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Using the formalism of the Khalatnikov potential, we derive exact general formulas for the entropy flow
dS/dy, where y is the rapidity, as a function of temperature for the (1+1) relativistic hydrodynamics of a perfect
fluid. We study in particular flows dominated by a sufficiently long hydrodynamic evolution and provide an
explicit analytical solution for dS/dy. We discuss the theoretical implications of our general formulas and some
phenomenological applications for heavy-ion collisions.

DOI: 10.1103/PhysRevC.78.064909 PACS number(s): 12.38.Mh, 24.10.Nz, 25.75.Ld, 25.75.Nq

I. INTRODUCTION

There is accumulating evidence that hydrodynamics may
be relevant for the description of the medium created in
high-energy heavy-ion collisions [1]. Indeed, experimental
measurements of, for example, elliptic flow [2] show the
existence of a collective effect on the produced particles
which can be described in terms of a motion of the fluid.
More precisely, numerical simulations of the hydrodynamic
equations describe quite well the distribution of low-p⊥
particles [1], with an equation of state close to that of a
“perfect fluid” with a rather low viscosity. On the other hand,
it seems useful to discuss a simplified picture [3,4] that can
be qualitatively understood in physical terms, namely, the idea
that the evolution of the system before freeze-out is dominated
by the longitudinal motion. Thus, the hydrodynamic transverse
motion can be neglected or at least factorized out to study only
the longitudinal flow.

Indeed, the two seminal applications of relativistic hydro-
dynamics to particle and heavy-ion collisions, by Landau [3]
and by Bjorken [4], start with this (1+1) approximation, valid
in the determinative stage of the reaction. The longitudinal
hydrodynamic approach has found many applications. It has
been used in the literature [5,6] to discuss aspects of hydro-
dynamic flow that are relevant to the physical understanding
of high-energy particle scattering and, more recently [7], of
heavy-ion collisions.

Soon after the first proposal by Landau and its derivation
of a large-time approximation [3], Khalatnikov [8] showed
that (1+1) hydrodynamics derive from a potential verifying
a linear equation. The Khalatnikov potential has been used
in the literature in an initial period [9,10], but it has not
been recently considered, to our knowledge. Very recently, the
interest in looking for exact solutions of (1+1) hydrodynamics
has been revived, and one finds new examples and applications
of exact solutions, e.g., in Refs. [11,12]. For instance, in a
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recent paper [11], a unified description of Bjorken and Landau
(1+1) flows has been proposed as a class of exact solutions
of (1+1) hydrodynamics based on harmonic flows. (1+1)
hydrodynamics appears also quite recently in the application
of string-theory ideas to the formation of a strongly interacting
quark-gluon plasma [13]. These exact solutions allow one
to find explicit analytical solutions for relevant observables.
Among these, the entropy flow dS/dy, where y is the rapidity,
is quite interesting, since it may be related to the multiplicity
distribution of particles. Our goal is to go beyond the particular
cases and obtain a general expression of entropy flow as
a function of temperature for a generic solution of (1+1)
hydrodynamics, i.e., for a generic solution of the Khalatnikov
equation.

We are interested in the distribution dS/dy of entropy
density per unit of rapidity y which is related to the flow
velocities u± = e±y in the (1+1) approximation. This “hy-
drodynamic observable” depends in an essential way on the
assumed hypersurface1 through which we want to compute
the flow (and eventually relate it to physical observables
in collisions). For given entropy s and energy ε densities,
dS/dy depends on the hypersurface one considers to follow
the hydrodynamic evolution. It is particularly interesting to
consider hypersurfaces corresponding to a fixed temperature.
Indeed, it allows one to follow the cooling of the hydrodynamic
flow, from an initial stage characterized by a high temperature,
toward a final stage often associated with a freeze-out
temperature. Hence our aim is to derive an expression of dS/dy

as a function of temperature for a given Khalatnikov potential
and to investigate its properties, from both theoretical and
phenomenological points of view.

Our main new result, i.e., the general expressions for
entropy flow as a function of the Khalatnikov potential, can
be found in three different versions [Eqs. (49), (50), and (53)];
one or the other expression can be more suitable for a given
explicit problem.

1We keep the term hypersurface in the (1+1) case to keep track,
even formally, of the transverse motion.
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The plan of our paper is as follows. First, in Sec. II, we
group, for completion, all the necessary material including
the hydrodynamic equations and the Khalatnikov potential,
its equation and solutions, recast and derived in a modern
framework using light-cone variables. In Sec. III, we formulate
and derive the general expression of the entropy flow in
rapidity as a function of temperature evolution. In Sec. IV,
we derive and study a family of exact solutions, namely, the
ones in which the final entropy distribution is dominated by the
hydrodynamic evolution and not by the initial conditions. They
generalize the Landau flow and give the asymptotic behavior of
physical flows in the limit of long hydrodynamic evolution. We
provide in particular the exact analytic expression of the final
entropy distribution corresponding to the Belenkij-Landau [9]
solution. Then, in Sec. V, we compare the profile of the entropy
distributions, as well as their energy dependence, with the
relevant experimental data. The final section is devoted, as
usual, to the conclusions and outlook.

II. (1+1) RELATIVISTIC HYDRODYNAMICS OF A
PERFECT FLUID

A. Hydrodynamic equations

We consider a perfect fluid whose energy-momentum tensor
is

T µν = (ε + p)uµuν − pηµν, (1)

where ε is the energy density, p is the pressure, and uµ (µ =
{0, 1, 2, 3}) is the four-velocity in the Minkowski metric ηµν .
It obeys the equation

∂µT µν = 0. (2)

Using the standard thermodynamic identities (where we have
assumed for simplicity vanishing chemical potential)

p + ε = T sl, dε = T ds, dp = s dT , (3)

the system of hydrodynamic equations closes by relating
energy density and pressure through the general equation of
state

dp

dε
= s dT

T ds
= c2

s (T ). (4)

We consider now the (1+1) approximation of the hydrody-
namic flow, restricting it only to the longitudinal direction.
Within such an approximation, the effect of the transverse
dimensions is only reflected through the equation of state (4).
Note that we do not a priori assume the traceless condition
T µµ = 0, and thus the fluid is considered as “perfect” (null
viscosity) but not necessarily “conformal” (null trace).

Let us introduce the light-cone coordinates

z± = t ± z = z0 ± z1 = τe±η ⇒
(

∂

∂z0
± ∂

∂z1

)

= 2
∂

∂z± ≡ 2∂±, (5)

where τ = √
z+z− is the proper time, and η = 1

2 ln(z+/z−)
is the space-time rapidity of the fluid. We also introduce for

further use the light-cone components of the fluid velocity

u± ≡ u0 ± u1 = e±y, (6)

where y is the usual rapidity variable (in the energy-momentum
space).

The hydrodynamic equations (2) take the form

(∂+ + ∂−)T 00 + (∂+ − ∂−)T 01 = 0,
(7)

(∂+ + ∂−)T 01 + (∂+ − ∂−)T 11 = 0.

B. Khalatnikov potential

It is known [8,9] that one can replace the nonlinear problem
of (1+1) hydrodynamic evolution with a linear equation for
a suitably defined potential. In this section, we follow the
method of Ref. [8], recasting the calculations in the light-cone
variables.

Inserting in Eq. (7) the known relations of Eq. (1) for
T µν and expressing everything in light-cone coordinates using
Eqs. (5) and (6), one obtains the following two equations:(

e2y − 1

2

)
∂+(ε + p) + e2y(ε + p)∂+y

+
(

1 − e−2y

2

)
∂−(ε + p) + e−2y(ε + p)∂−y

+ ∂+p − ∂−p = 0,
(8)(

e2y + 1

2

)
∂+(ε + p) + e2y(ε + p)∂+y

+
(

1 + e−2y

2

)
∂−(ε + p) − e−2y(ε + p)∂−y

− ∂+p − ∂−p = 0.

In Eq. (8), the energy density ε and pressure p are considered
as functions of the kinematic light-cone variables (z+, z−).
One key ingredient of the potential method [8] is to express
the hydrodynamic equations in terms of the hydrodynamic
variables y = ln u+ = −ln u− and θ = ln [T/T0], where T0

is an arbitrary temperature scale.
Relations (8) can be further transformed by inserting the

differentials of the thermodynamic relations (3), namely,

∂±(ε + p) = T0∂±(seθ ), ∂±p = T0s∂±eθ . (9)

Multiplying the first equation of Eq. (8) by (e−2y + 1) and the
second by (e−2y − 1), adding them, and using Eq. (9), one
obtains

∂+(eθ+y) = ∂−(eθ−y). (10)

Equation (10) proves the existence of a potential2 �(z+, z−)
verifying that

∂∓�(z+, z−) ≡ u±T = T0 eθ±y. (11)

In this way, Eq. (10) is automatically satisfied.

2The function � has some degree of arbitrariness, since we could
define ∂∓� ≡ T0e

θ±y + ϕ∓(z∓), with ϕ−(z−) and ϕ+(z+) arbitrary
one-variable functions. This freedom, analogous to a gauge choice,
does not modify the final results.
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To transform the system of equations (8) from the kinematic
variables (z+, z−) to the dynamical ones (θ, y), one introduces
[8] the Khalatnikov potential χ , considered as a function of
(u+T , u−T ) through a Legendre transform:

χ (u+T , u−T ) ≡ �(z+, z−) − z−u+T − z+u−T , (12)

where z± are functions of (u+T , u−T ) implicitly defined by
Eq. (11). Hence, we get

∂χ

∂(u∓T )
= −z± + [∂+� − u−T ]

∂z+

∂(u∓T )

+ [∂−� − u+T ]
∂z−

∂(u∓T )
≡ −z±, (13)

where, due to the relations (11), the terms between brackets
are zero. Knowing the Khalatnikov potential χ , which is a
function of the thermodynamic variables, one can find the
kinematic variables of the flow by derivation.

In the following, we will always consider the Khalatnikov
potential χ as function of θ and y, keeping the same notation
for χ . That change of variables corresponds for the differential
operators to

∂

∂(u±T )
= 1

2T0
e−θ∓y(∂θ ± ∂y). (14)

In those variables, relation (13) is written as

z±(θ, y) = 1

2T0
e−θ±y(−∂θχ ± ∂yχ ). (15)

From Eq. (15), one also gets the expressions for the proper
time τ and the space-time rapidity η [defined as in Eq. (5)],
that is,

τ (θ, y) = e−θ

2T0

√
(∂θχ )2 − (∂yχ )2,

(16)

η(θ, y) = y + 1

2
ln

(−∂θχ + ∂yχ

−∂θχ − ∂yχ

)

= y − tanh−1

(
∂yχ

∂θχ

)
.

C. Khalatnikov equation

Coming back to the system of equations (8), another
independent combination can be obtained. Multiplying the first
equation by (e−2y − 1), the second by (e−2y + 1) and adding,
we obtain ∂+(eys) + ∂−(e−ys) = 0, or equivalently,

∂+(u+s) + ∂−(u−s) = 0. (17)

This relation corresponds physically to the conservation of the
entropy along the flow. It is a property of the perfect fluid that
the motion of the pieces of the fluid along the velocity lines is
isentropic.

Following the logics of the Legendre transform, we trans-
form relation (17) using the (θ, y)-base. For this sake, we write

down the following partial derivatives:

∂(u±s)

∂θ
≡ u± ds

dθ
= ∂(u±s)

∂z+
∂z+

∂θ
+ ∂(u±s)

∂z−
∂z−

∂θ (18)
∂(u±s)

∂y
≡ ±u±s = ∂(u±s)

∂z+
∂z+

∂y
+ ∂(u±s)

∂z−
∂z−

∂y
.

Solving this system of linear equations, we obtain

∂(u+s)

∂z+ = 1

D

[
u+ ∂z−

∂y

ds

dθ
− u+s

∂z−

∂θ

]
(19)

∂(u−s)

∂z− = − 1

D

[
u− ∂z+

∂y

ds

dθ
+ u−s

∂z+

∂θ

]
,

where3

D = ∂z+

∂θ

∂z−

∂y
− ∂z+

∂y

∂z−

∂θ
. (20)

Inserting Eq. (19) into the entropy-flow conservation relation
(17), we acquire

ds

dθ

[
u+ ∂z−

∂y
− u− ∂z+

∂y

]
− s

[
u+ ∂z−

∂θ
+ u− ∂z+

∂θ

]
= 0. (21)

Obtaining the expression of the z± derivatives from Eq. (15),
Eq. (21) leads to

1

s

ds

dθ

[
∂θχ − ∂2

yχ
] − ∂θχ + ∂2

θ χ = 0. (22)

Making use of the sound velocity relation (4), we finally arrive
at the Khalatnikov equation [8,9]:

c2
s ∂2

θ χ (θ, y) + [
1 − c2

s

]
∂θχ (θ, y) − ∂2

yχ (θ, y) = 0. (23)

Hence, the nonlinear system of equations that governs the
(1+1) hydrodynamic flow has been converted into a linear,
second-order, hyperbolic partial differential equation. Note
that the Khalatnikov equation is valid independently from the
specific form of the sound velocity.

D. Application: solutions of the Khalatnikov
equation for fixed cs

In this section, for our purpose, we present the solutions of
the Khalatnikov equation with a constant speed of sound:

c2
s ≡ p

ε
= g−1, (24)

where g will be considered as a parameter in the Khalatnikov
equation (23). Note that in this case, the general relations (3)
are written as

ε = gp = ε0

(
T

T0

)g+1

= ε0 e(g+1)θ (25)

for the energy density and

s = s0

(
T

T0

)g

= s0 egθ (26)

3We assume that the determinant D is nonzero, which is the case
except for exceptional lines [9].

064909-3



BEUF, PESCHANSKI, AND SARIDAKIS PHYSICAL REVIEW C 78, 064909 (2008)

for the entropy density.
Writing

χ (θ, y) = e−( g−1
2 )θZ(θ, y) (27)

and inserting it into Eq. (23), we acquire

∂2
θ Z − g∂2

yZ −
(

g − 1

2

)2

Z = 0, (28)

where we use a compact notation for the partial derivatives.
It is convenient to replace the variables θ and y by α and β,

defined by

α ≡ −θ + y√
g

and β ≡ −θ − y√
g

, (29)

such that Eq. (28) takes the form

∂α∂βZ̄(α, β) − (g − 1)2

16
Z̄(α, β) = 0. (30)

We solve this equation following the Green’s function formal-
ism, i.e., we look for distributions Ḡ(α, β) such that

∂α∂βḠ(α, β) − (g − 1)2

16
Ḡ(α, β) = δ(α)δ(β). (31)

The relevant solution of Eq. (31) is4

Ḡ(α, β) = (α)(β) I0

(
g − 1

2

√
αβ

)
, (32)

with I0 the modified Bessel function of the first kind and 

the Heaviside function. Using the relation

δ(α) δ(β) ≡ δ

(
−θ + y√

g

)
δ

(
−θ − y√

g

)
= √

g δ(θ )δ(y), (33)

we deduce from Eq. (32) the relevant Green’s function of
Eq. (28), i.e.,

G(θ, y) = 1

4
√

g
Ḡ(α, β)

= 1

4
√

g


(
−θ + y√

g

)


(
−θ − y√

g

)

× I0


g − 1

2

√
θ2 − y2

g


 , (34)

which verifies

∂2
θ G − g ∂2

yG −
(

g − 1

2

)2

G = δ(θ )δ(y). (35)

4There exist other Green’s functions of Eq. (31), with, e.g., (−α)
instead of (α), or (−β) instead of (β). Assuming that the fluid
naturally expands and cools down during the evolution, and taking
the arbitrary temperature scale T0 to be the maximal temperature of
the sources, −θ increases with time. Thus Eq. (32) gives the only
physical solution of Eq. (31), analogous to the retarded propagator of
the d’Alembert equation. Finally, note that for the obvious physical
requirement of finite behavior at α, β → ∞, we reject the solutions
of Eq. (31) containing the Bessel-K0 function instead of I0.

Thus, we can construct the general solution of Khalatnikov
equation (23), inserting a distribution of sources F (θ̂ , ŷ), as

χ (θ, y) = e
−

(
g−1

2

)
θ

∫
dŷ

∫
dθ̂G(θ − θ̂ , y − ŷ) F (θ̂ , ŷ)

= e
−

(
g−1

2

)
θ

4
√

g

∫
dŷ

∫ +∞

θ+|y−ŷ|/√g

dθ̂F (θ̂ , ŷ)

× I0


g − 1

2

√
(θ − θ̂ )2 − (y − ŷ)2

g


 . (36)

Equation (36) gives the most general solution for any
distribution of sources of hydrodynamic flow. In the context
of heavy-ion collisions, we are mostly interested in solutions
that correspond to the evolution of a flow starting from initial
conditions on a curve of the (θ, y) plane. Therefore, one should
impose constraints on F (θ̂ , ŷ), in order to describe the initial
conditions. In Sec. IV we will consider a physically interesting
subclass of solutions.

III. DERIVATION OF ENTROPY FLOW

Coming back to the general formalism, let us now derive
the exact formula for the entropy flow dS/dy at a given
fixed temperature TF = T0e

θF , as a function of rapidity y.

For a general (1+1) hydrodynamic expansion, we consider
the solution formulated in terms of the general Khalatnikov
potential χ (θ, y), given by Eq. (36). The entropy distribution at
fixed temperature is expressed through the amount of entropy
flowing through the hypersurface of fixed temperature TF ,

in an infinitesimal rapidity interval. It is given by (see, e.g.,
Ref. [11])

dS

dy
≡ sF

uµdλµ

dy
= sF uµnµ

dλ

dy
, (37)

where dλ is the infinitesimal (space-like) length element along
the hypersurface of fixed temperature TF , and nµ is the normal
to the hypersurface. The entropy density depends only on the
temperature and not on y. Hence it is constant along the fixed-
temperature hypersurface, namely, sF ≡ s(TF ) ∝ T

g

F .

A. Flow through the fixed-temperature hypersurface

As we have mentioned, we concentrate on hypersurfaces at
fixed temperature TF (or equivalently at θF = ln [TF /T0]).
It is convenient to use as kinematic functions the proper
time τ = √

z+z− and the space-time rapidity η = 1
2 ln(z+/z−),

considered as functions of θ and y. In this (θ, y) base, the
fixed-temperature hypersurface is parametrized by

τF (y) = τ (θF , y),
(38)

ηF (y) = η(θF , y),

considered as functions of y at θF fixed. The tangent vector to
the hypersurface reads

V +(y) ≡ z+′
F (y) = (τ ′

F + η′
F τF ) eηF ,

(39)
V −(y) ≡ z−′

F (y) = (τ ′
F − η′

F τF ) e−ηF ,
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where the primes denote derivatives with respect to y. Hence,
we can construct the normalized perpendicular vector to the
fixed-temperature curve [n+(y), n−(y)] defined by

n+(y)n−(y) = 1,
(40)

1
2 [n+(y)V −(y) + n−(y)V +(y)] = 0.

Using Eq. (39), the second equation translates into

n+(y)e−ηF (η′
F τF − τ ′

F ) = n−(y) eηF (η′
F τF + τ ′

F ). (41)

Provided |η′
F (y)| > | τ ′

F (y)
τF (y) | for all y, we find

n+(y) =
√

η′
F τF + τ ′

F

η′
F τF − τ ′

F

eηF ,

(42)

n−(y) =
√

η′
F τF − τ ′

F

η′
F τF + τ ′

F

e−ηF .

Following Ref. [11], dλµ ≡ dλ nµ is defined such that

(dλ)2 = dλµdλµ = −dz+
F dz−

F = −(
τ ′2
F − τ 2

F η′2
F

)
(dy)2,

(43)

where the minus sign comes from the fact that the hypersurface
is a space-like curve. Thus, we have

dλ =
√

τ 2
F η′2

F − τ ′2
F dy. (44)

So, inserting Eqs. (42) and (44) into Eq. (37), we finally
find

dS

dy
(y) = sF [τF (y)η′

F (y) cosh(ηF (y) − y)

+ τ ′
F (y) sinh(ηF (y) − y)]. (45)

B. Expression of entropy flow

Let us now introduce the expression of the entropy flow in
terms of the Khalatnikov potential. Starting from Eq. (15), we
obtain

cosh(η − y) = − 1

2τT0eθ
∂θχ (θ, y),

(46)

sinh(η − y) = 1

2τT0eθ
∂yχ (θ, y) .

Now, inserting Eq. (46) into Eq. (45), we can eliminate the
hyperbolic trigonometric functions, thereby acquiring

dS

dy
(y)

= sF

[−τF (y) η′
F (y) ∂θχ (θ, y) + τ ′

F (y)∂yχ (θ, y)]

2T0 eθF τF (y)

∣∣∣∣
θ=θF

.

(47)

Furthermore, by differentiation of the relations (16) with
respect to y, at θ = θF , we find

τ ′
F (y)

= e−θ

2

[
(∂θχ )(∂y∂θχ ) − (∂yχ )

(
∂2
yχ

)]
√

(∂θχ )2 − (∂yχ )2

∣∣∣∣∣
θ=θF (48)

η′
F (y)

=
[
(∂θχ )2 − (∂yχ )2 + (∂yχ )(∂y∂θχ ) − (∂θχ )

(
∂2
yχ

)]
(∂θχ )2 − (∂yχ )2

∣∣∣∣∣
θ=θF

.

Then, inserting the relations (48) and (16) into Eq. (47), we
obtain a remarkably simple expression, namely,

dS

dy
(y) = sF

2TF

[
∂2
yχ (θ, y) − ∂θχ (θ, y)

]∣∣
θ=θF

, (49)

which possesses a full generality, as long as the Khalatnikov
potential χ (θ, y) exists. In addition, using the Khalatnikov
equation (23), Eq. (49) can also be written as

dS

dy
(y) = sF c2

s (TF )

2TF

[
∂2
θ χ (θ, y) − ∂θχ (θ, y)

]∣∣
θ=θF

. (50)

There is an interesting third version of Eqs. (49) and (50),
featuring the potential � instead of χ . The definition (12) of
χ can be written alternatively as

χ = � − T τeη−y − T τe−η+y ≡ � − 2T τ cosh(η − y). (51)

Inserting into Eq. (51) the first relation of Eq. (46), one obtains

� = χ (θ, y) − ∂θχ (θ, y). (52)

Inserting that last relation into Eq. (50), and considering the
potential � [originally defined in Eq. (11) as a function
of z+ and z−] now as a function of θ and y, one gets a
third equivalent formula for the entropy flow through fixed-
temperature hypersurfaces, namely,

dS

dy
(y) = − sF c2

s (TF )

2TF

∂θ�(θ, y)|
θ=θF

. (53)

The set of expressions (49), (50), and (53) form our main
formal result. They provide the exact form of the entropy flow
along fixed-temperature hypersurfaces for a general (1+1)
hydrodynamic evolution. We also mention that beyond the
derivation of the Khalatnikov potential at fixed sound velocity,
formulas (49), (50), and (53) still hold for a general speed of
sound, once the solution of the general Khalatnikov equation
(23) is known. It is important to note that relations (49) and (52)
are valid as long as there exist χ or � potentials, even if there is
no reduction to a linear equation, i.e., no entropy conservation
in the (1+1) projection of the flow; whereas relations (50) and
(53) are valid when the Khalatnikov equation holds, i.e., with
entropy conservation in the (1+1) projection of the flow.

C. Examples

Let us check the general formulas for the entropy flow
considering exact hydrodynamic solutions known in the
literature, namely, the Bjorken flow [4] and the harmonic
flows [11].
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1. Bjorken flow

The Bjorken flow corresponds to boost invariance, i.e.,
∂yχ ≡ 0. In this case, the Khalatnikov equation (23) reduces
to

χ ′′(θ ) + (g − 1)χ ′(θ ) = 0, (54)

which has the generic solution

χ (θ ) = Ce−(g−1)θ , (55)

C being an integration constant. Let us choose C and the
arbitrary temperature scale T0 such that at the proper time
τ = τ0, the temperature of the fluid is T = T0. Inserting
Eq. (55) into relations (16), one finds C = 2T0τ0/(g − 1) and
the known expressions for the Bjorken flow, namely,

τ (θ, y) = τ0 e−gθ and η ≡ y, (56)

i.e., the equality of rapidity with space-time rapidity. Finally,
the Khalatnikov potential for the Bjorken solution is written
as

χ (θ ) = 2T0τ0

(g − 1)
e−(g−1)θ = 2T τ

(g − 1)
. (57)

Inserting Eq. (57) into Eq. (49), one obtains the entropy flow

dS

dy
(y) = sF τF = s0τ0 = const. (58)

Hence, as expected from boost invariance of the Bjorken flow,
not only the total entropy but also the entropy flow is conserved.

2. Harmonic flows

Following Ref. [11], one is led to introduce new auxiliary
variables l+(z+) and l−(z−) satisfying

dl±

dz± = λe−l±2

, (59)

where λ = const. The thermodynamic variables can be explic-
itly written [11] as5

θ = −g + 1

4g
(l+2 + l−2) + g − 1

2g
l+l−,

(60)
y = 1

2
(l+2 − l−2).

Using the property (11) of the potential �, one writes

∂�

∂l±
= dz±

dl±
∂±� = dz±

dl±
T0e

θ∓y. (61)

Now, inserting Eq. (59) and the expressions (60), one obtains

∂�

∂l±
= λT0e

l±2

eθ∓y = λT0e
g−1
4g

(l++l−)2

. (62)

The expressions (62) are symmetric in l+ and l−; thus, by mere
integration, one gets

�(l+, l−) = λT0

∫ l++l−

dv e
g−1
4g

v2

, (63)

5Here we use our convention θ = ln (T/T0) with opposite sign as
in Ref. [11].

where the potential can be expressed in terms of θ and y

through

l+ + l− =
√

2 |y|

−θ −

√
θ2 − y2

g




−1/2

. (64)

Now, using our relation (53) and the relation

∂θ� = λT0e
g−1
4g

(l++l−)2

∂θ (l+ + l−), (65)

one gets the result for the entropy flow

dS

dy
(y) =

√
2λT0sF

gTF

e
g−1

2 (θ+
√

θ2−y2/g)

× |y|√
θ2 − y2/g

(−θ −
√

θ2 − y2/g)−1/2. (66)

Using our general formalism, we thus recover the nontrivial
result obtained by direct calculation [see Ref. [11], formula
(58)]. Interestingly enough, we note that for the family of
harmonic flows as an example, it appears to be much simpler to
use formula (53) for the potential � than to use the Khalatnikov
potential χ itself.

Note that a specific discussion is needed of the limiting
case when g = 1, that is, when the speed of sound equals
the speed of light. In fact, in this case, the harmonic flow
cannot be obtained as above, and the solution for the flow
acquires a more general form. Returning to Eq. (23), one
finds that the Khalatnikov potential itself is harmonic, namely,
χ (θ, y) ≡ h+(y + θ

√
g) + h−(y − θ

√
g), where h+, h− are

arbitrary functions. We thus recover the results noted in
Ref. [15].

IV. EVOLUTION-DOMINATED SOLUTIONS

In general, a longitudinal flow in the final state follows from
a longitudinal pressure gradient and/or from a longitudinal
flow in the initial state. Let us consider the subclass of solutions
where the effect of the initial flow is negligible compared to the
one of the initial pressure gradient. This subclass corresponds
to the dominance of the hydrodynamic evolution over the
influence of the initial conditions. A typical example of such a
solution is the Belenkij-Landau solution [9], where the fluid is
initially at rest (the so-called full stopping initial conditions)
and then expands into the vacuum.

A. Khalatnikov potential and entropy flow

To model an evolution-dominated flow, let us consider all
the sources at rest, i.e., F (θ̂ , ŷ) ∝ δ(ŷ). Let us also take the
arbitrary temperature scale T0 to be the maximal temperature of
the sources [hence, θ ≡ ln (T/T0) � 0], i.e., F (θ̂ , ŷ) ∝ (−θ̂).
All in all, we write

F (θ̂ , ŷ) = 4
√

gK(θ̂) (−θ̂ ) δ(ŷ). (67)
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Inserting Eq. (67) into Eq. (36), and replacing the variable θ̂

by θ ′ ≡ θ − θ̂ , one gets

χ (θ, y) = e−( g−1
2 )θ

∫ − |y|√
g

θ

I0

(
g − 1

2

√
θ ′2 − y2/g

)
×K(θ − θ ′) dθ ′, (68)

where the function K(θ − θ ′) carries the information on the
initial conditions. Note that θ ′ is also negative.

In the following, it is convenient to use a Laplace repre-
sentation of Eq. (68). Since θ � 0, we introduce the Laplace
transform, and its inverse, with respect to −θ as

f̃ (γ ) =
∫ 0

−∞
dθ eγ θf (θ ),

(69)

f (θ ) =
∫ γ0+i∞

γ0−i∞

dγ

2πi
e−γ θ f̃ (γ ),

where γ0 is a real constant that exceeds the real part of all the
singularities of the integrand, i.e., the integral is calculated on
an imaginary contour that lies on the right of all singularities.
Following Ref. [9], the Khalatnikov potential (68) can be
written as a convolution of the two functions

(−θ ) K(θ )

=
∫ γ0+i∞

γ0−i∞

dγ

2πi
e−γ θ K̃(γ ),

(70)

 (−θ − |y|/√g)I0

(
g − 1

2

√
θ2 − y2/g

)

=
∫ γ0+i∞

γ0−i∞

dγ

2πi

1√
γ 2 − (g−1)2

4

× exp

[
−γ θ − |y|√

g

√
γ 2 − (g − 1)2

4

]
.

As the Laplace transform changes convolutions into ordinary
products, one gets the Laplace representation

χ (θ, y) =
∫ γ0+i∞

γ0−i∞

dγ

2πi
exp

[
−

(
γ + g − 1

2

)
θ

− |y|√
g

√
γ 2 − (g − 1)2

4

]
K̃(γ )√

γ 2 − (g−1)2

4

. (71)

Notice that while the expression of solution (68) restricts
the phase-space domain in the interval |y| � − √

g θ , Eq. (71)
may allow an analytic continuation of the solution of the
Khalatnikov potential outside this region. However, the outside
region may be different (e.g., with χ ≡ 0, as in Ref. [9]).

Let us now investigate the properties of the entropy flow
given by the solutions (71) of the Khalatnikov equation.
Inserting the Khalatnikov potential (71) into the expression

of the entropy distribution (50), one is led to the formula

dS

dy
(y) = sF

2gTF

∫ γ0+i∞

γ0−i∞

dγ

2πi
e−θF (γ+ g−1

2 )[(γ + g/2)2 − 1/4]

× K̃(γ )
e
− |y|√

g

√
γ 2− (g−1)2

4√
γ 2 − (g−1)2

4

. (72)

In formula (72), one may distinguish the kernel

Q(γ, y) ≡
exp

[− |y|√
g

√
γ 2 − (g−1)2

4

]
√

γ 2 − (g−1)2

4

, (73)

driving the dynamical hydrodynamic evolution as expressed
on the entropy flow, and the coefficient function

C̃f (γ ) = [(γ + g/2)2 − 1/4]K̃(γ ), (74)

which encodes the initial conditions of the entropy flow.

B. Total entropy

Since we have a well-defined relation (72) for the entropy
distribution, it is easy to perform the integration over y and
obtain the total entropy flux through the hypersurface with
fixed temperature T = TF .

Formally, Eq. (72) leads to

Stot

∣∣
θ=θF

= 2
∫ −θF

√
g

0
dy

sF

2gTF

∫ γ0+i∞

γ0−i∞

dγ

2πi

(
γ + g − 1

2

)

×
(

γ + g + 1

2

)
e
− |y|√

g

√
γ 2− (g−1)2

4

× K̃(γ )√
γ 2 − (g−1)2

4

e−θF (γ+ g−1
2 ), (75)

where we took into account the (−θ − |y|/√g) function
present in Eq. (70). Indeed, the hydrodynamic flow is limited
in the region inside this domain, with possible contributions
on the boundary θ = −|y|/√g (Riemann waves, see, e.g.,
Ref. [9]).

We know that, by construction, the flow is isentropic, and
thus the total entropy Stot is conserved. In fact, it is possible
to show that the dominant part of the total conserved entropy
results from the kernel (73) more than from other sources
such as the coefficient function (74) or the boundary Riemann
waves. Hence, the hydrodynamic dynamics dominate. For this
reason, let us release for simplicity the boundary limitations
of the integral over y. One then writes

Stot ≈ sF

TF

√
g

∫ γ0+i∞

γ0−i∞

dγ

2πi

γ +
(

g+1
2

)
γ −

(
g−1

2

) K̃(γ ) e−θF (γ+ g−1
2 )

= sF
√

g

TF

K̃ [(g − 1)/2] e−(g−1)θF . (76)

Indeed, the complex integral is obtained through the sin-
gularities of the integrand, which can be due to either
the initial conditions [through singularities of K̃(γ )] or the
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hydrodynamic dynamics [through the pole at γ = (g − 1)/2],
or both. If the singularities of K̃(γ ) are situated at the left
(right) of the pole, they will be subdominant (dominant) in
the total entropy. Assuming a dominance of the hydrodynamic
flow, we get the final result of Eq. (76). The physical meaning
of Eq. (76) becomes clear when using the thermodynamic
relation (26) and the entropy density s0 at temperature T0. The
total entropy is written as6

Stot ≈ s0
√

g

T0
K̃ [(g − 1)/2] , (77)

and thus does not depend on the features of the flow at T = TF .
In conformity with the isentropic property of the flow, the total
hydrodynamic entropy of the perfect fluid should be conserved,
as the expression (77) is independent of TF . This provides
a self-consistency check for an evolution-dominated flow. In
more general cases, one should also take into account the other
contributions.

A final comment is in order. A priori, the domain of integra-
tion |y| � Y/2 comes from energy-momentum conservation.
However, formula (68) for the Khalatnikov potential is only
valid in the domain |y| � − √

g θF . In the flow-dominated
approximation, −√

g θF and Y/2 are considered large enough
that the integration domain can extend to infinity and only the
kernel contributes.7

C. Relation to the Belenkij-Landau solution

We have studied the dependence of our results on the
coefficient function (74) by imposing various relevant analytic
forms for K̃(γ ). We observed that typical meromorphic
functions, bounded by a constant8 at infinity and with poles
at the left of γ = g−1

2 , give smooth and similar entropy flow
distributions, which are almost identical at large enough θF .
Hence, we conjecture that all physical evolution-dominated
solutions are almost identical, at least for a sufficiently large
value of θF = ln (TF /T0). To provide an analytic expression
for the entropy flow characteristic of the family of solutions,
we remark that the following choice of the coefficient function
(74)

C̃f (γ ) = C

(
γ + g − 1

2

)
⇔ K̃(γ ) = C

γ + g+1
2

, (78)

where C is a dimensionless constant, corresponds to hydrody-
namic flow with an initial full stopping condition [9].

The Belenkij-Landau solution [9] describes the evolution
of a slice of fluid of width 2L initially at rest and expanding
in the vacuum. It consists in a hydrodynamic flow bounded
by Riemann waves. The matching conditions between the

6Note that K̃ is dimensionless as the potential χ .
7We have performed numerical checks that show that thanks to

the decreasing exponential behavior, the boundary term contributes
negligibly to the total entropy.

8Indeed, choosing K̃(γ ) of strictly positive degree leads to an
unphysical angular point at y = 0 and to a function K(θ ), see
Eq. (70), containing derivatives of Dirac distributions, i.e., structures
that are too singular to describe physical flows.

flow and the waves in space-time translated in terms of
temperature and rapidity variables are realized by imposing
zero boundary conditions on the Khalatnikov potential χ

on the characteristics θ = ±y/
√

g. Another condition on the
potential is that the center of the slice remains by symmetry at
rest (y = 0) during the evolution.

We have checked that the energy flow resulting from
modifications of the ansatz (78) satisfying the dominance of
the kernel singularity is not sensibly modified from the one
given by inserting the coefficient function (78) into Eq. (72).

Inserting now Eq. (78) into Eq. (71), the Khalatnikov
potential between the characteristics −θ � |y|/√g acquires
the analytic form [9,10]

χ (θ, y) = C

∫ − |y|√
g

θ

I0


g − 1

2

√
θ ′2 − y2

g


 eθ−( g+1

2 )θ ′
dθ ′.

(79)

The potential is identically zero in the region −θ � |y|/√g.
Note that the constant in Eqs. (78) and (79) is such that C ∝
LT0 with our notations.

Let us now insert this specific solution to our general
formula (50) for the entropy distribution. Calculating the
derivatives, we find

dS

dy
(y) = sF

(g − 1)C

4gTF

e− (g−1)
2 θF


I0

(
g − 1

2

√
θ2
F − y2/g

)

− I1

(
g − 1

2

√
θ2
F − y2/g

)
θF√

θ2
F − y2/g


 . (80)

Since θF is negative, this expression is always positive, at least
in the region θ2

F − y2/g � 0. Hence the positivity of the entropy
flow is ensured. Finally, the expression (80) is divergence-free,
since it is finite for θ2

F = y2/g. We also note that it is still real
in the analytic continuation of solution (80) for θ2

F < y2/g,
since in this case both the numerator and the denominator of
the second term are purely imaginary.9

For the total entropy, inserting Eq. (78) into the general
formula (75), one gets, using the thermodynamic relations
(26),

Stot = C sF√
g TF

e−(g−1)θF = Cs0√
gT0

. (81)

A comment is in order at this point. Condition (78) has been
considered to describe the so-called full stopping conditions.
In the original papers [9], it consists of the assumptions that
(i) there is a specific plane where the medium is at rest for
all times, and (ii) on the vacuum-boundary we have just a
simple (Riemann) wave. In fact, the resulting entropy flow
distribution is expected to be more general and is characteristic
of the evolution-dominated hydrodynamic flows. Hence the
Khalatnikov potential (79) (already obtained in Ref. [9])
and the entropy flow of Eq. (80) may serve as an analytic

9Positivity may also extend but is not ensured because of the
appearance of Bessel function zeros.
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formulation for the class of evolution-dominated flows. In fact,
their features are essentially determined by the evolution kernel
Q(γ, y) [see Eq. (73)].

Finally, it is interesting to note that Eq. (72) gives the
possibility of comparing the hydrodynamic predictions with
those of other existing models of heavy-ion (and eventually
hadron-hadron, soft scattering) reactions. This relies on the
possibility of relating thermodynamic quantities, such as
temperature and entropy, to observed properties of the particle
multiplicities. In this scheme, the rapidity of particles is defined
by the corresponding value of y ≡ ln u+ obtained from the
fluid velocity of the lump of fluid giving rise locally to the
hadrons. In the same context, the overall temperature gradient
θF will be related to the total available rapidity and the
entropy to the multiplicity up to phenomenological factors.
We will discuss in the next section the phenomenological
issues of our derivation, but the general theoretical idea is
that Eq. (72) can be compared with the one-particle inclusive
hadronic cross section which is related to the scattering
amplitudes. In this respect, the generic form [Eq. (73)] of
the hydrodynamic evolution kernel may serve as a means of
comparing hydrodynamic properties with conventional models
of scattering amplitudes.

V. PHENOMENOLOGICAL APPLICATIONS

Motivated by the seminal works of Landau [3] and Bjorken
[4], comparisons of their predictions for (1+1) hydrodynamics
with some features of the data have been made (see e.g.,
Refs. [5–7,9,10]). Even if such a rough approximation, ignor-
ing the details of the transverse motion or the hadronization,
cannot replace the numerical simulations, it has given some
useful information on the dynamics of the quark-gluon plasma.
For instance, the order of magnitude estimates made using the
Bjorken flow in the central region [4] and the comparison
of the multiplicity distributions with the predictions of the
Landau flow [6,7] have indicated that the proper-time region
during which the hydrodynamic flow is approximately (1+1)
dimensional has a deep impact on the whole process. Our aim
is to take advantage of the explicit form (80) representative
of the entropy of evolution-dominated flows, based on the
Khalatnikov potential (79), to revisit the discussion in the light
of recent experimental results.

For the phenomenological application, we will concentrate
on the entropy flow corresponding to the Belenkij-Landau
solution. From Eqs. (80) and (81), one obtains the formula

dS

dy
(y) = Stot

(g − 1)

4
√

g
e

(g−1)
2 θF

[
I0

(
g − 1

2

√
θ2
F − y2/g

)

− I1

(
g − 1

2

√
θ2
F − y2/g

)
θF√

θ2
F − y2/g

]
, (82)

where we have used the normalization by the total entropy Stot.
Formula (82) still depends on two hydrodynamic parameters
θF , the logarithmic temperature evolution, and the speed of
sound cs = g−1/2.

A. Multiplicity distribution at fixed energy

To investigate the phenomenological validity of formula
(82), let us consider the experimental BRAHMS data for
the charged multiplicity distribution in the most central
collisions as a function of the rapidity measured recently at
the BNL Relativistic Heavy Ion Collider (RHIC) [16]. For
sake of simplicity, in accordance with the (1+1) dimensional
approximation of the dynamics that we consider, we will
make the following assumptions. We will identify the rapidity
if the fluid elements yf ≡ 1/2 ln (u+/u−) with the rapidity
of the particles yp ≡ 1/2 ln (p+/p−). We thus keep the same
notation y. In the same way, we assume that the multiplicity
distribution of produced particles dN/dy in rapidity can
be considered to be equal, up to a constant factor, to the
entropy distribution10 dS/dy. One expects that the end of
the hydrodynamic behavior appears at a typical temperature
TF , related to a hadronization or freeze-out temperature, and
independent of the total c.m. energy of the collision. On the
other hand, the initial temperature T0 is expected to depend
on the total c.m. energy (or equivalently on the total rapidity
Y ) and on the centrality of the collision, through the energy
density ε(T0) of the medium produced by the prehydrodynamic
stage of the collision. Thus, θF = ln (TF /T0) should be a
function of Y and of the centrality. Our formalism, based
on the (1+1) dimensional approximation of the flow, is not
appropriate for a precise description of the freeze-out. Note,
however, that some improvement could be obtained by using,
e.g., the Cooper-Frye formalism [17] in the derivation of the
entropy flow. We postpone this to future studies.

Using then formula (82) for dN/dy and fitting BRAHMS
data by adjusting the parameter θF , we obtain a good
description for different values of g. In Fig. 1, as an example,

10We also assume that the multiplicity distribution of charged
particles is proportional to the total one.

FIG. 1. BRAHMS data fitted with the hydrodynamic formula.
The data are taken from Ref. [16], and they correspond to charged
pions in cental Au + Au collisions at

√
sNN = 200 GeV. The solid line

corresponds to the physical region y2

g
� θ 2

F , while the dotted portion

corresponds to its analytic continuation y2

g
> θ2

F . The small vertical
line marks the experimental beam rapidity Ybeam ∼ Y/2.

064909-9



BEUF, PESCHANSKI, AND SARIDAKIS PHYSICAL REVIEW C 78, 064909 (2008)

we present the BRAHMS data fitted with Eq. (82), for four
pairs of g and θF values, reported on the figure.

In these plots, the solid line corresponds to the physically
meaningful region y2

g
� θ2

F , while the dotted line corresponds

to the analytic continuation of formula (82) in the region y2

g
>

θ2
F , where the applicability of solution (82) is theoretically

questionable.
The phenomenological application appears to be correct

for quite different values of the speed of sound cs ≡ g−1/2.

The overall form of the curves is satisfactory. For the first
curve at cs = 1/

√
3 (i.e., the conformal case), however, the

analytic continuation beyond y2

g
� θ2

F is soon reached.11 We
will comment on this remark later on. Indeed, when decreasing
the speed of sound, e.g., for g = 5, the physical domain y2

g
� θ2

F

extends in rapidity.
Some comments on these results are in order.

(i) It has long been well-known [6], and confirmed more
recently, that a Gaussian fit to the data

dS

dy
(y) ∼ e−y2/Y (83)

with a variance
√

Y , as predicted by Landau [3], was
reasonably verified. We noticed that, indeed, expression
(82) has an approximate Gaussian form, but it does not
correspond, except for very large θF , to the expansion of
the exact entropy distribution near y = 0, as in the orig-
inal argument [3] which was based on an asymptotic
approximation.12 Hence, the subasymptotic features of
the full solution plays an important phenomenological
role.

(ii) There is apparently no track of the transition between
the physical regime y2

g
� θ2

F and its analytic contin-
uation, described by the dotted lines in Fig. 1. This
is related to the mathematical property of the general
solution (72) expressed using a Laplace transform. In
short, the I0,1 Bessel functions are transformed into
J0,1 with the same argument up to a factor i, without
discontinuity.

(iii) This transition is, however, meaningful. In fact, one
knows that the lines y√

g
= ∓θF delineate different

regions of the hydrodynamic regime. Discontinuities
and thus shock or Riemann waves may occur at these
boundaries, called characteristics of the equation [18].
Hence, some other solutions may branch at this point
(see, e.g., Refs. [9,10]). However, our results do not
depend on the specific form of these other solutions
such as the shock waves considered in Refs. [9,10].

11One may also note that the curve indicates a violation of positivity
before the kinematic limit.
12It is indeed easy to verify that for phenomenological values of θF ,

this approximation does not work in the data range.

FIG. 2. (Color online) Hydrodynamic parameter θF as a function
of Y. We describe the dependence for six values of g, in a large range
starting from the canonical value 3 which would correspond to a
conformal fluid in (3+1) dimensions.

B. Energy dependence of the multiplicity distributions

Going a step further, we would like to interpret the energy
dependence (i.e., the Y dependence) of the (1+1) solution
for the entropy flow compared with multiplicity data. For
this purpose, we make use of the Gaussian fits reported13 in
Ref. [16] for different sets of data ranging from those of
the BNL Alternating Gradient Synchrotron (AGS) to those
of RHIC.

In Fig. 2, we give the determination of θF as a function
of Y which gives a good description of the Gaussian fits with
the variance taken from Ref. [16]. As in the previous study of
BRAHMS data, we performed this fit for six different values
of g. As shown in Fig. 2, the corresponding relation is clearly
linear. We can write

θF = −κ(Y − Y0). (84)

As shown on the figure, the constant term Y0 depends
appreciably on g, whereas the slope κ ≈ 0.2 remains only
slightly dependent on it.

On a physical ground, the linear relation (84) has a reason-
able interpretation. The initial temperature of the medium is
expected to grow as a power κ � 1 of the incident energy. One
finds approximately T0/TF = e−θF ∼ e0.22(Y−Y0). Hence, the
more energy available, the longer the hydrodynamic evolution
lasts. At smaller speeds of sound, the hydrodynamic evolution
has to occur on a larger temperature interval to describe the
same entropy distribution, as would be expected.

Moreover, there is a physical argument, analogous to the
one proposed by Landau [3], for the existence of a linear
relation (84) between the temperature ratio and the total c.m.
energy. Assuming the approximate validity of the Bjorken
relation14τ0/τF ≈ (TF /T0)g , where τ0 (τF ) are the initial

13In fact, the prediction (83) fits reasonably well, but we used instead
the actual best-fit determination of the variances provided in Ref. [16].
14This relation, properly stating, is exact only for the Bjorken boost-

invariant flow. However, one expects that it remains approximately
valid in the central region of more general flows (see, e.g., Ref. [11].).
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(final) proper times of the (1+1) hydrodynamic evolution and
reporting in Eq. (84), one finds

ln (τ0/τF ) ≈ κg(Y − Y0). (85)

Indeed, following Ref. [3], the separation proper time from
(1+1) hydrodynamics to the (1+3) regime is of order ln �τs ∼
12Y , where � is the typical transverse size of the initial
particles. Assuming that we can approximate �τs by τ0/τF ,
and taking into account the Bjorken flow approximation,
formula (85) is suggestive of the proportionality property.
We leave the precise values for κ, τ0/τF , and Y0 to a further
determination of g, since the data we discussed do not prefer
a precise value of κg (to be compared with 1/2 obtained for
ln �τs).

An interesting consequence of the linear relation (84)
between θF and Y at fixed g is the possibility of relating
the general hydrodynamic entropy distribution (72) to the
one-particle inclusive cross section and thus to the appropriate
scattering amplitudes. These are not easy to formulate in
the hydrodynamic formalism. Being more specific, let us
transform Eq. (72) in terms of the energy dependence using κ

as the coefficient of proportionality in Eq. (84). We then obtain

dN

dy
(y, Y ) ∝

∫ γ0+i∞

γ0−i∞

dγ

2πi
e−κ(Y−Y0)(γ+ g−1

2 )

× [(γ + g/2)2 − 1/4]K̃(γ )
e
− |y|√

g

√
γ 2− (g−1)2

4√
γ 2 − (g−1)2

4

. (86)

Formula (86) shows that the characteristic hydrodynamic
kernelQ [see Eq. (73)] appears also as the kernel of the Laplace
transform in Y of the one-particle inclusive cross section, up
to a redefinition of the conjugate moment ω = κγ of the total
rapidity Y. This relation may be useful in comparing various
theories and models for scattering amplitudes of high-energy
collisions with the predictions of hydrodynamic evolution.

VI. CONCLUSIONS AND OUTLOOK

Let us summarize the results of our study. From the
theoretical point of view, we have the following results:

(i) We have recalled and reformulated the derivation of the
Khalatnikov potential and equation in terms of light-
cone variables. This allows us to formulate the initial
nonlinear problem of (1+1) hydrodynamics of a perfect
fluid in terms of solutions of a linear equation. As an
application, using the Green’s function formalism, we
derive the general form of the solution for constant speed
of sound.

(ii) Expressing the flow of entropy through fixed-
temperature hypersurfaces, we provide general and
simple expressions of the entropy flow dS/dy in terms
of the Khalatnikov potential.15

(iii) We check and illustrate the simplicity of the formulas
obtained for dS/dy by applying the formalism to some

15After completing this paper, we noticed a related study in Ref. [19].

exact hydrodynamic solutions which were not using the
Khalatnikov formulation, such as the Bjorken flow and
the less straightforward example of the harmonic flows
of Ref. [11].

(iv) We use our formalism to find the entropy flow for the
subclass of solutions for which the hydrodynamic evo-
lution dominates over the influence of initial conditions.
A characteristic example of such flows is the one studied
long ago by Landau and Belenkij [9], corresponding
to full stopping initial conditions. We provide an exact
expression for the related entropy flow.

As a phenomenological application, we discuss the rele-
vance of the full stopping entropy flow for modern heavy-ion
experiments which was advocated, e.g., in Refs. [6,7].

(i) The exact expression of dS/dy for the Belenkij-Landau
solution, depending only on the ratio TF /T0 and on the
speed of sound cs , is in agreement with the shape of
the multiplicity distribution of particles dN/dy(y, Y )
observed in heavy-ion reactions, with a linear relation
between the temperature ratio and the total rapidity
ln (T0/TF ) = κ[Y − Y0(cs)].

(ii) However, comparing our exact results with the asymp-
totic Gaussian predictions [3,6] for the multiplicity
distributions, we find that nonasymptotic contributions
play an important role in the phenomenological de-
scription.

(iii) The speed of sound, which is the remaining parameter
in our study, is not determined by the multiplicity
distribution, since the phenomenological description
seems satisfactory for a rather large range of the
parameter g ≡ 1/c2

s . However, even if one does not see
any sizable effect on the curve for dS/dy(y, T ), one
notices that the physical domain of the hydrodynamic
expansion is restricted by the condition y2 � gθ2

F ,
especially for a speed of sound as large as the conformal
one cs = 1/

√
3.

This summary of conclusions leads to a few comments
on possible further developments of our approach. Some of
them are technical but could provide further insight into the
features of (1+1) hydrodynamics. First, it should be useful to
study in detail a larger set of solutions. Second, implementing
the Cooper-Frye formalism [17] directly in terms of the
Khalatnikov potential could refine the hypothesis of a fixed
final temperature TF . Also, the investigation of the entropy
flow through other hypersurfaces, in particular the proper-time
ones (cf. Ref. [11]) would be welcome, in particular to allow for
a straightforward implementation of fixed proper-time initial
conditions.

From the phenomenological point-of-view, it is important
to develop the comparison of the (1+1) approach with the
data and include more corrections to the idealized dominance
of the longitudinal motion. One question could be settled at
least phenomenologically, which is the determination of the
best fit for the speed-of-sound parameter, which is presently
rather free. Also, including a viscosity contribution is another
important issue, together with the investigation of the entropy
flows with varying speeds of sound.
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One may ask about the meaning of the transitions on the
lines y2 = gθ2

F , which appear even in the physical rapidity
region. Mathematically, they are the Riemann characteristics
of the Khalatnikov equations, and as such, they are regions
where discontinuities may appear [18]. Indeed, these charac-
teristics were used in the old studies [9,10] to connect boundary
Riemann waves to the domain of dynamical hydrodynamic
evolution. What their meaning is, if any, in today’s understand-
ing of high-energy collisions is an interesting open question.

From a more conceptual point of view, our study of
the entropy flow and its dependence on rapidity may have
some impact on recent studies [13,14] of the anti–de Sitter-
space/conformal-field-theory (AdS/CFT) correspondence. It
relates the hydrodynamics of a fluid, whose microscopic
description is the one of a gauge field theory, with the string
theory in a higher dimensional space where the Einstein

equations govern the gravitational properties of its low-energy
regime. The actual realizations of the duality correspondence
for a collective flow require boost invariance and thus are
limited to the Bjorken flow. This flow contains an infinite
energy and is thus of limited relevance. Knowing the analytic
form of more physical solutions should be helpful in deriving
their dual gravitational backgrounds, which is a priori a
formidable task.
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