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I present the first isolation of azimuth quadrupole components from published v2(pt ) data (called elliptic
flow) as spectra on transverse rapidity yt for identified pions, kaons, and �’s/protons from minimum-bias Au-Au
collisions at 200 GeV. The form of the spectra on yt indicates that the three hadron species are emitted from
a common boosted source with boost �yt0 ∼ 0.6. The quadrupole spectra have a Lévy form similar to the
soft component of the single-particle spectrum, but with significantly reduced (∼0.7 times) slope parameters T .
Comparison of quadrupole spectra with single-particle spectra suggests that the quadrupole component comprises
a small fraction (<5%) of the total hadron yield, contradicting the hydrodynamic picture of a thermalized, flowing
bulk medium. The form of v2(pt ) is, within a constant factor, the product of p′

t (pt in the boost frame) times the
ratio of quadrupole spectrum to single-particle spectrum. That ratio in turn implies that above 0.5 GeV/c, the
form of v2(pt ) is dominated by the hard component of the single-particle spectrum (interpreted as being due to
minijets). It is therefore unlikely that the so-called constituent-quark scaling attributed to v2 is relevant to soft
hadron production mechanisms (e.g., chemical freeze-out).
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I. INTRODUCTION

Measurement and interpretation of “elliptic flow” (v2) is
considered of central importance to the BNL Relativistic
Heavy Ion Collider (RHIC) program, because it provides
the main support for interpretation of RHIC collisions as
producing a strongly coupled quark-gluon plasma (sQGP)—a
thermalized strongly coupled partonic medium with very low
viscosity, sometimes described as a “perfect liquid” [1–3].
The differential form v2(pt ) in particular is a keystone of that
interpretation [4–7].

In the conventional flow description, v2(pt ) for identified
hadrons follows trends predicted by hydrodynamic (hydro)
models at smaller pt [7–9] but “saturates” at larger pt where
parton fragmentation is expected to dominate [10]. v2(pt )
“scaling” is used to demonstrate that “constituent quarks”
dominate hadronization. v2 and pt divided by constituent quark
number nq (i.e., 2 for mesons, 3 for baryons) appear to be
related by a universal curve, the inference being that hadrons
are formed by quark coalescence from a thermalized partonic
medium [11]. Further evidence for collective partonic flow is
inferred from v2 data for selected hadrons such as the φ and D

mesons and � and � baryons, where elliptic flow generated
by hadronic rescattering should be small [12].

The large v2 at RHIC energies, described in a hydro context
as elliptic flow, is thus interpreted to imply early thermalization
of a collective partonic medium resulting in large pressure
gradients which drive the development (for an azimuthally
asymmetric system) of the observed azimuth eccentricity in
hadronic momentum space [7].

Logical, technical, and interpretational problems have
emerged for v2. Formation of a thermalized partonic medium
may imply measured v2 systematics in a hydro context, but
do v2 data require the hydro interpretation? If more accurate
measurements of v2 or a different asymmetry measure are
introduced, can the hydro interpretation be falsified? Is hadron

formation from an extended QCD field system in some sense
a universal characteristic of all nuclear collisions at RHIC
energies, including N -N collisions? Is partonic or hadronic
rescattering required to produce a system that appears to be
thermalized?

v2(pt ) as defined is a ratio of two spectra, confusing
single-particle two-component physics with the physics of the
azimuth quadrupole (cf. Ref. [13] for quadrupole terminol-
ogy). v2 data are therefore difficult to interpret directly in terms
of conventional spectrum analysis. Comparisons are typically
made indirectly via hydrodynamic models whose validity can
be questioned, especially because they do not model important
aspects of single-particle spectra.

Recent initiatives have shed new light on the azimuth
quadrupole problem. Single-particle spectra for identified
hadrons have been accurately separated into soft and hard
components (longitudinal and transverse fragmentation) [14].
No evidence for collective radial flow was found. An analysis
of the algebraic structure of v2 and alternative measures reveals
that two-particle correlations are basic to any v2 measurement,
and η dependence of two-dimensional (2D) angular autocorre-
lations can be used to isolate azimuth quadrupole correlations
from “nonflow” [13,15]. Reexamination of the centrality
dependence of published pt -integrated v2 data reveals a
simple dependence on the number of binary collisions, and
minijets are identified as the dominant source of nonflow
[15].

In this analysis, spectra associated with the azimuth
quadrupole are extracted from published v2(pt ) data and
plotted on transverse rapidity yt . Those spectra determine
the quadrupole source boost and relative hadron abundances.
The main goals of the present analysis are to identify the
quadrupole component as single-particle spectra for each
hadron species and to determine the abundance of quadrupole
hadrons for each species.
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Quadrupole spectra and associated hadron yields could play
a critical role in tests of hydro model validity and claims of
“perfect liquid” in response to open questions. For instance,
what are the spectrum properties of the quadrupole, and
what fraction of all produced hadrons does the quadrupole
component represent? That is, do almost all particles in a
collision participate in elliptic flow as widely assumed (a
truly collective flowing bulk medium), or is the quadrupole
component an isolated process involving a small fraction of
the total system? Specific tests of hydro theory are reserved
for subsequent analysis.

This paper is arranged as follows. The analysis procedure
is briefly outlined. New methods derived from two-particle
correlation analysis are reviewed, and conventional elliptic
flow analysis is interpreted in that broader context. A sample
of v2(pt ) data for three hadron species is transformed between
different plotting formats to illustrate the requirements for a
full analysis and its likely outcome. The full analysis includes
three steps: (1) specify a two-component representation of
the single-particle spectrum for each hadron species, (2)
incorporate the kinematics of boosted particle sources, and
(3) extract and interpret azimuth quadrupole spectra.

Steps (1)–(3) are used to obtain quadrupole spectra on
transverse rapidity yt from selected v2(pt ) data. Quadrupole
spectrum shapes are compared to single-particle spectra to
search for quadrupole manifestations therein and to place
limits on quadrupole absolute yields. Quadrupole and mini-
jet contributions to spectra are compared to determine the
relations between them, and several v2(pt ) scaling relations
and their implications for claims of sQGP are examined in the
context of this analysis.

II. ANALYSIS DESCRIPTION

Conventional differential flow measure v2(pt ) as defined
includes a ratio of two hadron spectra: the spectrum of
“flowing particles” (quadrupole component) in the numerator
and the azimuth-averaged single-particle spectrum in the de-
nominator. Although arguments from a hydrodynamic context
favor ratio v2, it is important to examine the quadrupole
spectrum (numerator) directly.

The goals of this analysis are to isolate from existing
v2(pt ) data the spectra on yt of hadrons associated with
the quadrupole component for three hadron species and to
compare quadrupole spectra with azimuth-averaged single-
particle spectra. The analysis should reveal the radial boost
distribution of the particle source and the fractional yields of
quadrupole hadrons in a collision. The analysis should improve
our understanding of the underlying physical mechanism. For
example, is it hydrodynamic expansion [16] or QCD field
interactions [15]?

A hint of the benefits of this analysis is obtained by
plotting v2(pt )/pt (lab frame) vs the proper transverse rapidity
yt for each hadron species, as in Sec. IV. To understand
why that strategy provides qualitatively new information,
the kinematics of boosted thermal sources are reviewed in
Sec. VI. To isolate the quadrupole spectrum (numerator)

from the v2(pt ) ratio corresponding single-particle spectra
(denominator) are presented in Sec. V.

In the full analysis, Fourier amplitude V2(pt ) is recovered
from v2(pt ) by eliminating the single-particle spectrum from
its denominator. Based on the Cooper-Frye description of a
thermal source boosted on transverse rapidity yt , a factor
p′

t (pt in the boost frame) is also removed to form an
approximate expression for quadrupole spectrum ρ2(yt ; �yt0).
There remains an O(1) factor due to an integral approximation
and ambiguity between the quadrupole boost �yt2 and the
absolute yield of the quadrupole spectrum nch2. Comparisons
between quadrupole and single-particle spectra, including the
hard component (scattered-parton fragments), constrain the
absolute quadrupole spectrum and yield.

III. AZIMUTH CORRELATION ANALYSIS

Two-particle azimuth correlation analysis is outlined, and
the conventional differential (on pt ) elliptic flow analysis is
described in the larger context. Given a pt spectrum defined
in histogram form with bins of width δpt , the symbol v2(pt )
indicates the value of v2 in a pt bin with bin multiplicity npt

.
The measured integral quantities for each collision event of
n particles are vector Fourier coefficients �Qm = ∑n

i=1 �u(mφi)
and scalar power-spectrum elements V 2

m = ∑n,n−1
i �=j=1 �u(mφi) ·

�u(mφj ) [13,15]. The same quantities in differential form can
be defined as 1D and 2D histograms, respectively, on pt bins.

A. Two-particle correlations on pt

Two-particle azimuth correlations can be studied without
introducing a reaction or event plane. The basic measures of
sinusoidal azimuth correlations are the Fourier power spectrum
elements V 2

m [13]. The 2D pt -integrated quadrupole term V 2
2

can be generalized to a pt -differential form with unit vectors
�u(2φi).

V 2
2 (pt1, pt2) ≡

npt1 ,npt2∑
i∈pt1 �=j∈pt2=1

cos(2[φi − φj ])

=
npt1 ,npt2∑

i∈pt1 �=j∈pt2=1

�u(2φi) · �u(2φj )

≡ �V2(pt1) · �V2(pt2), (1)

where, e.g., index pt1 labels a histogram bin of nominal
width δpt with center at pt1 containing npt1 particles. The
dot product in the last line defines a mnemonic representation
of the i �= j double sum. Individual vectors �V2(pt ) are not
accessible. Diagonal element V 2

2 (pt , pt ) denotes the power
spectrum element for a single bin centered at pt . V 2

2 (pt1, pt2)
is an additive two-particle correlation measure, playing the
same role for the azimuth quadrupole that total variance 	2

pt :n

plays for pt fluctuations/correlations [17]. V 2
2 (pt1, pt2) can

describe a two-particle distribution on transverse momentum
(pt1, pt2), mass (mt1,mt2) [18], or rapidity (yt1, yt2).

064908-2



AZIMUTH QUADRUPOLE COMPONENT SPECTRA ON . . . PHYSICAL REVIEW C 78, 064908 (2008)

B. Marginal distribution V2( pt ) vs v2( pt )

Marginal distribution V2(pt ) is obtained from the asym-
metric 2D case that one pt bin is the entire acceptance
(including n particles). That is, V2(pt ) is obtained by inte-
grating V 2

2 (pt1, pt2) over one pt axis

V 2
2 (pt ) ≡

npt ,n−1∑
i∈pt �=j=1

�u(2φi) · �u(2φj )

= �V2(pt ) · �V2

V2(pt ) =
�V2(pt ) · �V2

V2
(2)

v2{2}(pt ) ≡ V2(pt )/npt

=
�V2(pt ) · �V2

npt
V2

.

The last line defines elliptic flow measure v2{2}(pt ) in terms
of two-particle correlations. In general, V2(pt ) �=

√
V 2

2 (pt , pt ).
V2(pt ) is an element of the marginal distribution, whereas
V 2

2 (pt , pt ) refers to a single diagonal bin on (pt1, pt2). The
two are related by a covariance.

C. Conventional event-plane method

Conventional v2 analysis is motivated in the context of an
event or reaction plane, but analysis results do not depend
on a reaction plane per se. v2 measures the m = 2 Fourier
component of any two-particle azimuth correlations present in
collision products, including jet correlations. An “event plane”
can arise from any event-wise azimuth structure (including
minijets), and the “event-plane resolution” may not relate to a
true reaction plane.

pt -differential elliptic flow analysis at midrapidity is based
on a 1D Fourier decomposition on azimuth of the η-averaged
3D density. The Fourier series is defined in terms of reaction-
plane angle 
r

ρ(pt , φ) = V0

2π

{
1 + 2

∞∑
m=1

vm(pt ) cos(m[φ − 
r ])

}
, (3)

where V0(pt )/2π ≡ ρ0(pt ) is the 3D single-particle pt spec-
trum (averaged over 2π azimuth and one unit of pseudorapidity
about η = 0) described by a two-component spectrum model
[14]. Fourier amplitude ratios vm(pt ) ≡ Vm(pt )/V0(pt ) =
〈cos{m[φ − 
r ]}(pt )〉 [13]. Vm could represent multiple phys-
ical contributions, including minijets as well as various “flow”
sources. Equation (3) is not a conventional Fourier series,
because common element ρ0 divides each term, thereby
coupling all vm. The equation is nonphysical, since 
r is not
known a priori, and the Vm are therefore not measurable by
inversion.

Within the flow model description, 
r must be estimated
from a subset of the collision products. The estimate is called
the event-plane angle 
m, and Eq. (3) is rewritten in terms of

unit vectors �u(mφ) as

ρ(pt , φ) = 1

2π

∞∑
m=−∞

�Qm(pt ) · �u(mφ)

= Q0

2π

{
1 + 2

∞∑
m=1

qm(pt ) cos (m[φ − 
m])

}
, (4)

with true Fourier coefficients �Qm(pt ) ≡ ∑n
j∈pt

�u(mφj ) =
Qm(pt )�u(m
m[pt ]) and Fourier amplitude ratios qm(pt ) =
Qm(pt )/Q0(pt ). The �Qm are conventionally interpreted by
assuming that azimuth structure is hydrodynamic in origin
(various flows) relating to the reaction plane. However, the �Qm

may contain substantial “nonflow” contributions dominated
by the Fourier coefficients of the same-side minijet peak (jet
cone) [15]. The inferred event-plane angle 
m (actually the
Fourier phase angle) may be poorly correlated or uncorrelated
with the actual A-A reaction plane.

The differential amplitude ratio q2(pt ) can be obtained by
inverting the Fourier series

q2(pt ) = 〈�u(2φi∈pt
) · �u(2
2[pt ])〉

=
�Q2(pt )

npt

·
�Q2(pt )

Q2(pt )
= Q2(pt )

npt

, (5)

with npt
= Q0(pt ). However, according to standard

flow-analysis methods, �Q2(pt )/Q2(pt ) → �Q2/Q2 = �u(2
2)
which determines the (global?) m = 2 event-plane angle, and
“autocorrelations” (self pairs) must be eliminated from the dot
product [19]. For each particle i in a pt bin, a complementary
vector �Q2 → �Q2i is formed by omitting the ith particle from
the �Q2 sum over j . q2(pt ) then becomes the conventional
elliptic flow measure v2obs(pt )

v2obs(pt ) = 〈�u(2φi∈pt
) · �u(2
2i)〉

=
〈 �Q2(pt )

npt

·
�Q2i

Q2i

〉

≈
�V2(pt ) · �V2

npt
〈Q2i〉 , (6)

where the �V2 dot product defined in Eq. (2) represents the
double sum with j �= i. v2obs is then divided by the “event-
plane resolution” 〈cos(2[
2 − 
r ])〉 to obtain

v2{EP}(pt ) ≡ 〈�u(2φi∈pt
) · �u(2
2i)〉

〈cos(2[
2 − 
r ])〉
= v2{2}(pt ) · V2/〈Q2i〉

〈cos(2[
2 − 
r ])〉 , (7)

which gives the exact relation between v2{EP} and v2{2} for
the first time in terms of the O(1) second factor [13]. The
difference between {EP} and {2} results from a misconception
about the v2obs numerator leading to introduction of 〈Q2i〉 ∼
Q2 in the denominator of Eq. (6) in place of V2 as in
Eq. (2) (last line) [13,15]. The extraneous event-plane reso-
lution ∼V2/Q2 is then introduced to correct v2obs(pt ).
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The event-plane method is also described in terms of
“subevents” [20]. A correlation quantity is defined by

〈�u(2φi∈pt
) · �Q2i〉 = 1

npt

npt∑
i∈pt

�u(2φi) ·
n−1∑
j �=i

�u(2φj )

=
�V2(pt ) · �V2

npt

, (8)

and normalization is obtained from

�Q2a · �Q2b =
na∼nb∑

i∈a �=j∈b

cos(2[φi − φj ]), (9)

where a, b denote two equivalent and disjoint partition ele-
ments (subevents) covering a detector acceptance (na � nb �
n/2). If the disjoint partition elements are perfectly correlated,
and there are no nonflow contributions, then �Q2a · �Q2b =
�V2a · �V2b � V 2

2 /4 [13,15] and

〈�u(2φi∈pt
) · �Q2i〉

2
√

�Q2a · �Q2b

�
�V2(pt ) · �V2

npt
V2

≡ v2{2}(pt ), (10)

explaining Eq. (5) of Ref. [20]. If Eq. (10) is multiplied top and
bottom by 1/Q2, the EP method Eq. (7) is approximated. The
first relation in Eq. (10) is approximate because of uncertain
physical implications of the definition of (cut system for)
partition elements a and b. The definition of the (a, b) partition
may reduce nonflow contributions to �Q2a · �Q2b compared to
�V2(pt ) · �V2, leading to an undetermined systematic error in
ratio v2(pt ).

This section demonstrates that v2{EP}(pt ) ≈ v2{2}(pt )
approximates a generic two-particle correlation analysis on
azimuth, although motivating language and symbols (e.g.,
“flow vector” �Q2) imply that the event-plane method necessar-
ily relates to “collective” (hydrodynamic) phenomena. Multi-
plicities npt

are elements of the histogrammed single-particle
pt spectrum. The pt spectrum in the v2(pt ) denominator
obscures interpretation and comparisons to theory, as shown
in this analysis.

IV. v2( pt ) MEASUREMENTS

v2 data are described in the context of a thermalized,
collectively flowing bulk partonic medium probed by flow
measurements and energetic scattered partons. Smaller-pt

hadrons emerging from the bulk medium (possibly by co-
alescence of “thermal” partons) exhibit a pattern of flows.
Larger-pt hadrons from parton fragmentation (possibly by
coalescence of “shower” partons) reveal modification of
fragmentation by the medium. Intermediate-pt hadrons may
result from recombination of thermal and shower partons
[11,21–23].

In the present analysis, qualitative conceptual issues are
of central importance. A simple and accurate data sample
including both pt and mass dependence is used to demonstrate
the algebraic structure of v2(pt ) and the basic properties of
quadrupole spectra. Notable theory examples are included to
explore the general relation of hydro theory to the quadrupole
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FIG. 1. Left panel: v2(pt ) data for three hadron species plotted in
the usual format [24,25]. Right panel: The same v2(pt ) data divided by
pt in the laboratory frame suggest a universality on proper transverse
rapidity for each hadron species—in particular the correspondence
of data near yt = 1. Dotted curves A and B in each panel are viscous
hydro predictions from Refs. [1] and [27], respectively. The three
curves through data are derived from this analysis.

component in different manifestations. v2(pt ) data for pions,
kaons, and �’s are related to single-particle spectra for pions,
kaons (interpolated), and protons. Proton and � spectrum
shapes are assumed equivalent for this analysis.

Figure 1 (left panel) shows data from v2(pt ) analysis of
identified mesons (pions, kaons) and baryons (�’s) from
minimum-bias 200 GeV Au-Au collisions [24,25]. The mass
trend at smaller pt (massive hadrons have smaller v2) is com-
monly interpreted to imply collective flow (hydrodynamics).
At larger pt , v2 data are said to “saturate,” following a nearly
constant trend beyond 4 GeV/c [10].

Hydrodynamic models provide a semiquantitative descrip-
tion at smaller pt but fail at larger pt (hydro models overpredict
v2 at larger pt ) [26]. The dotted curves in each panel are
viscous hydro predictions with zero-viscosity limit for pion
v2(pt ) (A from Ref. [1], B from Ref. [27]). The systematics
of viscous hydro predictions compared to data are interpreted
as evidence for a fluid medium with very small viscosity (the
“perfect liquid”) [1–3].

Figure 1 (right panel) shows the same data in the form
v2(pt )/pt (lab frame) plotted vs yt (π,K, p) (proper rapidity
for each hadron species), where transverse rapidity yt ≡
log{(mt + pt )/m0}. The first � point at yt ∼ 0.57 (not visible)
is slightly negative but consistent with zero. The simple
transformation, revealing peaked distributions with similar
amplitudes and common left edges for the three hadron species,
suggests that more information can be extracted from existing
v2 data with a generalized analysis method.

Data distributions in the right panel taken together imply
that the three hadron species are emitted from a common
moving (boosted) source, as demonstrated below. The three
curves from this analysis passing through data in each panel
are based on that hypothesis. The relevant model parameters
are summarized in the panel. The dotted hydro curves in the
right panel [1,27] deviate significantly from the pion data trend.
However, the same curves compared to pion data in the left
panel have been cited to imply small medium viscosity and
formation of a perfect liquid at RHIC. The relation of the
hydro curves to data is discussed in Sec. XI.
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V. SINGLE-PARTICLE SPECTRA

The first step of this analysis is to obtain the single-particle
azimuth-averaged 3D spectrum ρ0 = Q0(yt )/2π (denomina-
tor of v2[pt ]) for three hadron species from Au-Au collisions
at 200 GeV, which provides a context for the quadrupole
component (numerator of v2[pt ]). Single-particle spectra
may include a quadrupole contribution which can be used
to estimate the absolute quadrupole yield. Two-component
spectrum analyses of proton-proton (p-p) and Au-Au spectra
reported in Refs. [14,28] are used to construct minimum-bias
spectra compatible with the data in Fig. 1.

A. Spectrum notation

The 3D single-hadron density on momentum averaged over
one unit of pseudorapidity η about midrapidity is

ρ0(xt , φ) ≡ 1

xt

d3n

dxtdη dφ
,

(11)

ρ0(xt ) ≡ 1

2πxt

d2n

dxtdη
,

where the second line is averaged over azimuth. Transverse
measure xt is pt ,mt , or yt . Transformations between densi-
ties require Jacobians dyt/dpt = 1/mt and dyt/dmt = 1/pt .
For reference, ρNN = d2nNN/dη dφ ∼ 2.5/2π is the η- and
φ-averaged, pt -integrated 2D hadron density at midrapidity
for 200 GeV non-single diffractive (NSD) N -N collisions.

It is sometimes useful to plot all hadron species on pion
rapidity denoted by ytπ ≈ ln(2pt/mπ ) or (for plot axes) yt (π ).
ytπ is then simply a logarithmic measure of pt providing
better visual access to spectrum structure. When relativistic
transformations (boosts) are important, the proper yt for each
hadron species should be used, denoted by variable yt with no
qualification and plot axis labels yt (π,K, p).

Comparison of results on transverse variables pt ,mt , and
yt , as in this study, is essential to distinguishing different
physical mechanisms. For thermal spectra, mt is preferred. For
boosted systems, proper yt for each hadron species is preferred.
For parton fragmentation (minijets), pt would reflect the
common underlying parton spectrum, but ytπ [∼ ln(2pt/mπ )]
provides better visual access to structure. Analysis of spectra
on a single plotting variable may confuse several dynamical
mechanisms.

B. Glauber model and multiplicity definitions

The Glauber model of A-A collisions defines several
A-A geometry parameters [29]. For A-A impact parameter
b, npart/2 is the corresponding average number of participant
nucleon pairs and nbin is the average number of N -N
binary collisions (for a specified scattering process). Some
hadron production processes are proportional to npart/2 (soft),
and some are proportional to nbin (hard). The combination
comprises the two-component model of hadron production,
which describes N -N collisions well [28] and serves as a
reference in A-A collisions [14]. ν ≡ 2 nbin/npart, the mean

participant path length in number of encountered nucleons, is
a geometry parameter used to measure A-A centrality.

nch is the total charged-particle multiplicity in one unit of
η at midrapidity. The total multiplicity associated with the
quadrupole component is nch2. The quadrupole multiplicity
associated with hadron species X is nchX2. Quadrupole
multiplicities should not be confused with quadrupole Lévy
distribution shape parameter n2 or nX2.

Ambiguities in the normalizations of measured spectra are
noted in Ref. [14], specifically the centrality dependence of
integrated nch compared between experiments. The present
analysis concerns minimum-bias v2(pt ) data for which an av-
erage over centrality is implicit. The associated normalization
uncertainty in the averaged single-particle spectra is about
20%. However, normalization uncertainty is not relevant to
the present analysis, which refers only to relative spectrum
shapes.

C. Two-component spectrum model

The two-component (soft + hard) model of hadron spectra
provides a compact and accurate description of p-p and
Au-Au collisions [14,28]. The soft component is interpreted
as longitudinal participant-nucleon fragmentation. The hard
component at midrapidity is interpreted as minimum-bias
large-angle scattered parton fragmentation (minijets), which
can also be described as hadrons emitted from a radially
boosted source. The open question for any observed boost
phenomenon is what physical mechanism produced the boost.

The two-component models of pion, kaon, and proton
spectra (3D densities per participant pair) at 200 GeV are
summarized by

2

npart
ρ0π = 0.85ρNN

1.012
{S0π + 0.012 ν rAAπH0π },

2

npart
ρ0K = 0.09ρNN

1.16
{S0K + 0.16 ν rAAKH0K}, (12)

2

npart
ρ0p = 0.06ρNN

1.12
{S0p + 0.12 ν rAApH0p},

with the differential form of ρ0X(yt ) defined in Eq. (11).
Unit-integral model functions S0X(yt ) and H0X(yt ) and hard-
component ratios rAAX(yt ; ν) for pions and protons are defined
in Ref. [14]. The rAAX represent all deviations from the
N -N + Glauber two-component linear reference. Kaon model
functions were estimated by interpolation for this analysis.

Model spectra describing pion and proton data are sum-
marized in Fig. 2. Reference soft components S0 (unit-normal
distributions not shown) are Lévy distributions on mt trans-
formed to pion yt . The transformation strategy is discussed in
Ref. [14]. Reference hard components H0 (also unit-normal
distributions not shown) are Gaussians on yt with exponential
tails ∝ exp(−nyt

yt ) representing expected QCD power law
p

−nh

t required by data above pt ∼ 6 GeV/c (ytπ ∼ 4.5).
Distributions SNN and HNN have the same forms but integrate
to hard- and soft-component hadron numbers ns and nh with
ns + nh = nch for N -N collisions [28]. By hypothesis, the
soft component for Au-Au collisions remains fixed at the
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FIG. 2. (Color online) Summary of pion (left) and proton (right)
per-participant-pair single-particle spectra from Au-Au collisions at
200 GeV and five centralities [14]. HNN is the hard component
(minimum-bias transverse parton fragmentation), and SNN is the soft
component (longitudinal nucleon fragmentation), both inferred for
N -N collisions. The solid points in the left panel represent the NSD
p-p spectrum [28].

N -N reference. Deviations of hard component HAA from
its N -N reference are measured by ratio rAA = HAA/HNN .
The model functions describe the shapes of the data spectra
at the few-percent level over the yt interval relevant to this
analysis. The quality of the description is indicated by the
relative residuals in Fig. 3.

D. Quadrupole spectrum component

Interpretation of the azimuth quadrupole spectrum raises a
significant question: Does the azimuth quadrupole (v2 data)
represent modulation of a spectrum component existing in
N -N collisions (e.g., the soft component), or does a new
radially-boosted net source of hadrons modulated on azimuth
emerge in A-A collisions? Does that component extrapolate
back to N -N collisions?

The η-averaged three-component 3D spectrum on (xt , φ)
for xt = mt or yt can be expressed as

ρ(mt, φ) = ρ0(mt ; T0) + ρ2(mt ; T2, βt [φ]),
(13)

ρ(yt , φ) = ρ0(yt ; µ0) + ρ2(yt ; µ2,�yt [φ]),

yt
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FIG. 3. Relative residuals (data–model)/model for pions (left) and
protons (right) from five centralities of Au-Au collisions at

√
sNN =

200 GeV. The two-component spectrum model with modification
factors rAA inferred in Ref. [14] describes data to the statistical limits
from 0.5 to 10 GeV/c (yt ∈ [2, 5]).

where ρ2 is a possible quadrupole (third) component from
a radially boosted source. Parameters βt (φ) and �yt (φ)
represent a conjectured azimuth-dependent radial boost of
the third component. The first term ρ0(yt ; µ0) is the two-
component spectrum from Ref. [14]. Quadrupole term ρ2 may
represent a new particle source, a modification of the N -N
soft or hard component, or an interaction between them. To
clarify, we must estimate the shape and absolute magnitude
of the quadrupole spectrum component from v2(pt ) data and
compare them with measured azimuth-averaged yt spectra.

VI. BOOSTED HADRON SOURCES

The second step of this analysis is to define the kinematics of
nearly thermal hadron spectra from moving (boosted) sources,
essentially the blast-wave model [30,31] related to the Cooper-
Frye description of moving (expanding) particle sources [32].
I consider only monopole and azimuth-quadrupole pt and
yt spectrum components. For simplicity, “thermal” spectra
are described in the boosted frame by Maxwell-Boltzmann
exponentials on mt . The description can be generalized to Lévy
distributions on mt for accurate descriptions of data. The intent
is to provide a general description of hadron production from
a source including (but not restricted to) a radially boosted
component with azimuth variation.

A. Radial boost kinematics

The four-momentum components of a boosted source are
first related to transverse rapidity yt . The boost distribution
is assumed to be a single value for simplicity. The particle
four-momentum components are mt = m0 cosh(yt ) and pt =
m0 sinh(yt ). The source four-velocity (boost) components are
γt = cosh(�yt ) and γtβt = sinh(�yt ), with βt = tanh(�yt ).
Boost-frame variables are defined in terms of laboratory-frame
variables by

m′
t ≡ m0 cosh(yt − �yt ) = γt (mt − βtpt )

= mtγt {1 − tanh(yt ) tanh(�yt )},
(14)

p′
t ≡ m0 sinh(yt − �yt ) = γt (pt − βtmt )

= mtγt {tanh(yt ) − tanh(�yt )},
with p′

t denoted pt (boost) in figures.
Figure 4 (left panel) relates p′

t → pt (boost) to pt →
pt (lab). The main source of the mass trend of v2(pt ) at small pt ,
interpreted as hydro behavior, is a simple kinematic effect as
seen at lower left. The mass systematics hold for any boosted,
nearly thermal, hadron source independent of boost mech-
anism (i.e., hydrodynamics is not required). The intercepts
(p′

t = 0) of the three curves, given by pt0 = m0 sinh(�yt ), are
important for discussion of the hydro interpretation of v2(pt ).

Figure 4 (right panel) relates p′
t to transverse rapidity

yt (π,K, p) and illustrates one reason why plots on yt are
a major improvement over pt or mt . Normalized p′

t /pt

p′
t

ptγt (1 − βt )
= 1 − βt/ tanh(yt )

1 − βt

(15)
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FIG. 4. Left panel: p′
t (pt in the boost frame) vs pt in the

laboratory frame. Factor γt (1 − βt ) in the denominator ensures that
the combination → pt for large pt . Right panel: The same ratio
is plotted on proper yt for each hadron species, demonstrating a
fundamental relationship applicable to any hadron species.

increases from zero at monopole boost �yt0 and follows a
universal curve on yt to unit value for any hadron species.
Thus, normalized p′

t goes asymptotically to pt for large pt

(or yt ) independent of boost. The form in Fig. 4 (right panel)
is important for interpreting v2(pt ) data as spectra. In the
present study, we find �yt0 ∼ 0.6 ∼ γt (1 − βt ), common to
three hadron species.

B. Radially boosted thermal spectra

The simple blast-wave model invoked here assumes
longitudinal-boost-invariant normal emission from an expand-
ing cylinder, eliminating the need for Bessel functions K1 and
I0 arising from integrals over yz and φ [16]. Slope parameter T

for mt spectra and thermal parameter µ = m0/T for yt spectra
are defined. Boosted spectra on yt and mt [32] are

ρ(yt ; µ,�yt ) = Ayt
exp{−µ[cosh(yt − �yt ) − 1]},

(16)
ρ(mt ; T , βt ) = Amt

exp{−[γt (mt − βtpt ) − m]/T },

providing a simplified description of “thermal” radiation from
a radially boosted cylindrical source. Applications require a
specific radial boost model �yt (r, φ).

C. Radial boost models

In a nuclear collision, there are (at least) two possibilities
for the radial boost model: (1) a monolithic, thermalized,
collectively flowing hadron source (the bulk medium) with
complex transverse flow distribution dominated by monopole
(radial flow or Hubble expansion) and quadrupole (elliptic
flow) azimuth components [31]; and (2) multiple hadron
sources, some with azimuth-modulated transverse boost.
Hadrons may emerge from a radially fixed source (soft
component), from parton fragmentation (hard component),
and possibly from a source with radial boost varying smoothly
on azimuth, including monopole and quadrupole components.
Case 2 is assumed for this analysis, but both possibilities are
reconsidered in light of analysis results.

A radial boost with monopole and quadrupole components
is described by

�yt (φ) = �yt0 + �yt2 cos(2�φr ),

βt (φ) = tanh(�yt [φ]) (17)

� βt0 + βt2 cos(2�φr ),

with �yt2 � �yt0 for positive-definite boost. The conven-
tion �φr ≡ φ − 
r is adopted for more compact notation.
Monopole boost component �yt0 is easy to extract from data,
but quadrupole component �yt2 is less accessible. �yt0 could
be interpreted as a “radial flow” but may apply to only a small
fraction of produced hadrons. The quadrupole boost magnitude
should reflect the eccentricity ε of the A-A collision geometry.

VII. AZIMUTH QUADRUPOLE COMPONENT

The third step of this analysis is to relate the azimuth
quadrupole spectrum component algebraically to experimental
v2 data. I assume that (1) the quadrupole component arises
from a hadron source with azimuth-dependent radial boost
distribution �yt (φ), (2) the quadrupole source may produce
only a small fraction of the hadrons in a collision, and (3) the
quadrupole spectrum may appear to be thermal in the boost
frame and may be independent of the soft and hard spectrum
components.

A. Quadrupole-component model

Given those assumptions, the η-averaged 3D spectrum
at midrapidity for hadrons associated with the quadrupole
component is modeled by

ρ2(yt , φ) = A2yt
exp{−µ2[cosh(yt − �yt (φ)) − 1]},

(18)
ρ2(mt,φ) = A2mt

exp{−(γt (φ)[mt − βt (φ)pt] − m0)/T2},
where a Maxwell-Boltzmann (M-B) distribution for a locally
thermal source is assumed for simplicity, and µ2 = m0/T2 for
the quadrupole. The procedure below may be applied to a more
general function such as a Lévy distribution. �yt (φ) defined
in Eq. (17) represents fixed monopole and quadrupole boost
components.

Figure 5 (left panel) illustrates the form of ρ2(yt , φ) relative
to reference or reaction-plane angle 
r , with �yt0 = 1 and
�yt2 = 0.5. Figure 5 (right panel) shows the projection of
ρ2(yt , φ) onto yt . The half-maximum point of the left edge
of the quadrupole spectrum is at monopole boost �yt0. The
projection suggests that the shape of the left edge might
reveal quadrupole boost amplitude �yt2 if resolved accurately.
However, the small-yt region is experimentally difficult. The
left edge is also affected by variations of �yt0 within a
centrality bin. Accurate data would be needed to determine
edge details.

B. Quadrupole Fourier amplitude

Figure 6 (left panels) shows unit-amplitude ρ2(yt , φ)
for �yt0 = 0.5 and quadrupole boost amplitude �yt2 =
0.125, 0.250. We can now obtain the relation between inferred
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FIG. 5. (Color online) Left panel: Quadrupole component mod-
eled by a thermal spectrum boosted by �yt (φ) containing monopole
and quadrupole terms: monopole boost �yt0 = 1 and quadrupole
boost amplitude �yt2 = 0.5. Right panel: Projection of the left panel
onto yt revealing the edge structure.

quadrupole Fourier amplitude V2(yt ) and quadrupole spectrum
ρ2(yt ; �yt0). The Fourier amplitude is defined by

V2(yt ; �yt0,�yt2) ≡
∫ π

−π

dφρ2(yt , φ) cos(2�φr ), (19)

assuming that reaction-plane angle 
r is known and ρ2(yt , φ)
represents all m = 2 azimuth dependence in the single-particle
spectrum.

Figure 6 (right panels) shows the integral in Eq. (19) times
T2/2π�yt2 as a histogram (points and thin solid curve). The
Fourier amplitudes peak at yt ∼ 1.5 and fall toward zero at
yt = �yt0. Similar amplitudes at the peak confirm that the
integral is ∝ �yt2. A negative undershoot centered at �yt0
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FIG. 6. (Color online) Left panels: Quadrupole component mod-
eled as in Fig. 5 for �yt0 = 0.5 and two values of quadrupole boost
amplitude �yt2. Right panels: Corresponding Fourier amplitudes
V2(yt ) from Eq. (19) normalized by quadrupole boost amplitudes
�yt2. Widths of the negative regions are 2�yt2. The dash-dot curve
is the quadrupole spectrum ρ2(yt ; �yt0).

(vertical dash-dot line) with width ∼2�yt2 appears, because
the phase of the sinusoid changes by π in traversing from
one side of the mode of ρ2 on yt (yt ∼ �yt0 + �yt2) to the
other. Negative values of v2 do not require collective flow of a
medium, only boost of the quadrupole component. The other
curves are described below.

C. Factoring V2( yt )

Equation (19) can be factored to isolate the underlying
quadrupole spectrum ρ2(yt ; �yt0), the subject of this paper.
Invoking the �yt (φ) model defined above and referring back
to Eq. (14), I expand the cosh term in the boosted M-B
distribution of Eq. (18) as

cosh(yt − �yt [φ]) − 1

= cosh(yt − �yt0) − 1 + cosh(yt − �yt0)

×{cosh(�yt2 cos[2�φr ]) − 1} + sinh(yt − �yt0)

× sinh(�yt2 cos[2�φr ]). (20)

The three terms correspond to three factors of ρ2(yt , φ):

ρ2(yt , φ) = A2 exp{−(m′
t − m0)/T2}

× exp{m′
t [cosh(�yt2 cos[2�φr ]) − 1]/T2}

× exp{p′
t sinh(�yt2 cos[2�φr ])/T2}

≡ ρ2(yt ; �yt0) × F1(yt , φ; �yt0,�yt2)

×F2(yt , φ; �yt0,�yt2). (21)

The last line defines azimuth-dependent factors F1(yt , φ) and
F2(yt , φ) in terms of monopole and quadrupole components
of the radial boost. The objective is the quadrupole spectrum
component ρ2(yt ; �yt0) emitted from the boosted particle
source as one factor of measured Fourier amplitude V2(pt )
inferred from v2(pt ) data.

The quadrupole boost dependence is contained in the
integral

1

2π

∫ π

−π

dφF1(yt , φ)F2(yt , φ) cos(2�φr ).

The leading azimuth dependence of F1 − 1 is cos2(2�φr ),
which does not contribute appreciably to the integral, so F1 ∼
1 is a good approximation. Figure 7 (left panel) shows T2 (F2 −
1)/p′

t cos(2�φr ) ∼ �yt2 = 0.2. Additional azimuth structure
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FIG. 7. (Color online) Left panel: Structure of factor F2 in
Eq. (21), dominated by �yt2 at smaller yt . Right panel: Structure
of O(1) factor f (yt ; �yt0, �yt2) defined in Eq. (22).
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due to higher order terms in the exponential is substantial at
larger yt .

The full integral over factors F1 and F2 is

1

2π

∫ π

−π

dφF1(φ)F2(φ) cos(2�φr ) ≡ �yt2p
′
t f (yt )

2T2
, (22)

defining f (yt ; �yt0,�yt2) as an O(1) correction factor plot-
ted in Fig. 7 (right panel) for a particular combination
(�yt0,�yt2). f (yt ) gets closer to 1 as �yt2/�yt0 becomes
smaller.

Combining factors, we obtain

V2(yt ; �yt0,�yt2)

2π
= p′

t

2T2
f (yt )�yt2ρ2(yt ; �yt0). (23)

In Fig. 6 (right panels), the dashed curves through points
represent p′

t /2 · f (yt )ρ2(yt ; �yt0), which agree well with the
direct integrals (points) except in the region of negative values
near �yt0 where accurate comparisons with data are not
possible. The dash-dot curves represent p′

t /2 · ρ2(yt ; �yt0),
which does not include the factor f (yt ; �yt2,�yt0). Small
deviations from the exact integral (dashed curves and points)
due to omission of factor f (yt ) depend on ratio �yt2/�yt0 as
noted.

Because V2/2π = ρ0v2, then v2(pt ) can be expressed as

v2(pt ) = p′
t

2T2

f (yt ) �yt2 ρ2(yt ; �yt0, T2, n2)

ρ0(yt ; T0, n0)
. (24)

Given Eq. (24), we can reconstruct at least the shape of
quadrupole spectrum ρ2(yt ; �yt0) from measured v2(pt ) data.
Although the derivation is based on an exponential form for
ρ2, the procedure can be applied to the more general form
of a Lévy distribution within the limited pt range relevant to
quadrupole and soft components (�2 GeV/c in the boosted
frame).

D. Obtaining ρ2( yt ; �yt0) from measured v2 data

The quadrupole spectrum is best related to measured
quantities with the equation

ρ0(yt )
v2(yt )

pt

=
{

p′
t

ptγt (1 − βt )

}{
γt (1 − βt )

2T2

}
× f (yt ; �yt0,�yt2) �yt2ρ2(yt ; �yt0). (25)

Quantities on the left-hand side are measured experimen-
tally. ρ2(yt ; �yt0) on the right-hand side is the sought-after
quadrupole spectrum. The common monopole boost �yt0 and
T2 for each hadron species can be estimated accurately from the
ρ2(yt ; �yt0) spectrum common left edge and shape. As shown
in Fig. 4 (right panel), p′

t /{ptγt (1 − βt )} is determined only
by �yt0 and deviates from unity only near that point. The nu-
merator of the second factor is also determined by �yt0. Thus,
all factors on the first line of the right-hand side and the shape
of ρ2(yt ; �yt0) are determined by data on the left-hand side.

In the second line of Eq. (25), there is an ambiguity in
the product of �yt2 and the ρ2(yt ; �yt0) amplitude. Compar-
ison of the inferred quadrupole ρ2(yt ; �yt0) spectrum shape,
especially the leading edge of the spectrum, with measured
azimuth-averaged spectrum ρ0 for each hadron species may

place a lower limit on �yt2. The upper limit �yt2 � �yt0

assumes positive-definite transverse boosts. The two limits
establish an allowed range for quadrupole spectrum integral
nch2. �yt2 should be common to all hadron species emitted
from a boosted hadron source, possibly reducing systematic
uncertainty.

E. Analysis summary

To summarize, given measurements of v2(pt ), the
quadrupole spectrum is determined with minimal systematic
uncertainty by the following steps for each hadron species:

(i) Parametrize single-particle spectrum ρ0(ytπ ); obtain the
value of ρ0(ytπ ) for each v2 datum.

(ii) Calculate and plot ρ0(ytπ ) v2(pt )/pt (lab frame).
(iii) Model ρ2(yt ,�yt0) by a boosted Lévy distribution.
(iv) Use the model to plot the product of the first and last

factors of the right-hand side of Eq. (25) on ytπ .
(v) Compare step 4 with step 2 to determine monopole

boost �yt0 and temperature T2 plus Lévy n2.
(vi) Obtain product f (yt )�yt2ρ2(yt ,�yt0) from Eq. (25).

(vii) Compare the inferred ρ2(yt ,�yt0) shape with single-
particle spectra to obtain an upper bound on the
ρ2(yt ,�yt0) amplitude ⇔ lower bound on �yt2.

(viii) Iterate �yt2 to optimize f (yt ; �yt0,�yt2).
(ix) Obtain the corrected ρ2(yt ,�yt0).

Step 7 should include the comparison of the approximate
centrality variation of ρ2(yt ,�yt0) with the measured central-
ity variations of the single-particle spectrum components on
ytπ [14] to tighten constraints.

VIII. QUADRUPOLE OBTAINED FROM DATA

The analysis procedure can be illustrated with the data
shown in Fig. 1 following the steps described in the previous
section. The procedure is intended to minimize model assump-
tions and systematic errors. Step 1, defining single-particle
spectrum parametrizations, was described in Sec. V.

A. Forming the left-hand side of Eq. (25)

Steps 1 and 2 of the analysis produce the left-hand side
of Eq. (25) from v2(pt ) data. Figure 1 (left panel) shows
the original v2 data in a form that provides little direct
indication of the underlying physics. The left-most measured
� point (not plotted) is negative, the reason now apparent
from the discussion in Sec. VII B. Figure 1 (right panel) shows
v2(pt )/pt which hints at a simple boost phenomenon. The
common left edge provides an initial estimate of �yt0.

Figure 8 illustrates how to match ρ0(ytπ ) parametrizations
to v2(pt )/pt data (step 1). Single-particle spectra in the form
(2/npart)ρ0(ytπ ) for three hadron species (protons and pions
from Ref. [14], kaons interpolated) are given by the dotted
curves [defined in Eq. (12) and discussed in Sec. V C]. The
open symbols show the specific values of ρ0 for each v2 datum
and hadron species. The solid symbols show the corresponding
values of (2/npart)ρ0(ytπ ) v2(pt )/pt (step 2).
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FIG. 8. Formation of quadrupole spectra from v2(pt ) data and
single-particle spectra—measured quantities combined with full-
spectrum two-component parametrizations. The open symbols are the
values of ρ0(yt ) used for the conversion. The solid symbols are the
resulting approximations to quadrupole spectra. The dashed curves
are from the present analysis. The solid curves result from removing
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from Ref. [14].

The dashed curves show the result of steps 3 and 4—
modeling the data with boosted soft component S ′

NN (Lévy
distribution). The solid curves show the right-hand side of
Eq. (25) with the first bracket replaced by 2/npart to form
γt (1 − βt )/2T2 · f (yt ) 2/npart�yt2ρ2(yt ). The minimum-bias
data used in this analysis correspond to mean participant
path length ν ∼ 3.5 as noted in the figure. In the product
ρ0X(yt ) · v2Y (yt ) of Fig. 8, the correspondence proton ≈ � is
made for v2(pt ) data to estimate proton quadrupole spectra.

Subsequent spectrum interpretation invokes the relation
of the three quadrupole components to corresponding hard
components on ytπ (dash-dotted curves HNNX in Fig. 8). The
hard components for p and K [all hard-component modes are
at yt (π ) ∼ 2.7] strongly overlap the corresponding quadrupole
components, but that for pions does not. Such structural details
may explain the variation of v2(pt ) distributions with mass in
relation to so-called constituent-quark scaling.

B. Quadrupole spectrum and soft component

Figure 9 shows data (solid points) from Fig. 8 transformed
to yt (π,K, p) (proper yt for each hadron species) with
the appropriate Jacobians. The common left edge reveals
monopole boost �yt0 � 0.6. From Eq. (25), the form of the
data is ∝ (p′

t /pt )f (yt )ρ2(yt ; �yt0), the last factor being the
quadrupole spectrum.

The quadrupole spectrum for each hadron species can be
modeled with the same form of Lévy distribution used for the
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FIG. 9. Spectra from Fig. 8 transformed to proper yt for each
hadron species. The dotted curves are soft components from respec-
tive single-particle spectra for comparison. The prominent feature is
the common edge at yt ∼ 0.6, implying that the three hadron species
originate from a common boosted source. The hadron abundances
and spectrum shapes are the same as the single-particle spectrum soft
components.

soft component of the single-particle spectrum. Also plotted
in Fig. 9 are soft components SNNX(yt ) from the single-
particle spectra for three hadron species (dotted curves). The
dashed curves through data points are (A/T2)(p′

t /pt )γt (1 −
βt )S ′

NN (yt − �yt0; T2, n2), with factor A and monopole boost
�yt0 common to the three species. Lévy T2 and n2 parameters
have been optimized for each quadrupole spectrum. The
factors are A/T2 ∼ 0.005/(0.1 GeV) ∼ 1/20 GeV−1. The
description of data is good. The solid curves are the same but
with the factor p′

t /ptγt (1 − βt ) (Fig. 7, right panel) removed,
revealing the undistorted shapes of ρ2(yt ,�yt0). Comparison
with the single-particle spectra (dotted curves) reveals the
similarities of the single-particle soft and quadrupole hadron
sources.

IX. STRUCTURE OF v2

In Sec. VII, v2 was factored, and in Sec. VIII, v2 was
represented by the combination of a boosted soft component
S ′

NN and two-component single-particle spectrum (2/npart)ρ0.
The full expression with V2/2π = ρ0v2 is

2

npart

V2(yt )

2π
= p′

t

γt (1 − βt )

A

T2
S ′

NN (yt − �yt0; T2)

=
{

p′
t

γt (1 − βt )

} {
γt (1 − βt )

2T2

}

× f (yt ; �yt0,�yt2)
2

npart
�yt2ρ2(yt ; �yt0),

(26)
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FIG. 10. Left panel: v2(pt ) data from Fig. 1 (left panel) are
repeated for comparison. The curves through data are from the present
analysis. Right panel: Relation between pt in the boost frame and
laboratory frame for three hadron masses. Intercepts on the abscissa
are at pt0 values defined in the text.

where (2/npart)ρ2 has been modeled by AS ′
NN (yt −

�yt0; T2, n2), a boosted soft component (Lévy distribution)
with reduced amplitude and modified shape parameters (T , n).

The structure of v2(pt ) can be understood entirely in
terms of two yt -dependent factors: p′

t and the spectrum
ratio. The two-component spectrum model is (2/npart)ρ0 =
SNN (yt ; T0) + ν HAA(yt , ν). The shape of the single-particle
spectrum in the v2 denominator varies strongly with centrality
(ν) due to evolution of the hard component [14].

A. p′
t = pt in the boost frame

Figure 10 (left panel) shows v2(pt ) data with mass ordering
at small pt attributed to hydrodynamic flow [4,8,9]. The mass
dependence of v2(pt ) at small pt is determined entirely by
pt in a frame boosted on yt by �yt . pt in the boost frame is
defined in the laboratory frame by

p′
t ≡ m0 sinh(yt − �yt ) = γt (pt − βtmt )

= mtγt {tanh(yt ) − tanh(�yt )}. (27)

p′
t vs pt in the laboratory frame is shown in Fig. 10 (right

panel). As noted, the curve intercepts are located at pt0 =
m0 sinh(�yt ). Comparing the two panels, it is apparent that
the “mass ordering” of v2 attributed to hydrodynamics is
produced entirely by the kinematic relation between p′

t and
pt determined by monopole boost �yt0. The mass ordering
alone does not determine what physical mechanism caused
the boost.

B. Spectrum ratios

Variation of v2(pt ) relative to the p′
t trend (especially above

0.5 GeV/c) is determined by ratios of quadrupole to single-
particle spectra. Figure 11 shows spectrum ratios

S ′
NN (yt − �yt0; T2)

SNN (yt ; T0) + ν HAA(yt , ν)
∝ ρ2

ρ0
(28)

in two plotting formats for three hadron species (pions,
solid curve; kaons, dashed; �’s, dash-dot). The numerator of
Eq. (28) appears in Fig. 8 (plotted on pion yt ) as solid curves
in the form (A/T2)S ′

NN (yt − �yt0; T2) [∝ quadrupole spectra
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FIG. 11. Ratio of quadrupole (boosted soft component) spectra
to single-particle spectra plotted on pt (left panel) and proper yt

for each hadron species (right panel; solid, dashed, dash-dot) for
minimum-bias Au-Au collisions (ν ∼ 3.5). Spectrum ratios with no
hard component (dotted, ν = 0) are relevant to a hydro description.
Ratios for no monopole boost (dashed, �yt0 = 0) are also plotted.
The dominant role of the hard component in v2(pt ) is most evident in
the right panel.

ρ2(yt )]. The denominator appears in that figure as dotted
curves [∝ two-component single-particle spectra ρ0(yt )].
Those spectrum models describe v2(pt ) and spectrum data
within published errors.

In Fig. 11, the dashed curves at lower left represent
spectrum ratios for no monopole boost (�yt0 = 0) and no hard
component (ν = 0), which then directly relate the quadrupole
boosted S ′

NN shape to the soft-component shape of the
single-particle spectrum. The ratios are defined to obtain unit
magnitude at yt = pt = 0 for those conditions. Quadrupole
spectra inferred from v2(pt ) data are significantly narrower for
each hadron species, i.e., substantially cooler than the single-
particle soft components (T2 ∼ 0.7T0). The dotted curves at
upper left in each panel result from turning on the quadrupole
boost �yt2 = 0.6 but not the hard component (minijets) in
the denominator of Eq. (28) (ν → 0) to form soft-reference
spectrum ratios.

The ν = 3.5 spectrum ratios (solid, dashed, dash-dot
curves) include the hard component in the denominator.
Deviations from the ν = 0 (dotted) soft-ratio reference curves
(arrows) demonstrate the dominant role of the hard component
in distorting spectrum ratios, and therefore v2(pt ), over most
of the pt/yt range. The distortion is not a consequence of
nonflow as defined in conventional flow analysis (discussed in
Sec. XIV). It is inherent in the v2(pt ) definition as a ratio and
results from the minijet contribution to its denominator.

The mass systematics for the quadrupole and soft compo-
nents are simplest to describe in Fig. 11 (right panel). From
Eq. (26), spectrum ratios are ∝ v2(pt )/p′

t . Figure 11 (right
panel) is therefore comparable to v2/pt data in Fig. 1 (right
panel). Soft-component or thermal spectra (ν = 0) on specific
hadron yt vary approximately as exp{−m0[cosh(yt ) − 1]/T }.
The spectrum widths then vary as 1/m0, as illustrated by
the dashed curves at lower left for �yt0 = 0. For nonzero
�yt0 (∼0.6), the same trend holds for increases above unity
of the soft-component ratios (ν = 0), as illustrated by the
dotted curves. Deviations of data ratios from the dotted curves
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(arrows) are determined by the relation between soft and hard
spectrum components for different hadron species.

C. Role of the hard component in v2( pt )

Because the modes of the hard components for three hadron
species are located near 1 GeV/c (reflecting a common un-
derlying parton spectrum), spectrum ratios for more-massive
hadrons are more affected at smaller yt . The quadrupole
and minijet peaks for kaons and �’s/protons occur at nearly
the same position on pt , whereas the peaks for pions are
significantly separated, as in Fig. 8. Thus, the pion ratio is
affected only above about 0.5 GeV/c, but the kaon and �

(proton) spectrum ratios are dominated by the hard component
over all pt/yt , explaining the mass dependence of the sequence
of downturns (arrows) from the dotted curves in Fig. 11
(right panel).

In effect, the hard component interacts through ratio v2

with the quadrupole component and soft spectrum component.
There is a complex numerical interplay between hadrons from
a boosted source, longitudinal participant-nucleon fragmenta-
tion, and transverse parton fragmentation. The correspondence
below yt ∼ 1.5 arises because the boosted hadron source ap-
parently produces hadron species in the same abundance ratios
as the N -N soft component (cf. statistical model [33,34]).
The main difference is a smaller slope parameter T2 ∼ 0.7T0.
This exercise demonstrates the importance of interpretable
correlation measures and plotting formats. Quadrupole and
minijet systematics should be studied within independent
analysis contexts. In v2(pt ) they are maximally confused.

X. QUANTITATIVE COMPARISONS

The description of quadrupole spectra in Sec. IX can be
related quantitatively to other spectrum features and trends.
The goal should be the simplest and most comprehensive
description of all single-particle and correlation structures.

A. Relation to the soft-component spectrum

From Fig. 8, we can infer that

2

npart
ρ0X

v2X(pt )

pt

≈ 0.005

T2
S ′

NNX(yt − �yt0; T2, n2) (29)

for each hadron species X. From Eq. (25), we then have

2

npart
�yt2 ρ2X � 2 × 0.005

γt (1 − βt )
S ′

NNX(yt − �yt0)

� 0.016S ′
NNX(yt − �yt0), (30)

since γt (1 − βt ) ∼ 0.6 and T2 ∼ 0.1 GeV for minimum-bias
data. Thus, N -N soft particle production from a common
boosted source describes the quadrupole in A-A minimum-
bias collisions.

B. Relation to soft and hard hadron yields

Minimum-bias spectrum data do not provide information
about centrality dependence. In Ref. [15], the centrality trend
for pt -integrated v2 was inferred from v2{4} data, that is,

1

ρ0

V 2
2

(2π )2
= 0.0045ε2

opticalnbin,

(31)
2

npart

V2

2πεoptical
=

√
0.0045 ν

2

npart

nch

2π
.

The per-participant hadron quadrupole density squared ∝ ν,
whereas for minijets the per-participant hadron fragment den-
sity ∝ ν, possibly revealing the difference between quadrupole
radiation and parton scattering [15].

Integrating Eq. (23), with nch2 the integral of quadrupole
spectrum ρ2 over pt and one unit of rapidity, gives

2

npart

V2

2πε
� p̄′

t

2T2

1

ε

2

npart

�yt2 nch2

2π
, (32)

where �yt2nch2 is the effective number of quadrupole hadrons
in one unit of rapidity. Given the v2(pt ) data, nch2 could
be a large number with weak boost modulation �yt2 or a
small number with strong modulation. Invoking (2/npart)nch �
nNN (1 + 0.1[ν − 1]) ∼ nNN = 2.5 at 200 GeV, we have

2

npart

�yt2 nch2

2π
≈ ε

2T2

p̄′
t

√
0.0045 ν nNN/2π

2

npart

�yt2 nch2

nNN

∼ 0.028ε
√

ν

∼ 0.016, (33)

where the last line applies to the minimum-bias case, with
ν ∼ 3.5 and ε ∼ 0.3. From Eq. (30) with nsoft ∼ nNN ,

2

npart

�yt2 nch2

nNN

∼ 0.016, (34)

for minimum-bias collisions, which is consistent. An inde-
pendent method is required to place limits on the absolute
multiplicity nch2 of the quadrupole (cf. Sec. XIII). For
comparison, the full-spectrum and hard-component integrals
relative to the N -N multiplicity are

2

npart

nch

nNN

= 1 + 0.1(ν − 1),

(35)
2

npart

nhard

nNN

= 0.1ν.

Roughly, (2/npart)nhard ∼ 0.25ν.
The factors in the second line of Eq. (33) can be interpreted

in terms of quadrupole emission as follows: the final-state
quadrupole moment (hadron pair yield) ∝ (�yt2 nch2)2 goes as
interaction length ν times the initial-state quadrupole moment
∝ (npart/2 εopt)2.

C. Relation to minijet pair correlations

The hard-component spectrum yield should relate to ob-
served changes in pair correlations associated with minijets.
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The factor

2

npart

√
ρref = 1

2π

dn

dη
= ρ0 ∼ 0.4(1 + 0.1[ν − 1]) (36)

times �ρ/
√

ρref (per particle) gives the number of correlated
hadron pairs per participant nucleon pair. The density of
correlated fragment pairs per participant pair is therefore

2

npart
�ρ(η�, φ�) = 0.4(1 + 0.1[ν − 1])

�ρ√
ρref

. (37)

The integral of �ρ
√

ρref over the same-side minijet peak
increases by 6× over binary-collision scaling. The increase in
number of correlated pairs per participant over binary collision
scaling for central collisions is therefore 1.5 × 6 = 9×. That
means the number of hadron fragments per parton pair
increases by 3× from ∼2.5 to ∼7.5.

For binary collision scaling of N -N collisions, the frac-
tional increase of hadrons which are correlated minijet frag-
ments from peripheral to central Au-Au should be 8%. It is
observed to be 25% due to the factor 3× derived above. The
fraction of total hadrons that are correlated fragments is thus
25/125 = 20%.

The hard-component fraction of single-particle spectra is
∼30% for central Au-Au collisions. The hard component
of spectra appears entirely in narrow structures for pions
and protons corresponding to the same boost [14]. The
13% difference is therefore intimately connected with the
anomalous boost component, which is in turn connected with
minijet broadening.

XI. QUADRUPOLE VS HYDRO THEORY

Using this detailed description of v2(pt ) structure, we
can explore the relationship of the quadrupole component to
theory predictions. Hydrodynamics is tested by the quadrupole
component in three ways: the source boost distribution,
the apparent temperature T2 of the quadrupole source, and
the abundances of the several hadron species produced by the
source. Parameters of the spectrum soft component, such as
temperature T0, are obtained from measured single-particle
spectra.

In Fig. 1, dotted curves in the two panels represent viscous
hydro calculations for pions [1,27] which have been interpreted
to support claims for formation of a low-viscosity medium,
possibly a perfect liquid. The theory curves represent the
limiting case of zero viscosity. Although the curves in the
left panel appear to describe the pion data, transformation
to the right panel reveals that theory and data are actually
substantially different.

A. Spectrum ratios

Typical hydro calculations do not include a hard component
in the denominator of v2(pt ). Thus, the spectrum ratio in
Eq. (28) becomes

S ′
NN (yt − �yt0)

SNN (yt )
∼ exp{−γt (mt − βtpt )/T2}

exp{−mt/T0}
∼ exp{[1/T0 − γt (1 − βt )/T2]mt }, (38)
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FIG. 12. Left panel: Ratio of quadrupole component (boosted soft
component) to spectrum soft component (both Lévy distributions) for
three hadron species illustrating typical hydro mass dependence of
the ratio. The dotted curve includes the factor p′

t /ptγt (1 − βt ) for
comparison with the right panel. Right panel: v2/pt data compared
with hydro theory curves as described in the text. Different boost
distributions are apparent at lower left.

where the boosted and single-particle soft components are
approximated by exponentials with possibly different temper-
atures, and γt , βt are determined by monopole boost �yt0.
In a quantitative analysis, the soft components are modeled
by Lévy distributions with possibly different indices n. The
ratio is approximately an exponential with a positive constant
determined by the temperature difference and the monopole
boost, as in the second line.

In Fig. 12 (left panel), the solid, dashed, and dash-dot
curves show spectrum ratios as in Eq. (38) for three hadron
species using spectrum soft components (denominators) which
properly describe single-particle spectra (i.e., Lévy distribu-
tions) and boosted components (numerators) with the same
temperatures for simplicity and boost �yt0 = 0.6 as for v2(pt )
data, showing the expected mass sequence on proper yt . The
ratios correspond to the dotted curves in Fig. 11 (right panel),
but the amplitudes are adjusted so all curves start at the same
initial value. The dotted curve, including additional factor
p′

r/γt (1 + βt )pt , is within a constant factor the solid curve
in the right panel.

B. Data comparisons with hydro theory

In Fig. 12 (right panel), the data from Fig. 1 (right panel)
are repeated for comparison (the three curves through the data
points are from this analysis). The lower dotted curve is the
zero-viscosity hydro prediction from Ref. [1]. The solid curve
following the hydro dotted curve at larger yt is Bp′

t /pt ×
S ′

NN (yt − �yt0)/SNN (yt ) (proportional to the dotted curve in
the left panel). The soft-component ratio S ′

NN/SNN is defined
in Eq. (38), with T0 = 0.14 , T2 = 0.095 GeV, and �yt0 = 0.6.
Factor p′

t /pt has been added to incorporate the form plotted
in Fig. 7 (right panel) appropriate for the v2(pt )/pt ratio. B is
adjusted to match the hydro (lower dotted) curve at larger yt .
Agreement of the shapes is good except near the origin where
the boost distributions differ.

The dashed and upper dotted curves in the right panel are
2.7× the solid and hydro curves. The dashed curve describes
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the data for three masses well in the smaller yt region where the
hard component does not dominate the variation, as expected
from Fig. 11 (right panel). The zero-viscosity hydro curve for
pions from Ref. [1] thus underpredicts the v2 magnitude by
2.7× in pt � 0.5 GeV/c (ytπ < 2). This exercise is intended
to demonstrate how hydro theory can be better tested in the
plotting format of Fig. 12, in particular the predicted boost
distribution. The validity of specific hydro theories is the
subject of subsequent analysis.

C. Comparison of boost distributions

In Fig. 12 (right panel), the structure in yt � 1.5 is possibly
the first direct comparison of boost distributions from data
and hydro theory. Boost comparisons provide essential tests
of hydro and the expanding bulk medium scenario for heavy
ion collisions. Boost details are strongly suppressed in plots of
v2(pt ) vs pt . The data for kaons and �’s in the form v2(pt )/pt

on proper yt clearly contradict the hydro prediction below
yt ∼ 1.5 where the boost distribution dominates.

The data indicate a narrow boost distribution centered at
�yt0 = 0.6. The hydro prediction suggests a broad distribu-
tion starting at yt = 0 and roughly consistent with Hubble
expansion of a bulk medium. An essential requirement for
any theory of the quadrupole component is an explicit boost
distribution compared with accurate data. Inferences of small
(or any) viscosity from comparisons of v2(pt ) data with the
lower dotted curve [1] are not justified.

In Fig. 12 (right panel), there is the suggestion of real
“scaling” derived from a common boosted hadron source, the
correspondence of the three hadron species in this plotting
format below yt ∼ 1.5. Above that point, the curves deviate
from the hydro hypothesis by large factors determined by spec-
trum hard components (parton scattering and fragmentation).
Each hadron species deviates from the universal hydro curve
at a point depending on its mass, revealing interaction of soft
components with the universality of the underlying parton
spectrum on pt .

XII. QUADRUPOLE MODEL UNCERTAINTIES

The quadrupole spectra in Figs. 8 and 9, the main results
of this analysis, were obtained as simple combinations of
previously measured data. As such, uncertainties indicated by
error bars are propagated from the original published errors,
but spectrum parameters inferred from those data possess
unique uncertainties to be estimated.

The common left edges in Fig. 9 taken together determine
�yt0 = 0.6 ± 0.05. The boost distribution appears to be nar-
row (rms < 0.1) even though this is a minimum-bias centrality
sample, but the data are too sparse in that region to provide a
better width estimate.

The spectrum shapes near the left edges determine T2 �
0.1 ± 0.005 GeV (∼0.09 GeV for pions and ∼0.11 GeV for
protons). The shapes farther out on the tails of the distributions
determine Lévy exponents n2 ∼ 15, but the shapes are also
influenced by f (yt ; �yt0,�yt2) � 1. Since the spectra in
Fig. 9 are uncorrected for that O(1) factor, the T2 estimates

should be taken as upper limits and the Lévy index n2 estimates
as lower limits.

The largest uncertainties apply to the estimates of absolute
quadrupole yields. In Fig. 9, the quadrupole amplitudes
at spectrum left edges determine the relative total yields,
which correspond well to the single-particle spectrum soft-
component relative yields (dotted curves in that figure). Yield
uncertainties from f (yt ), which mainly affects the spectrum
tails at larger yt , are small.

The quadrupole spectra contain a common factor �yt2,
which is the major source of uncertainty in estimating the total
spectrum yields, as discussed in Sec. XIII. The uncertainty in
the absolute yields is less than a factor of 2, which is sufficient
to determine that the quadrupole component is at most a small
fraction of the total particle yield.

Quadrupole yt spectra observed directly are simple, de-
scribed by a few parameters and very similar in shape to
single-particle spectrum soft components, albeit boosted on
yt . However, when coupled to two-component spectra via the
ratio v2(pt ) elliptic flow, the data become arbitrarily complex
and essentially uninterpretable.

XIII. QUADRUPOLE ABSOLUTE YIELDS

The quadrupole absolute yield nch2 (in one unit of rapidity)
can provide definitive model tests. But from v2(pt ) data alone,
there remains an ambiguity in the product �yt2nch2. The
ambiguity is reduced by the edge of the quadrupole spectrum
near yt ∼ �yt0, evident in Fig. 6 (right panels), but accurate
data in that region are difficult to obtain.

The single-particle spectrum hard component, described
as minimum-bias parton fragmentation to minijets, suggests a
solution. The hard component was isolated by a combination of
techniques: correlation analysis of several hadron charge-sign
combinations [35,36], nch dependence of p-p spectra [28], ν

dependence of Au-Au spectra [14], and comparisons with the
systematics of fragmentation functions from e+-e− collisions
[37].

In this section, comparisons of spectrum shapes and
centrality trends for integrated yields are combined to estimate
the absolute quadrupole yield. Quadrupole spectra extracted
from v2(pt ) data are compared with single-particle Au-Au
spectra, and centrality trends of pt -integrated quadrupole data
are compared with those of integrated single-particle spectrum
structures.

A. Lower limits from the soft-component model

The boosted soft-component model of quadrupole data
(dashed curves) in Fig. 8 can be used to provide a lower limit
to quadrupole spectra. The dashed model curves are defined
according to Eq. (26) by

2

npart

ρ0v2

pt

=
{

p′
t

ptγt (1 − βt )

}
A

T2
S ′

NN (yt − �yt0), (39)
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FIG. 13. Lower (solid) and upper (dotted) limits on quadrupole
spectra, the latter obtained by direct comparison to single-particle
spectra (dash-dot curves).

with A ∼ 0.005 and A/T2 ∼ 0.05. From Eq. (24),

ρ0v2 = V2(yt )

2π
= p′

t

2T2
f (yt )�yt2ρ2(yt ; �yt0). (40)

A requirement of positive-definite boosts implies �yt2 �
�yt0 ≈ 0.6, and we obtain

2

npart
ρ2 ≈ 2AS ′

NN

γt (1 − βt ) �yt2
� 0.025S ′

NN . (41)

The lower limits are represented by the solid curves in
Fig. 13, which are about 0.5× the solid curves in Fig. 8 because
0.025 T2/A ∼ 0.5.

B. Upper limits from single-particle spectra

Loose upper limits on ρ2(ytπ ; �yt0) can be estimated by
direct comparison with the full single-particle spectra. Factor
f (yt ) is ignored, since only the most prominent spectrum
aspects at smaller yt matter, especially the edges of the boosted
distributions. In Fig. 13, the rough upper limits on quadrupole
spectra (dotted curves) are determined by the condition that
they not exceed 10% of the measure single-particle spectra at
any point. The upper limits are then only a factor of 2 greater
than the lower limits.

C. Upper limits from spectrum residuals

Tighter constraints can be established by comparing
quadrupole spectrum shapes to residuals of a comparison
between single-particle spectrum data and a two-component
spectrum model [14]. Figure 14 (left panel) shows minimum-
bias quadrupole spectra for pions and protons (thick solid
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FIG. 14. Left panel: Minimum values of quadrupole spectra
compared with minimum-bias spectrum residuals relative to the two-
component model [14]. Right panel: Expected centrality dependence
of the quadrupole integral (2/npart)�yt2 nch2 compared with that for
the spectrum hard component.

curves) compared with the residuals from minimum-bias
(ν ∼ 3.5) single-particle pion and proton spectra (thin curves
and open symbols) obtained by comparing spectrum data
with an accurate two-component (soft-plus-hard) model [14].
The proton residuals peak corresponds to the p/π ratio
“puzzle” [21–23]. The even-larger pion residuals peak was
not previously noted.

The quadrupole (thick solid) curves have the minimum
amplitudes determined above by assuming a positive-definite
radial boost �yt2 ≈ �yt0. The spectrum residuals appear
inconsistent with any increase in quadrupole amplitudes
beyond the minimum.

D. Upper limits from centrality dependence

To confirm the upper limits from minimum-bias spectrum
residuals, detailed centrality dependence of spectrum structure
can be compared on the proper hadron rapidity for each
species. In Fig. 14 (right panel), the solid curve shows the
quadrupole centrality dependence in Eq. (42),

2

npart
�yt2nch2 ≈ nNN0.028ε

√
ν, (42)

from the analysis in Ref. [15]. The centrality dependence
of the hard component is also sketched for contrast. The
minimum-bias v2(pt ) data used in this analysis correspond to
the maximum of product �yt2nch2 on centrality. The product
should decrease strongly for more central collisions compared
to the hard-component structure.

In Fig. 15, the lower limits of minimum-bias quadrupole
spectra for pions and �’s (thick solid curves) are compared
with the centrality variation of single-particle spectrum resid-
uals on proper hadron yt . The common monopole boost
�yt0 = 0.6 for the pion and � quadrupole curves is apparent.

Pion and proton spectrum residuals for five centralities
are indicated by the thin curves of different types and open
symbols. Centralities correspond to the points in Fig. 14
(right panel). Comparison with the boost systematics of the
quadrupole spectra suggests that the proton and pion spectrum
residuals may also arise from a common boosted source, but
with quite different boost distribution. The thick dashed curves
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FIG. 15. Lower limits on quadrupole spectra in the form
(2/npart)ρ2(yt ) (solid points and curves) compared with single-particle
spectrum residuals (open points and thin curves of various styles) for
five Au-Au centralities relative to a two-component reference [14].
Soft components SNN (yt ) provide a reference. The dashed curves
corresponding to hadrons from a boosted source with �yt ∼ 1.1
and substantially smaller slope parameters T than the quadrupole
components suggest a possible mechanism for the residual spectrum
structure.

sketch a common boosted source with �yt ∼ 1.1 for the two
hadron species. In that context the boost distributions appear
to be strongly centrality dependent. The peak modes move to
smaller rapidities for more central collisions.

The solid points are quadrupole data from Fig. 9 with
minimum amplitudes as in Fig. 14 (left panel), kinematic factor
p′

t /ptγt (1 − βt ) removed and multiplied by 0.025 T2/A ∼ 0.5
according to Eqs. (39) and (41). The arrow at left indicates a
� v2 datum that is negative but consistent with zero. The
agreement between points and solid curves demonstrates that
boosted Lévy distributions describe the quadrupole spectra
well.

Comparisons of quadrupole data and spectrum residuals
indicate that increasing the quadrupole magnitude beyond the
lower limit would strongly conflict with the residuals. The
structure and centrality dependence of the proton residuals
appear to be consistent with the extrapolated centrality evolu-
tion of the lower-limit quadrupole component. The centrality
dependence of the structure at the left side of the proton
residuals peak may arise from the quadrupole contribution.
The pion comparison is indeterminant because of a lack of
spectrum data below yt ∼ 1.7. This detailed comparison is
limited by sparse data and data uncertainties but suggests that
the upper limit on the quadrupole component is consistent with
the lower limit. A more precise statement requires improved
spectrum and quadrupole data at small yt .

E. Discussion

The small upper limit (∼5%) on the fraction of final-state
particles participating in the azimuth quadrupole is certainly
counterintuitive. The conventional scenario for more-central
RHIC collisions is that almost all hadrons emerge from
a common partially thermalized medium supporting radial
and elliptic flow. The definition of v2(pt ) implicitly relies
on the assumption that the single-particle spectrum in the
denominator is the same as the quadrupole spectrum contained
in the numerator combined with other factors.

A central message of the present analysis is that the
quadrupole and single-particle spectra are not the same, the
former is boosted significantly, and the boost is not shared
by the single-particle spectrum (radial flow is negligible
[14]). Distinctions between spectrum shapes are the basis for
estimating what fraction of the final state actually carries the
azimuth quadrupole structure.

Since v2 measures the product of the true momentum asym-
metry and the fraction of particles carrying the quadrupole,
small values of v2 plus the conventional assumption about a
flowing bulk medium suggest that the momentum asymmetry
is rather small (a few percent), and therefore can be explained
by the hydrodynamic response to initial pressure gradients.

Comparing the reconstructed quadrupole spectrum with the
single-particle spectrum reveals that the quadrupole fraction
is actually small, and therefore the momentum eccentricity
for that small fraction of particles is large (near the upper
limit defined by a requirement of positive-definite boost).
That conclusion is not inconsistent with any previous v2

measurements, only with a priori expectations within the
hydro context.

XIV. QUADRUPOLE VS NONFLOW

Figure 11 demonstrates that the hard component of the
single-particle spectrum present in the denominator of v2

severely distorts the structure of v2(pt ) above about 0.5 GeV/c

for pions, kaons, and protons. The hard-component distortion
should be distinguished from possible nonflow distortions also
due to minijets but appearing in the numerator of v2.

Nonflow is dominated by minijet angular correlations
misinterpreted as azimuth quadrupole correlations by conven-
tional 1D flow analysis methods [15]. Minijet correlations and
the spectrum hard component have a common source: hadron
fragments from a minimum-bias scattered parton spectrum
[15]. The combination produces large uncertainties in the
interpretation of v2 data above 0.5 GeV/c. In this section,
I consider the mechanism and consequences of nonflow
contributions to v2(pt ).

A. Nonflow and the hard spectrum component

The structure of v2{2}(pt ) (1D azimuth correlations) in-
cluding nonflow is described schematically by

v2{2}(pt , ν) ∝ p′
t

AS ′
NN (yt − �y0 ) + nonflow

SNN (yt ) + ν HAA(yt , ν)
. (43)

064908-16



AZIMUTH QUADRUPOLE COMPONENT SPECTRA ON . . . PHYSICAL REVIEW C 78, 064908 (2008)

Nonflow is dominated by the m = 2 azimuth Fourier amplitude
of the same-side minijet peak (jet cone) in angular correlations
on (η, φ) [15,38]. The relative magnitude of the nonflow
term in v2 depends in part on the analysis method and
spectrum structure. At larger pt for pions and all pt for
less-abundant hadrons, the v2{EP} (event-plane) method is
typically employed to accommodate smaller particle yields.
v2{EP} ∼ v2{2} is maximally sensitive to minijets [15]. In
contrast, 2D angular autocorrelations on (η, φ) can be used
to separate minijet and quadrupole components accurately
[13,15].

Hard component ν HAA(yt , ν) is the angle-integrated
minijet fragment spectrum, whereas nonflow is a Fourier
component of the minijet same-side peak on azimuth. Thus,
minijet contributions in numerator (nonflow) and denominator
(hard component) of v2(pt ) are directly related. However, the
nonflow contribution has its own substantial pt dependence
relative to the spectrum hard component (i.e., minijet yield)
because the Fourier amplitude of the same-side peak depends
on the peak shape (η and φ widths), which varies strongly
with parton energy scale (as determined by the selected hadron
fragment pt ).

B. v2( pt ) trends at larger pt

In Fig. 16, quadrupole spectrum components inferred
from this analysis are compared with soft and hard single-
particle spectrum components for pions and protons from
minimum-bias Au-Au collisions. With increasing pt , there
is competition between the tails of the quadrupole spectra
and hard-component spectra. The latter completely determine
v2(pt ) trends at larger pt .

Above pt ∼ 2 GeV/c (ytπ ∼ 3.3), the soft-component and
quadrupole spectra are dominated by the hard component
(parton fragments) [14,28]. By definition, v2{2}(pt ) represents
the m = 2 Fourier component of all azimuth correlation
structure. Thus, at larger pt , v2{2}(pt ) is simply the ratio of the
Fourier amplitude of the same-side minijet peak (jet cone) to
the spectrum hard component (minijets). v2(pt ) then follows a
nearly constant trend on pt described as “saturation.” Variation
of the ratio (modulo prefactor p′

t ) is dominated by changes in
the minijet peak shape with parton energy scale. There is no
required relation to a reaction plane.
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FIG. 16. Comparison of the quadrupole component with soft and
hard spectrum components for pions and protons.

The centrality variation of v2(pt ) at larger pt should be
dominated by parton energy-loss effects, including η broad-
ening of the same-side peak in the numerator (nonflow) [38]
and reduction of the hard-component tail in the denominator
(jet quenching) [14]. Thus, in a conventional flow analysis,
the region above 0.5–1 GeV/c is already strongly distorted by
the spectrum hard component and thus difficult to interpret.
The region above 3–4 GeV/c provides no information about
the quadrupole component, whether hydro or simple boost
phenomenon.

XV. QUADRUPOLE VS SCALING

Certain scaling relations are inferred for v2(pt ) to support
claims that elliptic flow is a hydrodynamic phenomenon
manifested by a thermalized bulk partonic medium [4,8,9],
and that hadronization from the medium proceeds via coales-
cence/recombination of constituent quarks [11,39], relating to
a similar model of certain spectrum features (e.g., the anoma-
lous p/π ratio at intermediate pt ) [21–23]. The overarching
conclusion from v2(pt ) scaling is that sQGP (a thermalized,
small-viscosity bulk partonic medium) has been formed. In
this section, claims of constituent-quark and other forms of
v2(pt ) scaling are reexamined in the context of the present
analysis.

A. v2 scaling observations

Arguments in favor of a locally thermalized prehadronic
bulk medium evolving according to near-ideal hydrodynamics
include the facts that (1) the minimum-bias multiplicity
distribution form is independent of system size, (2) hadron
species abundances follow a statistical model, and (3) large v2

values reveal rapid thermalization and early pressure gradients
common to all hadron species and incompatible with hydro
evolution of hadrons (e.g., D and φ meson v2 data are
interpreted to imply thermalization) [39].

Scaling relations invoked in flow studies are interpreted
to buttress the above arguments. Scaling relations involve
combinations of v2(pt ) data, mt (transverse mass), and nq

(constituent quark number). The mass dependence of v2(pt )
at small pt is attributed to hydrodynamics. Constituent quark
scaling expressed by vh

2 (pt ) = nqv
q

2 (nqp
q
t ), with nq = 2 for

mesons and 3 for baryons [11] is interpreted to imply
hadronization from a thermalized partonic medium.

In Ref. [39], a universal scaling of the combination
v2(pt )/εnq vs “kinetic energy” (mt − m0)/nq was claimed
over a broad range of centralities, strongly suggesting for-
mation of a thermalized partonic medium. However, other
measurements disagree with the claimed universal centrality
trend [26]. Universal scaling results are also claimed for
30–70% centrality, but one can ask when is the system not
in equilibrium? For what circumstances do such scaling trends
not hold? What collision systems (e.g., N -N ) do not thermalize
or form a perfect liquid?

The present analysis strongly suggests that most hadrons
emerge from several nearly independent QCD processes
(nucleon or parton scattering and fragmentation), but some
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FIG. 17. Left panel: pt in the boost frame compared with trans-
verse kinetic energy mt − m0 in the laboratory frame for monopole
boost value �yt0 = 0.6. The curve intercepts are at mt0 − m0 as
defined in the text. Right panel: The same relations rescaled by
constituent quark number as 2/nq so that meson trends are unchanged.
The shift for baryons is indicated.

coupling develops among the processes in more-central Au-Au
collisions. In Sec. IX, it was shown that there are two shape
factors in v2(pt ): p′

t in the boost frame and the spectrum ratio
S ′

NN (yt − �yt0)/ρ0(yt ). In what follows, I consider scaling
arguments for each factor.

B. v2 scaling and p′
t

In Fig. 10 (right panel), p′
t vs pt is plotted. γt (1 − βt ) ∼ 0.6

common to three hadron species determines all structure.
Similar mass scaling of v2(pt ) is taken to imply hydrodynamic
flow. But the mass dependence near the origin is determined
by a single radial (monopole) boost �yt0, and there is no
indication from such data of the actual boost and hadron
production mechanisms.

In Fig. 17 (left panel), p′
t is replotted on mt − m0. The

mass dependence near the origin appears to be reduced, but
the locations of the curve intercepts are simply given by
mt0 − m0 = m0(cosh[�yt0] − 1) ∼ m0(�yt0)2/2 on mt − m0

compared to pt0 = m0 sinh(�yt0) ∼ m0�yt0 on pt noted in
Fig. 4 (left panel). Consequences of the source boost, espe-
cially boost distribution details, are compressed on mt − m0

(by a factor of 3 for �yt0 ∼ 0.6) in the pt region most important
to the hydro interpretation, but the boost is just as accurately
determined from the data regardless of plotting format.
Figure 1 (right panel) clearly provides the best visual access.
At larger pt , p

′
t → mt is shifted upward by m0 relative to

abscissa mt − m0.
In Fig. 17 (right panel), both axes are scaled by 2/nq (factor

of 2, so axis values remain the same for comparison). The
consequences are trivial. The intercept at smaller mt is reduced
by 2/3 for baryons, and the constant vertical offset m0 at larger
mt is also reduced by 2/3 for baryons. Visual differences
between baryons and mesons are indeed reduced, but the
results are not fundamental because the form of v2(pt ) at larger
pt is not determined by hydro or any boost phenomenon (cf.
next subsection).
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FIG. 18. Left panel: v2(pt ) vs kinetic energy mt − m0. The
intercept spacing at small pt is reduced by a factor of 3. The lower
dotted curve is the zero-viscosity hydro curve [1]. The upper dotted
curve is the hydro curve × 2.7. Right panel: Same as left panel, except
with constituent quark scaling in the form 2/nq so that meson trends
remain unchanged. The shift for baryons is indicated by the arrows.

C. v2 scaling and spectrum ratios

Figure 18 (left panel) shows v2(pt ) data for three hadron
species plotted in the same format as Fig. 17 (left panel). This
figure can be compared directly with Fig. 4 of Ref. [39]. The
dotted curves represent the hydro theory curve [1] and 2.7×
hydro. Data near the origin follow the p′

t systematics described
above. As in Sec. IX B (spectrum ratios), the turnover of
v2(pt ) above 0.5 GeV/c is due to the hard component in
the v2 denominator. If v2 data do not return to zero at larger
mt , a significant nonflow contribution is probably present, as
discussed in Sec. XIV.

In Fig. 18 (right panel), the nq scaling strategy is used
to minimize apparent differences between baryon and meson
data, the resulting shifts indicated by the arrows. The most
dramatic changes occur above 1 GeV/c, where the data are
not relevant to a hydrodynamic mechanism or soft processes.
In scaling exercises, the region above 1 GeV/c is viewed as
dominated by elliptic flow and soft hadronization. Scaling
trends there are interpreted in turn to imply that hadron
production is dominated by coalescence of constituent quarks.

The apparent correspondence of data for different hadron
species left of the vertical dashed lines indicates that all-
important information about the source boost distribution (cf.
Fig. 12, right panel) has been made visually inaccessible by a
simple transformation. Note the limited region of comparison
between the upper hydro (dotted) curve and the data. Generally,
comparison of different hadron species on pt or mt rather than
yt is unsuited for hydro (common boost) phenomena.

v2 data to the right of the vertical dashed lines can
reveal nothing about hydrodynamic phenomena. The v2(pt )
ratio there is dominated by a complex mixture of hard
processes (parton scattering and fragmentation), soft spectrum
components, and quadrupole components, with different shape
parameters (T , n, etc.) for each component. Section IX B
reveals that the systematics of Fig. 18 are determined by the
mass dependence of several spectrum components reflecting
soft and hard processes.

The present analysis demonstrates that quadrupole spectra
are similar to soft spectrum components (Lévy distributions)
unchanged from N -N collisions. The quadrupole hadron
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production mechanism may well be the same as in elementary
collisions. Inference of constituent quark scaling from v2 data
is prompted by a combination of several conventional colli-
sion mechanisms confused by a poorly designed correlation
measure.

XVI. DISCUSSION

A. Conceptual context of elliptic flow

The conventional elliptic flow context is a limiting case in
which v2 measurements are interpreted to conclude that (1)
a monolithic bulk medium produced early in the collision
is partonic (QCD quanta dominate the dynamics), (2) the
medium is thermalized rapidly via partonic rescattering, and
(3) hadrons emerge late from the medium via coalescence
of constituent quarks. Multistrange v2 data, for instance,
exclude slower flow development via hadron thermalization
(rescattering) [25].

Spectrum and elliptic flow systematics are used to conclude
that constituent quarks play a role in hadronization. Recom-
bination (quark coalescence) [11,21–23] reproduces “many
features” of hadron spectra in the intermediate-pt region
[1.5,5] GeV/c according to Ref. [12]. Hadronization by quark
coalescence is also inferred from scaling of v2(pt ) at intermedi-
ate pt , where v2 is said to saturate at a number apparently ∝ nq

above 1 GeV/c [12]. Limiting values of v2 (i.e., hydro limits)
combined with quark-number scaling (dynamical degrees of
freedom are constituent quarks) “suggest that strongly coupled
matter with sub-hadronic degrees of freedom may be created
in heavy ion collisions at RHIC” [12]. The present analysis is
inconsistent with those conclusions.

B. Fragmentation alternative

The complementary limiting case is A-A collisions mod-
eled by linear superposition of N -N collisions according to
the Glauber model, and hadron production by in vacuo nucleon
and parton fragmentation as in elementary hadronic collisions.
That linear reference invokes two independent fragmentation
processes to describe A-A collisions: participant-nucleon
(soft, longitudinal) fragmentation leading to a soft component
of pt spectra and minimum-bias large-angle-scattered parton
(hard, transverse) fragmentation leading to a hard component.

Some aspects of fragmentation can appear thermal, even
described in part by the statistical model, although there
is no transport via binary collisions (rescattering) in the
Boltzmann sense. Fragmentation is a maximum-entropy pro-
cess, the entropy maximization achieved via splitting cascades.
Parton fragmentation in Large Electron Positron collider (LEP)
e+-e− collisions is described to the statistical limits of data by
the β distribution, a maximum-entropy function [37]. Devi-
ations from the linear-superposition model in more-central
A-A collisions could result from a few secondary parton
interactions. Any nonlinearities require careful differential
study relative to a linear reference (the two-component model)
[14,28]. The burden should be on claims of thermalization to
rule out fragmentation as the dominant mechanism of A-A
collisions at RHIC.

C. Importance of measure design

Ratio measures applied to RHIC data typically confuse
several collision mechanisms. The RAA spectrum ratio mixes
soft and hard spectrum components. Most of the hard com-
ponent (at smaller pt ) is obliterated by the soft component
in a measure intended specifically to study parton energy
loss [14]. Ratio v2(pt ) similarly mixes soft and hard spec-
trum components. This analysis demonstrates that the (soft)
quadrupole component (boosted source) is severely distorted
by the hard component (parton fragmentation) over most of
the pt acceptance. The benefits of improved measure design
are suggested by comparison of Fig. 1 (left panel) with Fig. 9.

Some conventional single-particle spectrum analysis also
produces misconceptions. The results of monolithic power-law
function [40] fits to multicomponent pt spectra cannot be
interpreted [28]. If the entire spectrum below some pt value
(e.g., 2 GeV/c) is described by a blast-wave model [30], the
abundant hard spectrum component (minijets) is injected into
the hydro parametrization, confusing parton fragmentation
with hydrodynamic (Hubble) expansion [14]. Better under-
standing of RHIC collisions requires a comprehensive dif-
ferential approach to single-particle and correlation measure-
ments, including comparisons with well-defined references.

D. Comparison of boost models

In Sec. VI C, two radial boost models were described,
and model 2, multiple hadron sources including a boosted
quadrupole component, was adopted for the present analysis.
Model 1 is the conventional thermalized partonic bulk medium
common to all soft hadrons. I reconsider the model choice in
light of the analysis results.

Model 1 is essentially the blast-wave model of heavy
ion collisions [31] applied by hypothesis to almost all
particle production. Uniform Hubble expansion is assumed
for longitudinal and radial boosts. The longitudinal system is
boost invariant; the transverse boost depends on radius (Hubble
expansion) and azimuth (elliptic flow). Particle emission angle
φp is distinguished from particle source azimuth φs and the
normal to the emission surface φb. The source pseudorapidity
η (polar angle) is not generally the same as the particle
longitudinal rapidity yz.

In the present analysis, the soft component, quadrupole
component, and hard component are decoupled. I model the
quadrupole component by normal emission from a cylinder
at midrapidity and z = 0. The blast-wave model simplifies
to yz = η = 0 and φs = φp = φb. Equation (11) of Ref. [31]
then becomes the first line of Eq. (14) of this paper.
Since this analysis emphasizes qualitative study of algebraic
structure, the simplifications are reasonable. The boost model
of Ref. [31] includes ρ0 → �yt0 and ρ2 → �yt2. However,
parameters ρ relate to a Hubble expansion model, whereas the
�yt relate to an expanding cylindrical shell. �yt0 ∼ 0.6ρ0 and
similarly for the quadrupole. Model 1 is thus a limiting case
of model 2.

The model 1 expectation is that T and ρ0 common to most
particle production are obtained from pt spectrum fits, and
ρ2 is obtained from fits to v2 data. The result in Ref. [31]
for the monopole component is ρ0 ∼ 0.9 or �yt0 ∼ 0.55
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independent of centrality. Close inspection of spectrum fits,
however, reveals that the description of the overall spectra
over the full pt range is poor, especially for pions (the model
is fitted to data over a very restricted pt interval). Compare that
with the detailed spectrum description in Ref. [14] in the pt

interval [0.2,12] GeV/c, where no radial boost was required.
Model 1 attribution of a transverse boost system to the majority
of particles appears to fail, consistent with the present analysis.

The approximate quadrupole spectra determined by data
points in Fig. 9 are obtained from a simple combination of
measured quantities motivated by Eq. (25). The common boost
�yt0 of the quadrupole spectra is not observed for single-
particle soft components—the monolithic boost distribution
of the blast-wave model is inconsistent with data. The sharp
edge of the quadrupole spectrum (narrow boost distribution)
is particularly inconsistent with Hubble expansion, as shown
in Fig. 12. Independence of the quadrupole component boost
from the soft component is thus in conflict with model 1.

E. Implications of the present analysis

(i) Hadron yt spectra associated with the quadrupole
component have been recovered from v2(pt ) data.

(ii) v2(pt ) data trends are revealed as a complex interplay
of three hadron production mechanisms with accidental
manifestations of mass dependence.

(iii) The structure of the v2(pt ) ratio is dominated by the
spectrum hard component above 0.5 GeV/c.

(iv) Quadrupole hadrons come from a boosted source with
narrow boost distribution not common to most hadrons;
the number of hadrons from the quadrupole source is a
small fraction of the total.

(v) The small-pt mass ordering invoked to support a
hydro interpretation is a kinematic consequence of any
common boosted source.

(vi) The quadrupole component appears to be isolated from
the rest of the collision evolution.

(vii) Quadrupole spectra are substantially “cooler” than
the single-particle spectrum soft component (i.e., the
quadrupole and soft components are not in thermal
equilibrium, with each other or with the spectrum hard
component).

(viii) v2(pt ) trends interpreted as “constituent quark scaling”
at intermediate pt do not relate to a hydro phenomenon
or to hadron formation from a thermalized partonic
medium.

XVII. SUMMARY

Elliptic flow (v2) measurements provide the primary sup-
port for claims of a “perfect liquid” at RHIC. That central role
motivates a careful reexamination of the interpretation of v2

data in terms of hydrodynamic models. To that end, I have
reviewed azimuth correlation analysis methods and provided
important generalizations. I described a method to extract
quadrupole spectra on yt from v2(pt ) data, and I used a limited
v2 data sample for identified hadrons from minimum-bias

Au-Au collisions at 200 GeV to illustrate properties of v2

inferred from pt dependence and mass dependence.
I reviewed an accurate two-component parametrization

of hadron single-particle spectra on yt required to extract
quadrupole spectra from v2(pt ), and introduced the kinematics
of boosted sources as an aid to interpreting features of v2(pt ).
I expressed the functional form of v2(pt ) as the product of
two factors: p′

t (pt in a boosted frame) and the ratio of
the sought-after quadrupole spectrum to the single-particle
spectrum

I described the analysis steps required to combine the above
elements so as to recover quadrupole spectra from v2(pt )
data and modeled the extracted quadrupole spectra with Lévy
distributions—boosted soft components S ′

NN (yt − �yt0). I
compared the quadrupole spectrum component quantitatively
against other spectrum components and two hydro theory
examples, and I estimated absolute quadrupole yields. Finally,
I considered the impact of nonflow (minijet) contributions to
v2 measurements

The conclusions from this analysis are as follows: Claims
for v2 scaling behavior supporting inference of a major role
for constituent quarks in collision dynamics appear to be
unsupported given the structure of ratio v2(pt ) and mixing
of different physical mechanisms by that measure, especially
above pt ∼ 0.5 GeV/c. The true universality, as in Fig. 1
(right panel), is that of hadrons emitted from a common
boosted source by the same hadronization mechanism as the
single-particle spectrum soft component, albeit with a smaller
“temperature.” There is no support for a novel hadron produc-
tion mechanism. Monopole boost �yt0 is accurately obtained
from v2(pt ) data, but the (small) quadrupole absolute yield is
inferred indirectly, since only the product of quadrupole boost
�yt2 and absolute yield nch2 is measured directly.

Analysis of data for three hadron species indicates that
quadrupole yields relative to spectrum soft components are
similar. The production mechanism for the soft-component
yields in N -N collisions is the mechanism for the quadrupole
yields in Au-Au collisions. Thus, only three numbers (two
boosts and a ratio) are obtained from minimum-bias v2(pt )
data. Quadrupole (v2) data provide no evidence for a ther-
malized system or for medium properties such as viscosity.
The quadrupole component appears to result from an isolated
dynamical process involving at most 5% of the hadrons in
Au-Au collisions.

The combination of those properties suggests that the
azimuth quadrupole may be a new QCD phenomenon emerg-
ing at smaller QCD energy scales, the interaction of QCD
fields over large space-time volumes, which does not couple
significantly to other collision processes and produces a
hadron spectrum significantly “cooler” than the spectrum
soft component from nucleon fragmentation. The smaller
slope parameter may result from reduced kt broadening of
the QCD quadrupole field component compared to nucleon
fragmentation (soft component).
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