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Color-flavor locked strange matter and strangelets at finite temperature
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It is possible that a system composed of up, down, and strange quarks exists as the true ground state of nuclear
matter at high densities and low temperatures. This exotic plasma, called strange quark matter (SQM), seems to
be even more favorable energetically if quarks are in a superconducting state, the so-called color-flavor locked
state. Here we present calculations made on the basis of the MIT bag model, considering the influence of finite
temperature on the allowed parameters characterizing the system for stability of bulk SQM (the so-called stability
windows) and also for strangelets, small lumps of SQM, both in the color-flavor locking scenario. We compare
these results with the unpaired SQM and also briefly discuss some astrophysical implications of them. Also,
the issue of the strangelet’s electric charge is discussed. The effects of dynamical screening, though important
for nonpaired SQM strangelets, are not relevant when considering pairing among all three flavors and colors of
quarks.
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I. INTRODUCTION

Three decades ago it was proposed that systems composed
of an unconfined Fermi liquid of up, down, and strange
quarks could be absolutely stable [1–4]. In its simplest Fermi
liquid picture, stability depends on whether or not it would
be possible to lower the energy of a system composed of
quarks u and d by converting (through weak interactions)
approximately one-third of its components into the much more
massive strange quark by the introduction of a third Fermi sea.

Within the well-known MIT bag model [5], it has been
shown that this stability may be realized for a wide range of
parameters of strange quark matter (SQM) in bulk [6]. Other
calculations also indicate that SQM can be absolutely stable
within different frameworks (e.g., the shell model [7]).

The attractive force between quarks that are antisymmetric
in color tend to make quarks near the Fermi surface pair at
high densities, breaking color gauge symmetry and causing the
phenomena of color superconductivity. Recently, studies have
indicated that the color-flavor locked (CFL) state, in which
quarks near the Fermi surface form pairs, seems to be even
more favorable energetically, widening the stability window
[8–12].

If SQM or CFL matter is indeed the ground state of cold
and dense baryonic matter there would be some important
astrophysical implications. For instance, all neutron stars
would actually have their interiors composed only of exotic
matter [13–18] (see also Refs. [19–21] for recent reviews). The
existence of strange stars would likely imply the presence of
strangelets (finite size lumps of strange matter) among cosmic-
ray primaries. A few injection scenarios have been considered
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as likely sites: the merging of compact stars (though not
addressed in full detail yet) [22,23], strange matter formation
in type II supernovae [16], and acceleration from strange
pulsars [24]. Several cosmic-ray events have been tentatively
identified with primary strangelets (mainly the Centauro and
Price events and, more recently, data from the HECRO-81,
ET event, and AMS01 experiments [25–30]) for the data
obtained indicate a high penetration of the particle in the
atmosphere, low charge-to-mass ratio, and exotic secondaries.
New experiments are being designed that could identify these
exotic primaries with the purpose of definitely testing the
validity of the Bodmer-Witten-Terazawa conjecture [31–33].

For the description of these strangelets a few terms have to
be added to the bulk one in the free energy (see Refs. [34,35] for
details). Large lumps will have essentially the same structure
as bulk matter, with a small depletion of the massive strange
quarks near the surface resulting in a net positive charge, a
feature also expected for smaller chunks [7,35], which thus
resemble heavy nuclei.

Strangelets without pairing at finite temperature were first
analyzed by Madsen [34] in the ms = 0 approximation. A
more complete description has been given by He et al. [36], in
which energy, radius, electric charge (unscreened), strangeness
fraction, and minimum baryon number were presented.

CFL strangelets at T = 0 were discussed in Refs. [11,37].
More recently, a finite-temperature analysis using pertubative
QCD appeared [38]. We address in this paper the issues of
surface and curvature energies at T > 0, which are potentially
important for fragmentation of CFL SQM in astrophysical
environments among other things.

This paper in structured as follows: In Sec. II we describe
the theoretical approach used to determine the parameters char-
acterizing CFL SQM at finite temperature for the construction
of the windows of stability in bulk and strangelets; in Sec. III,
we present the numerical results for CFL SQM and compare
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them with unpaired SQM; in Sec. IV, we present our final
discussion and conclusions.

II. WINDOWS OF STABILITY

A. Bulk matter

Unpaired SQM in bulk contains u, d, and s quarks and also
electrons to maintain charge neutrality. The chemical balance
is maintained by weak interactions and neutrinos are assumed
to escape from the system. If SQM is in a CFL state in which
quarks of all flavors and colors near the Fermi surface form
pairs, an equal number of flavors is enforced by symmetry
and the mixture is automatically neutral [39]. In this case, the
condition is that the Fermi momentum for the three quarks
are equal, so that 3µ = µu + µd + µs and the common Fermi
momentum is ν = 2µ − (µ2 + m2

s /3)1/2.
For bulk CFL SQM, the thermodynamical potential for the

system to order �2 is [39,40]

�CFL =
∑

i

�i − 3

π2
�2µ2 + B, (1)

where � is the pairing energy gap and the term associated with
this parameter is the binding energy of the diquark condensate.
The term �free = ∑

i �i mimics an unpaired state where all
quarks have a common Fermi momentum, and i stands for
quarks u, d, and s and gluons. (There are no electrons in the
CFL state.)

On the basis of the MIT bag model with αc = 0,1 the
thermodynamic bulk potentials for each component of the
unpaired “toy model” system are given by

�i = ∓T

∫ ∞

0
dk gi

k2

2π2
ln

[
1 ± exp

(
−εi(k) − µi

T

)]
, (2)

where the upper sign corresponds to fermions and the lower to
bosons, µ and T are the chemical potential and temperature,
respectively, k and εi are the momentum and energy of the
particle, respectively, and the factor gi is the statistical weight
for quarks and gluons (6 for quarks and antiquarks and 16 for
gluons). The limit of Eq. (2) for T → 0 is the one given in
Ref. [6], when the integral is taken for momenta ranging from
zero to the Fermi one, since the Fermi-Dirac distribution at
T = 0 for the unpaired state presents a sharp cutoff at the Fermi
momentum,2 making it unnecessary to perform the integration
for k → ∞. At finite temperature, however, the broadening of
the Fermi-Dirac distribution occurs and hence the integration
has to be extended as well.

With these quantities we obtain the particle density given
by ni = −∂�i/∂µi (which accounts for the influence of
the pairing condensate binding energy) and the total energy
density E = ∑

i(�i + niµi) − 3�2µ2/π2 + B + T S, where
S = −(∂�/∂T )V,µ is the entropy.

Despite the fact that most of the analysis is performed by
using a constant value for � = �0, the pairing gap actually

1A finite strong coupling constant αc has been shown to correspond
to an effective reduction of the value of the MIT bag constant B [6].

2The CFL state does not actually present a sharp Fermi surface. See
Ref. [41] for more details.

depends on the temperature of the system. Following the
studies of superconductivity in quark matter [10,38], we used
for this dependence

�(T ) = 2−1/3�0

√
1 −

( T

Tc

)2
, (3)

Tc = 0.57�(T = 0) × 21/3 ≡ 21/3 × 0.57�0, (4)

where Tc is the critical temperature of the superconducting
system, above which the system can no longer support pairing
between quarks.

B. Strangelets

As already stated, for the description of strangelets, it is
necessary to add surface and curvature contributions to the
thermodynamical potentials of bulk matter:

�i = ∓T

∫ ∞

0
dk

dNi

dk
ln

[
1 ± exp

(
−εi(k) − µi

T

)]
. (5)

In the multiple reflection expansion [42,43] the density of
states is given by

dNi

dk
= gi

{
1

2π2
k2V + f

(i)
S

(mi

k

)
kS + f

(i)
C

(mi

k

)
C

}
, (6)

where V ,S , and C stand for the volume, surface area, and
curvature of the strangelet, respectively.

The surface term for quarks is given by [44]

f
(q)
S

(mq

k

)
= − 1

8π

[
1 − 2

π
arctan

(
k

mq

)]
. (7)

For the curvature contribution, the following ansatz [45] for
massive quarks is adopted:

f
(q)
C

(mq

k

)
= 1

12π2

{
1 − 3k

2mq

[
2

π
− arctan

(
k

mq

)]}
, (8)

whereas for gluons [46]f (g)
C = −1/6π2.

The energy is obtained as E = ∑
i(�i + Niµi) −

3�2µ2/π2V + BV + T S and the mechanical equilibrium
condition for a strangelet with vacuum outside is given by
B = −∑

i ∂�i/∂V . The relation obtained for strangelets
without pairing [36], µu = µd = µs , found by minimizing
the free energy with respect to the net number of quarks of
each species and subjected to the constraint A = 1/3

∑
i Ni ,

is here substituted by µu = µd and µs = √
µ2

u + m2
s , which is

actually a second constraint imposed for pairing to hold. The
value of the common chemical potential is then obtained nu-
merically by imposing the mechanical equilibrium condition
at a given set of B,�, and ms .

The issue of Debye screening of the electric charge
for strangelets without pairing is of major importance in
determining the total charge of these particles [47]. In the
expression for energy density, there is a term proportional to
A2

0/λ
2
D , where A0 is the gauge field for the massless gauge

boson and λD is the Debye screening length. In this way,
the general expression of the Debye screening length may be
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FIG. 1. Stability windows, regions bounded by the vertical line at B1/4 = 145 MeV and the curves of E/A = 939 MeV (shown for different
temperatures and �), for CFL SQM. On the top left panel, T = 0 (following Ref. [12]), and on the top right panel, for CFL SQM, T =
10 MeV and values of � are as indicated. The full lines represent the calculations made by considering � constant with temperature and the
dashed lines are for � = �(T ) (refer to text for details). Bottom panels show the stability window for CFL SQM at finite temperature and � =
100 MeV. The solid line is for null temperature, the dashed line for T = 10 MeV, and the dotted line for T = 30 MeV. On the left, the curves
were obtained by considering a fixed �; on the right, � = �(T ). All the curves presented are calculated for fixed E/A = 939 MeV labeled
with the corresponding value of �, when necessary. The vertical line is the minimum B value for stability.

written as

λ−2
D ∝ ∂2 energy density

∂µ2
e

, (9)

where µe is the chemical potential for electric charge. This
means that λD is related to the response of a medium to a
change in µe.

In CFL matter the massless gauge boson is the rotated or Q̃

photon and the Q̃ charge of all the Cooper pairs forming the
condensate is zero. Since all quasiparticles are gapped because
of the unbroken Ũ(1)em gauge symmetry in the ground state,
the CFL phase is not an electromagnetic superconductor but a
Q̃ insulator [8].

In CFL matter, the relevant electric chemical potential is
µQ̃ and the root mean square of Eq. (9) is zero [48]; therefore
the electric field is not screened and the charge of a strangelet
in the CFL state will be defined by finite size effects only.

III. NUMERICAL RESULTS

The so-called windows of stability (regions in the plane
ms-B) for CFL matter in the framework of the MIT bag
model are shown in Fig. 1. The minimum value for B1/4 is
145 MeV, because a lower B would cause the spontaneous
decay to nonstrange matter (u and d quarks). As expected,
the matter becomes less bound at finite temperature, as can be
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FIG. 2. Energy per baryon number as a function of the baryonic number, bag constant, strange quark mass, pairing energy gap, and
temperature, from left to right, top to bottom, respectively. The values of the fixed constants are indicated for each plot. The first four plots are
performed for T = 0 (full curves), T = 15 MeV (dashed curves), and T = 30 MeV (dotted curves). The last plot is performed for A = 100
(full curve) and A = 1000 (dashed curve).
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FIG. 3. Energy per baryon number of CFL strangelets as a
function of A calculated for � = �(T ). The values of the fixed
constants are T = 0 (full curve), T = 15 MeV (dashed curves), and
T = 30 MeV (dotted curve) and ms = 150 MeV, B1/4 = 145 MeV,
and � = 100 MeV.

seen both in the constant pairing gap approximation and when
this parameter is temperature dependent.

The influence of considering the more realistic case
of � depending on the temperature, � = �(T ), shows a
destabilization of the system owing to an effective reduction
in the gap parameter. This conclusion holds even if the
system is quite close to the critical temperature for pairing
between quarks. The system, then, tends to approach the
curves for � = 0. But it does not exactly match the curves
for � = 0 because of the existence of the extra term in
the entropy (∂[−3µ2/π2�(T )2]/∂T � 3µ2/π2Tc/0.41, when
T = Tc) for the temperature-dependent scenario.

We have also calculated the structure of spherical
strangelets, numerically, with the results shown in Figs. 2

and 3 for the total energy of these particles as a function of
different parameters characterizing them.

Just as in the case of bulk matter, there is a competition when
considering � = �(T ) between the lowering of the effective
pairing parameter and the raising of the chemical potentials
in the CFL quark matter and the extra term in the volumetric
entropy when compared to the case of a constant pairing gap
parameter. For finite size drops of SQM, the additional terms
of surface and curvature contributing in the thermodynamic
potential with opposite sign to the volumetric term are affected
only by the changes in µ [being higher in the �(T ) case]
and in the strangelet radius (being lower but not significantly
affected, with the difference being less than 1%). The overall
result is that the stability for a given set of ms,B,�0, A, and
temperature is disfavored in the dependent delta scenario, as it
is in the bulk case.

The total energy per baryon number decreases with increas-
ing pairing gap and increasing strangelet baryon number and
it increases with increasing B,ms , and T . These behaviors can
be understood by making comparison with the behavior of the
stability windows of SQM shown in Fig. 1.

The calculations show that the coefficient R0, defining the
strangelet radius as in R = R0A

1/3, decreases with increasing
A and B but increases with ms and the � parameter (holding
other parameters fixed for each comparison). It is also higher
whenever there is an increase in the temperature, for the
thermic energy of quarks and gluons also increases. These
behaviors are easy to understand: By increasing the strangelet’s
baryon content, its parameters get closer to the bulk ones,
resulting in a decrease in R/A1/3. Also, when increasing the
bag constant, the vacuum pressure on the strangelet’s content
is higher, explaining the radius dependence on this parameter.
With increasing strange quark mass, the strange quark content
decreases and so, with fixed A, the radius increases to maintain
the constraint A = ∑

i Ni ; the same reasoning applies to the
increase in the pairing gap.

In Figs. 4 and 5, the dependence of the surface and
curvature energies, defined as the coefficient that appears

FIG. 4. Surface and curvature energies of CFL strangelets, from left to right, respectively, as a function of ms . The values of the fixed
constants are T = 0 (full curve), T = 15 MeV (dashed curves), and T = 30 MeV (dotted curve) and A = 100 MeV, B1/4 = 145 MeV, and
� = 100 MeV.
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FIG. 5. Surface and curvature energies of CFL strangelets, from left to right, respectively, as a function of �. The values of the fixed constants
are T = 0 (full curve), T = 15 MeV (dashed curves), and T = 30 MeV (dotted curve) and A = 100, ms = 150 MeV, and B1/4 = 145 MeV.
The critical temperature for � <∼ 20 MeV is below 15 MeV and for � <∼ 40 MeV it is below 30 MeV; that is why the curves at finite temperature
are plotted starting at different values of the pairing gap energy.

multiplying A2/3 and A1/3 in the expression for the total energy,
respectively, on these parameters is also shown.

The surface and curvature contributions decrease at higher
temperatures, a feature also seen in ordinary nuclear matter
for the surface energy (see, for example, Refs. [49,50] and
references therein). The dependence of the surface energy with
the strange quark mass shows a maximum at ms ≈ 150 MeV
and goes to zero for massless quarks, and additionally it shows
a decrease for high values of the strange quark mass owing to
a depletion of this very massive component.

Simple numerical fits for the surface and curvature energy
of strangelets at finite temperature were also obtained (to
second order in the temperature T ) for � = �0 = 100 MeV
(i.e., for a gap parameter independent of temperature), B1/4 =
145 MeV, and ms = 150 MeV; these are

σCFL(T ,A) = (81.09 + 0.013 T − 0.026 T 2)

× (0.96 + 0.17 e− A
22.5 + 0.053 e− A

384.2 ), (10)

CCFL(T ,A) = (163.85 + 0.003 T − 0.093 T 2)

× (0.98 + 0.082 e− A
23.2 + 0.026 e− A

393.9 ). (11)

As expected, the behavior of the parameters characterizing
strangelets for CFL matter is qualitatively the same when
compared to SQM without pairing (i.e., the system at finite
temperature is less stable than at absolute zero but the
surface and curvature contributions decrease, a well-known
feature for nucleon systems). One interesting point is that, for
� = 100 MeV, the chemical potential for the s quark is very
close to the common chemical potential for stable strangelets
without pairing at the same temperature and with the same val-
ues of B and ms , but the chemical potential for the light quarks
is much lower. As a consequence, the surface energy (deter-
mined only by the massive strange quark) is almost equal for
the two scenarios, but the curvature energy is much lower for
CFL strangelets. This means that, for values of the pairing gap

lower than 100 MeV, the surface energy is higher in the CFL
state than without pairing. Meanwhile the curvature energy
is always lower for CFL strangelets, regardless of the value
of �.

The behavior of the electric charge for a strangelet with
fixed T ,B,ms , and � = �0 as a function of the baryon
number is shown in Fig. 6. The electric charge grows with
temperature for large baryon number strangelets driven by
the dependence on the number density of quarks with T . For
the massless quarks, a nonzero temperature slightly favors
their increase in number through the term µT 2V . But for
the massive s quark, the effect is the opposite since Ns =∫ ∞

0 {1 + exp[(
√

k2 + m2
s − µs)/T ]}(dNs/dk)dk. So Z/A2/3

deviates from being close to a constant behavior, expected from
the suppression of massive strange quarks near the surface at

FIG. 6. Electric charge of strangelets as a function of the baryon
number for T = 0 (full curve), T = 15 (dashed curve), and T = 30
(dotted curve), B1/4 = 145 MeV, ms = 150 MeV, and � = 100.
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T = 0 [11], owing to the higher importance of volumetric
imbalance on the number density of different quark flavors at
higher temperatures.

IV. CONCLUSIONS

CFL strange quark matter at T = 0 is more stable than
SQM without pairing [11,12] when one considers the strange
quark mass, strong coupling constant, and bag constant fixed.
This result has been extended and quantified for T > 0 in
the present work. Even when the temperature is close to
the critical temperature for pairing there is still room for
(meta)stability, depending on parameter choice. This suggests
that the process of transition from a neutron star to a strange
star could proceed right after its formation and the system
might even skip the neutron star stage, if conditions for
conversion of ordinary nuclear matter to the CFL state are
met in the interior of these compact objects. As a general
result, it is possible to observe that a finite temperature always
has the consequence of destabilizing the system even when
considering the dependence of � with T , which causes SQM
to be slightly more disfavored than its “constant-�” version.

We also notice a very distinctive feature between strangelets
with and without pairing concerning the existence of
the critical baryon number, Acrit. This quantity represents
the minimum baryon number to which strangelets are stable
against neutron decay. The effects of surface and curvature
tend to destabilize strange matter at low baryon number. As a
result, the energy for creating small lumps of SQM increases
as the baryon number decreases till it reaches a value above the
neutron decay threshold (i.e., till it is above ∼ 930 MeV). As
shown in Refs. [34,36], the critical baryon number exists even
for null temperature. It is known (see Refs. [6,12]) that the
lower the value of the bag constant (of course, respecting the
limit B1/4 � 145 MeV) and the higher the value of the pairing
gap, the more stable strange quark matter in bulk is. In the
case of CFL strangelets with high values of � and relatively

low values of the bag constant, when performing the analysis
within the MIT bag model, the existence of Acrit is not clear.
It must be noted, however, that the liquid drop model does not
provide a good description for low baryon number, being less
reliable than shell models filling explicitly the quark states [7].

Another important feature is that although for high baryon
number CFL strangelets seem to be absolutely stable even for
temperatures of order 30 MeV when � = 100 MeV, values
of the pairing constant much above a few hundreds of MeV
are not expected to describe these systems. Thus, the critical
temperatures for pairing of quarks inside strangelets are not
expected to be higher than 70–100 MeV. For temperatures
above this value, the quarks inside the strangelet would no
longer be paired and the gain in energy for this state com-
pared to nonsuperconducting strangelets would vanish. Since
strangelets without pairing are not stable for temperatures
as high as the maximum critical temperatures expected, the
strange quark matter stability would vanish above Tcrit if the
pairing gap is too high.

We have also found that strangelets are more favorable
in the CFL state, as expected. In particular, the curvature
energy for CFL strangelets is lower than for “normal” strange
quark matter, which may influence the fragmentation process
of bulk CFL SQM, an important issue when considering
the possible presence of these particles among cosmic rays
and also when considering strangelet production in heavy-ion
collisions, although the very high temperatures disfavor the
production of stable strangelets in these environments [11].

ACKNOWLEDGMENTS

We acknowledge the very important advice of M. Alford
on the issue of screening for CFL strangelets. This work is
supported by Funda̧ão de Amparo à Pesquisa do Estado de
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