PS + V), minimal-substitution (MS),
model-dependent (MD), and �. The � column includes
contributions from both the explicit MEC terms of Eqs. (45)
and (46) and the renormalization of the nucleons-only terms
as given by Eq. (49):

� = 〈�f |j (�) + j (Nonly)|�i〉
N�

f N�
i 〈�f |�f 〉〈�i |�i〉

− 〈�f |j (Nonly)|�i〉
〈�f |�f 〉〈�i |�i〉 . (58)

A. Magnetic moments in A = 2–7 nuclei

Table III shows the magnetic moment results for A = 2–7
nuclei. The last two columns list the total magnetic moments
and corresponding experimental numbers [32,33]. The total
µ is obtained from the sum of the IA and the two-body
contributions from various pieces. Apart from the 2H case,
we present the VMC results followed by the GFMC results in
the following row for each magnetic moment. Hyperspherical
harmonics (HH) results for the trinucleons interacting by
the AV18 NN potential and older Urbana-IX (UIX) [34]
3N potential are shown for comparison. We also present
the GFMC isoscalar and isovector combinations for A =
3, 7.

The results presented in Table III show the significant
impact of the two-body operators in those cases with nuclear
isospin T = 1/2. MEC contributions boost the IA by about
16% in the A = 3 isovector case and by about 19% in the
A = 7 nuclear states. For the two T = 0 states, namely, 2H and

6Li, we see that the IA magnetic moments are not modified
significantly by the MEC, as expected for any isoscalar
state. We note, however, that the present isoscalar MEC
contributions to the deuteron magnetic moment are smaller
than reported previously in Ref. [2]. This is the result of the
different way in which two-body currents from the momentum-
dependent components of the AV18 have been constructed in
this work (see Ref. [16] for a discussion of this issue).

The magnetic moments for 3H and 3He are closer to the
experimental values of µ in both cases when the MEC con-
tributions are added to the IA values. The major contributions
come from the pseudoscalar and vector piece of the currents.
The model-dependent piece and � contributions are small but
not insignificant, while the minimal substitution piece is tiny.
We also note that the VMC, GFMC, and HH results are all
very close to each other for all the separate pieces as well as
for the total µ.

The simplest picture of 3H consists of an S = 0 pair of
neutrons and a proton, all in a total L = 0 state. That of
3He is the same with proton and neutron interchanged. In
this picture, the impulse approximation magnetic moments
of 3H and 3He would be the same as those of the proton
and neutron, respectively: 2.79 and –1.91. As can be seen
in Table III, the GFMC impulse magnetic moments are 8%
smaller in magnitude than these. This is largely due to the
tensor force which has several effects: (1) the wave functions
contain ∼9% of L = 2 components which result in orbital
contributions of +0.04 and +0.05 to the magnetic moments
of 3H and 3He, respectively, (2) the odd nucleon is not 100%
aligned with the nuclear spin, and (3) the pair of like nucleons
has ∼10% S = 1 component [35]. The last two effects reduce

TABLE III. Magnetic moments in nuclear magnetons for A = 2–7 nuclei; IA, PS, V, MS, MD stand for impulse approximation,
pseudoscalar, vector, minimal-substitution, and model-dependent, respectively. Details can be found in the text. IS and IV in the “Nucleus”
column denote the isoscalar and isovector combinations of the preceding nuclei. The experimental values are from the compendia [32]
except for the very recent measurement for 7Be [33]; they have been rounded to 3 decimals, except for 2H.

Nucleus Method IA MEC Total Expt.

PS + V MS MD �

2H 0.8467 0 −0.0022 0.0031 0.0009 0.8485 0.8574

3H VMC 2.580 0.319 −0.002 0.017 0.018 2.932(1) 2.979
3H GFMC 2.573(2) 0.322(2) −0.002 0.017 0.014 2.924(3) 2.979
3H HH 2.575 0.321 −0.001 0.017 0.014 2.926 2.979
3He VMC −1.766 −0.317 −0.001 −0.010 −0.013 −2.107(1) −2.128
3He GFMC −1.756(2) −0.318(2) −0.001 −0.010 −0.018 −2.103(3) −2.128
3He HH −1.764 −0.316 −0.001 −0.010 −0.014 −2.105 −2.128
IS GFMC 0.408 0.001 0.002 0.003 −0.003 0.411 0.426
IV GFMC 4.329 0.640 0.001 0.027 0.030 5.027 5.107

6Li VMC 0.815(1) 0 −0.008 0.004 −0.006 0.805(1) 0.822
6Li GFMC 0.810(1) 0 −0.007 0.005 −0.008 0.800(1) 0.822

7Li VMC 2.906(4) 0.318(3) −0.011(1) 0.019 −0.042 3.190(7) 3.256
7Li GFMC 2.870(8) 0.340(6) −0.009(4) 0.020 −0.053 3.168(13) 3.256
7Be VMC −1.098(5) −0.317(6) 0.005 −0.012 −0.078 −1.503(5) −1.400
7Be GFMC −1.058(9) −0.343(6) 0.007 −0.011 −0.088 −1.493(15) −1.400
IS GFMC 0.906 0.001 −0.002 0.004 −0.073 0.836 0.929
IV GFMC 3.928 0.683 −0.019 0.030 0.039 4.661 4.654
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0.00 0.10 0.20 0.30 0.40 0.50

τ (MeV
-1

)

2.8

2.9

3.0

3.1

3.2

〈J
µ 

J〉 IA
Total

VMC

7
Li

FIG. 3. (Color online) Extrapolated GFMC magnetic moment for
the 7Li( 3

2

−
) ground state in impulse approximation (green squares)

and with MEC (red circles). VMC values (purple lines) and averaged
GFMC values (lines with error bars) are also shown.

the spin contributions to the magnetic moments from the pure
nucleon values to 2.53 and −1.81.

A similar analysis of the A = 7 magnetic moments can
be made. The ground state of 7Li looks a great deal like
an α particle plus triton in relative P -wave motion, whereas
7Be looks like α plus 3He. Thus, the orbital contribution
to the A = 7 impulse magnetic moments is expected to be
significantly larger than for A = 3; it is 0.42 and 0.67 for 7Li
and 7Be, respectively. The spin contributions, 2.43 and –1.72
are quenched relative to the spin contributions to the A = 3
values; this is probably due to tensor interactions between a
nucleon in the α core and one in the valence A = 3 cluster.
The MEC contributions are generally larger in the A = 7
nuclei, again probably due to interactions between the core
and valence nucleons.

The GFMC propagation for the magnetic moment of the
7Li( 3

2
−

) ground state is shown in Fig. 3. In this figure, the two
solid purple lines correspond to the VMC (impulse and total)
values, the green squares (red circles) are extrapolated GFMC
impulse (total) propagations, and the solid green (red) lines
starting at τ = 0.1 MeV−1 are the final GFMC averages with
dashed lines to denote the Monte Carlo error. The GFMC

0.00 0.05 0.10 0.15 0.20 0.25 0.30

τ (MeV
-1

)

3.4

3.5

3.6

3.7

3.8

3.9

4.0

4.1

4.2

4.3

4.4

〈J
f  M

1 
J i〉 (

µ N
)

IA
Total

VMC

6
Li

FIG. 4. (Color online) Extrapolated GFMC M1 matrix element
for the 6Li(0+; 1) → 6Li(1+; 0) transition in impulse approximation
(green squares) and with MEC (red circles). VMC values (purple
lines) and averaged GFMC values (lines with error bars) are also
shown.

propagation reduces the VMC matrix element slightly in
both cases. The GFMC impulse result is only 88% of the
experimental value, but the MEC contributions raise the total
to 97%.

B. Magnetic dipole transitions in A = 6, 7 nuclei

In Table IV, we present the different contributions to the
matrix elements for M1 transitions in A = 6, 7 nuclei. As
in the case of magnetic moment calculations, we see that the
most significant contributions come from the pseudoscalar and
vector pieces of the two-body current operators.

The first two rows of Table IV show the various pieces
of the M1 matrix element for the 6Li(0+; 1) → 6Li(1+; 0)
transition. We note that both VMC and GFMC IA results are
boosted by 7–8% by MEC. The corresponding decay widths
for this transition are presented in Table V. The total width we
obtain from the VMC calculation agrees very well with the
experimental value, whereas the total GFMC width is slightly
outside of the present experimental range. Figure 4 shows

TABLE IV. Matrix elements of M1 transitions in A = 6, 7 nuclei. Column headings are defined in Table III.

J π
i → J π

f Method IA MEC Total

PS + V MS MD �

6Li(0+; 1) → 6Li(1+; 0) VMC 3.683(14) 0.307 0.003 0.010 −0.053 3.950(14)
6Li(0+; 1) → 6Li(1+; 0) GFMC 3.587(16) 0.323 0.002 0.012 −0.048 3.876(14)

7Li( 1
2

−
) → 7Li( 3

2

−
) VMC 2.743(17) 0.396 0.006 −0.017 −0.034 3.162(22)

7Li( 1
2

−
) → 7Li( 3

2

−
) GFMC 2.677(19) 0.395 0.011 −0.017 0.072 3.138(22)

7Be( 1
2

−
) → 7Be( 3

2

−
) VMC 2.420(30) 0.390 −0.005 0.010 −0.024 2.791(36)

7Be( 1
2

−
) → 7Be( 3

2

−
) GFMC 2.374(31) 0.394 −0.010 0.010 −0.002 2.766(36)
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TABLE V. Impulse approximation (IA) and total M1 transition widths in eV for A = 6, 7 nuclei.

J π
i → J π

f Mode VMC GFMC Expt.

IA Total IA Total

6Li(0+; 1) → 6Li(1+; 0) M1 7.09(6) 8.15(6) 6.72(6) 7.85(6) 8.19(17)
7Li( 1

2

−
) → 7Li( 3

2

−
) M1(10−3) 4.75(6) 6.31(9) 4.52(6) 6.21(9) 6.30(31)

7Be( 1
2

−
) → 7Be( 3

2

−
) M1(10−3) 2.62(7) 3.49(9) 2.52(7) 3.42(9) 3.43(45)

the matrix elements for this case as a function of τ . As in
the previous figure, the two solid purple lines represent the
VMC impulse and total estimates, the green squares represent
the GFMC propagated points for impulse, and the red circles
denote the total GFMC matrix elements. The average GFMC
results are shown as solid lines with error bars starting at
τ = 0.1 MeV−1. All the GFMC points as well as the averages
represent the extrapolated matrix elements. We note that, also
in the present case, the GFMC propagation slightly decreases
the VMC value for the 6Li(0+; 1) → 6Li(1+; 0) transition. We
see that the propagated points are quite stable with τ , which
we ran up to 0.3 MeV−1 in this case.

Table IV also shows two M1 transitions in A = 7 nuclei.
The MEC corrections are 15–17% of the M1 matrix elements
obtained in both VMC and GFMC calculations. The model-
independent pieces (PS + V) are the largest contributions
and are also very similar for both 7Li and 7Be. The decay
widths for 7Li( 1

2
−

) → 7Li( 3
2

−
) and 7Be( 1

2
−

) → 7Be( 3
2

−
)M1

transitions are shown in Table V. The total widths from both
VMC and GFMC match very well with the experimental decay
widths.

V. CONCLUSIONS

In summary, we have reported results for the magnetic
moments and magnetic dipole transitions in nuclei with
mass numbers A � 7. The calculations have used essentially
exact wave functions derived from a realistic Hamiltonian
that reproduces well the low-lying spectra of these nuclei
as well as of those in the mass range A = 8–10. Leading
terms in the nuclear electromagnetic current have been
constructed to satisfy current conservation with the two-
nucleon potential, AV18, used in the Hamiltonian. Addi-
tional contributions associated with the explicit presence of
�-isobar degrees of freedom have been accounted for by
including, in an approximate fashion, � components in the
nuclear wave functions with the transition-correlation-operator
method.

Overall, the agreement between the calculated and ex-
perimental magnetic moments and transition rates is quite
satisfactory, particularly in the isovector channel where dif-
ferences between computed and experimental amplitudes are
�1.5%. On the other hand, in the isoscalar channel, these
differences seem to progressively become worse as the mass
number increases; they are about 1% in deuteron, 4% in
3He/3H, and 10% in 7Be/7Li. Of course, isoscalar transitions

are suppressed both at the one- and two-body levels: the
IA current is proportional to the nucleon isoscalar magnetic
moment, which is five times smaller than the corresponding
isovector combination; leading two-body currents from pion-
exchange and � excitation have isovector character. Two-body
isoscalar contributions arise in the present study from short-
range mechanisms: the momentum-dependent components of
the AV18, the ρπγ transition current, and renormalization
corrections induced by � admixtures in the wave functions,
Eq. (58). In particular, the isoscalar contributions arising from
the momentum-dependent part of the AV18 potential are
obtained by minimal substitution as explained in Sec. III A.
This procedure, although leading to an exactly conserved
current operator, is not unique, and additional transverse
isoscalar contributions might still be missing. In this respect,
it is interesting to note that in a meson-exchange scheme with
“σ -like” and “ω-like” meson exchanges, a larger two-body
isoscalar contribution to the deuteron magnetic moment was
calculated [2]. In that case, however, the resulting currents
do no satisfy the current conservation relation with the
momentum-dependent part of the AV18 potential.

We conclude by noting that in a chiral effective-field-theory
framework, isoscalar corrections are suppressed by (Q/
χ )2

(Q denotes a generic small momentum and 
χ � 1 GeV is the
chiral-symmetry-breaking scale) relative to the leading-order
(LO) IA current [36,37]. These N2LO corrections have been
calculated in the deuteron and trinucleon isoscalar magnetic
moments and are �1% relative to LO but of opposite sign, so
they increase the discrepancy between theory and experiment.
At N3LO, or (Q/
χ )3, a number of isoscalar two-body
currents originate from four-nucleon contact interactions
involving two gradients of the nucleon fields [37]. Their
contributions to electromagnetic observables have yet to be
calculated. It will be interesting to see whether these isoscalar
currents as well as the corresponding isovector ones up to
N3LO will improve the present picture.
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