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Momentum kick model description of the near-side ridge and jet quenching
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In the momentum kick model, a near-side jet emerges near the surface, kicks medium partons, loses energy,
and fragments into the trigger particle and fragmentation products. The kicked medium partons subsequently
materialize as the observed ridge particles, which carry direct information on the magnitude of the momentum
kick and the initial parton momentum distribution at the moment of jet–medium-parton collisions. The initial
parton momentum distribution extracted from the STAR ridge data for central Au + Au collisions at

√
sNN =

200 GeV has a thermal-like transverse momentum distribution and a rapidity plateau structure with a relatively flat
distribution at mid-rapidity and sharp kinematic boundaries at large rapidities. Such a rapidity plateau structure
may arise from particle production in flux tubes, as color charges and anticolor charges separate at high energies.
The centrality dependence of the ridge yield and the degree of jet quenching can be consistently described by the
momentum kick model.
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I. INTRODUCTION

In central high-energy heavy-ion collisions, jets are pro-
duced in nucleon-nucleon collisions and they interact with the
dense medium produced in the interacting region. Depending
on the relative azimuthal angle relative to the trigger particle,
observed high-pt jets can be classified as near-side jets or
away-side jets. An away-side jet is associated with a broad
cone of particles pointing azimuthally opposite to the trigger
particle direction. The strong attenuation of the away-side
jet in its passage through the produced dense matter is one
of the many notable experimental observations in relativistic
heavy-ion collisions and is a signature for the production of
the strongly coupled quark-gluon plasma [1–4].

In contrast, a near-side jet is characterized by the presence of
associated particles within a narrow azimuthal angle along the
trigger particle direction. It retains many of the characteristics
of the associated fragmentation products as those of a jet in pp

and peripheral heavy-ion collisions. The near-side jet occurs
when the high-pt jet emerges near the surface of the produced
parton medium.

Recently, the STAR Collaboration [5–15] observed a
�φ-�η correlation of particles associated with a near-side,
high-pt trigger particle in central Au + Au collisions at√

sNN = 200 GeV at RHIC, where �φ and �η are the
azimuthal angle and pseudorapidity differences measured
relative to the trigger particle, respectively. Particles asso-
ciated with the near-side jet can be decomposed into a “jet
component,” corresponding to fragmentation products of the
near-side jet at (�φ,�η) ∼ (0, 0), and a “ridge component”
at �φ ∼ 0 with a ridge structure in �η. Similar �φ-�η

correlations associated with a near-side jet have also been
observed by the PHENIX Collaboration [16,17] and the
PHOBOS Collaboration [18]. Although many theoretical
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models [19–35] have been proposed to discuss the jet structure
and related phenomena, the ridge phenomenon has not yet been
fully understood.

Previously, a momentum kick model was put forth to
explain the ridge phenomenon [19–21]. In the model it is
assumed that a near-side jet occurs near the surface, kicks
medium partons, loses energy along its way, and fragments
into the trigger and its associated fragmentation products
(the “jet component”) (Fig. 1). Those medium partons that
are kicked by the jet acquire a momentum kick along
the jet direction. They subsequently materialize by parton-
hadron duality as ridge particles in the “ridge component”
(Fig. 1). They carry direct information on the momentum
distribution of the medium partons at the moment of jet–
medium-parton collisions, for which not much information
has been obtained from direct experimental measurements.
As the early state of the medium partons is an important
physical quantity, it is therefore useful to examine the early
parton momentum distribution by using the momentum kick
model.

A previous momentum kick model analysis gave theoretical
results in qualitative agreement with experimental data [19].
We arrived at the interesting observation that at the moment
of jet–medium-parton collisions the parton transverse slope
parameter T is slightly higher and the rapidity width substan-
tially greater than corresponding quantities of their evolution
products at the endpoint of the nucleus-nucleus collision.
We would like to refine the model and give a quantitative
comparison with experiment. We also wish to explore the early
parton momentum distribution over a wider kinematic range
of different transverse momenta and rapidities to search for
interesting and novel features of the initial parton momentum
distribution.

We shall show that the extracted early parton distribution
has a plateau rapidity structure. Rapidity distributions in
the form of a plateau have been known in QCD particle
production processes both experimentally and theoretically.
Experimental evidence for a plateau rapidity distributions
along the sphericity axis or the thrust axis has been found
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FIG. 1. (Color online) Schematic representation of the momen-
tum kick model. A near-side jet parton (represented by adjoining thick
arrows) occurs in a dense medium, whose partons are represented by
solid circular points. The jet parton kicks many medium partons, loses
energy, radiates, and fragments into the trigger particle and associated
“jet-component” particles. The medium partons that are kicked by
the jet parton acquire a momentum kick along the jet direction and
materialize as associated “ridge-component” particles. Not shown in
the figure is the away-side jet opposite to the near-side jet.

in π± production in e+-e− annihilation [36–40].1 The rapidity
distributions for K± production also show a plateau structure
with a depression in an extended region around y ∼ 0. As a
function of energy, the shape of the rapidity distribution for
the sum of all particles produced in e+-e− annihilation is a
plateau with either a flat distribution or a small depression at
y ∼ 0 [40]. The width of the rapidity plateau increases as a
function of increasing center-of mass energy.

Theoretically, the rapidity plateau structure has been known
in many earlier investigations of particle production processes
in QCD, when a quark pulls away from an antiquark at
high energies [41–45]. The theoretical basis in the work
of Refs. [41–44] comes from the approximate connection
between QCD and QED2 [46–49]. We would like to show more
explicitly here how the transverse confinement in a flux tube
allows one to establish an approximate connection between
the field theories of QED2 and QCD in high energy processes.
Using such a connection, we wish to review here how the
rapidity plateau structure occurs when a color charge separates
from an anticolor charge at high energies.

The early stage of the nucleus-nucleus collision comprises
many simultaneous elementary particle production processes
involving a quark pulling away from an antiquark (or qq

1Note that the rapidity distributions along the sphericity axis and the
thrust axis are nearly the same on almost all rapidity points except at
|y| <∼ 0.1 (see Figs. 40 and 41 in Ref. [36]). Whereas the rapidity
distribution obtained in the sphericity axis system appears to be
smooth around y ∼ 0, the rapidity distribution obtained in the thrust
axis system exhibits an abrupt decrease at |y| <∼ 0.1.

diquark) at high energies. As elementary processes lead to
plateau rapidity distributions, the rapidity distribution of the
medium partons at the early stage of the nucleus-nucleus
collision should retain the rapidity plateau characteristics.

The parton momentum distribution is only one aspect of
the momentum kick model. The momentum loss of the jet in
its passage through the medium is another important aspect.
Although many theoretical treatments of the jet quenching
phenomenon have been presented previously [50], the in-
vestigation of the jet quenching phenomenon in connection
with ridge particles associated with the jet will provide a
different and complementary perspective. The ridge yield and
the quenching of the emerging jet will depend on the number of
medium partons kicked by the jet along its way. A successful
simultaneous description of the centrality dependence of the
ridge yield and jet quenching will provide a consistent picture
of the interaction between a jet and the medium. It will
also pave the way for a future Monte Carlo implementation
of the momentum kick model where many refinements and
improvements can be included.

In this paper, we shall limit our attention to particles
associated with the near-side jet. In the context of the present
investigation, the ridge particle momentum distributions in
nucleus-nucleus collisions refer implicitly to those measured
on a “per jet trigger” basis, unless indicated otherwise. For
brevity of terminology, the term “jet” will be used both for the
parent “jet parton” that passes through the medium and also
for the daughter “jet component” of associated particles. The
ambiguity of the meaning of the term can be easily resolved
by context.

This paper is organized as follows. In Sec. II we summarize
the momentum kick model and relate the ridge yield to the
number of kicked medium partons. In Sec. III, we give the
relationship between the initial and final parton momentum
distributions under the action of a momentum kick. In
Sec. IV, we specify how the initial parton momentum distribu-
tion is parametrized. To determine the initial parton momentum
distribution from the observed total particle distribution in
central Au + Au collisions, we parametrize in Sec. V the jet
momentum distribution associated with the near-side jet in
pp collisions. The momentum distribution of mid-rapidity-
associated particles in central Au + Au collisions at

√
sNN =

200 GeV are then analyzed in Sec. VI. In Sec. VII, we display
explicitly the initial parton momentum distribution extracted
from the ridge data. In Sec. VIII, we examine the connection
between QCD and QED2 in the presence of transverse
confinement and study the origin of the rapidity plateau when
a color charge separates from an anticolor charge at high
energies. In Sec. IX, the field theory of bosonized QED2 is then
used to study particle production as an initial-value problem.
The evolution of the medium parton momentum distribution
is discussed in Sec. X. In Sec. XI, we turn our attention
to the propagation of the jet and the dependence of the jet
fragmentation function on the number of jet–medium-parton
collisions. In Sec. XII, the centrality dependence of the ridge
yield and jet quenching is examined. In Sec. XIII, we examine
the dependence of the ridge yield on the energy and mass
number of the colliding nuclei. In Sec. XIV, we present our
conclusions and discussion.

064905-2



MOMENTUM KICK MODEL DESCRIPTION OF THE NEAR- . . . PHYSICAL REVIEW C 78, 064905 (2008)

II. THE MOMENTUM KICK MODEL

It should be pointed out on the outset that the interaction
between a jet and the medium can be described by representing
the medium either as fields or as particles. In our momentum
kick model, we choose to represent the medium as particles.
We describe the interaction between the jet and the medium
in terms of jet–medium-parton collisions, from which each
collided medium parton receives a momentum kick and
subsequently materializes as a ridge particle. We have been
guided to such a particle description because of the strong
color screening in a dense color medium [51,52]. The presence
of the azimuthal kinematic correlation between the jet and
the ridge particles lends additional support to the concept
of jet–medium-parton collisions as a central element of the
phenomenon.

As depicted in Fig. 1, the main contents of the momentum
kick model can be briefly summarized as follows:

(i) A near-side jet parton emerges near the medium surface
and the jet parton collides with medium partons on
its way to the detector. It loses energy by collisions
and gluon radiation. It subsequently fragments into
the trigger particle and other associated fragmentation
products.

(ii) Each jet–medium-parton collision imparts a momen-
tum kick q to the initial medium parton of momentum pi

in the general direction of the trigger particle to change
it to the final parton momentum p ≡ pf = pi + q, and
it modifies the normalized initial parton momentum dis-
tribution dF/dpi to become the final parton momentum
distribution dF/dpf . The kicked partons subsequently
materialize by parton-hadron duality as ridge particles.

Based on this picture, we can describe the jet and the kicked
particles in quantitative terms. We consider a nucleus-nucleus
collision at a given impact parameter b with Nbin binary
nucleon-nucleon collisions, and we label a binary collision
by the index i. For the ith binary collision, there is a jet parton
distribution dNi

j /dpj , where the subscript j stands for the “jet
parton.” The sum over all binary collisions for a given impact
parameter leads to the total jet parton distribution dNj/dpj

defined by

dNj

dpj

=
Nbin∑
i=1

dNi
j

dpj

. (1)

In a single pp collision, the yield of a trigger particle with
momentum ptrig is

dNpp

dptrig
(ptrig) =

∫
dpj

dNpp

dpj

D̃(ptrig, pj ), (2)

where D̃(ptrig, pj ) is the fragmentation function for frag-
menting a trigger hadron of momentum ptrig out of a parent
jet parton of momentum pj . For convenience of accounting
in nucleus-nucleus collisions for a fixed ptrig, we rescale
the fragmentation function by dividing this equation by the
quantity on the left-hand side, [dNpp/dptrig(ptrig)], to change

the equation to

1 =
∫

dpj

dNpp

dpj

D(ptrig, pj ), (3)

where the renormalized fragmentation function D(ptrig, pj ) is

D(ptrig, pj ) = D̃(ptrig, pj )/[dNpp/dptrig(ptrig)]. (4)

By using the fragmentation function normalized in this
manner, a binary nucleon-nucleon collision (the ith binary col-
lision, say) produces a single trigger particle at the momentum
ptrig, in the absence of jet-medium interactions,∫

dpj

dNi
j

dpj

D(ptrig; pj )

= (unquenched Ntrig arising from the ith binary collision)

= 1. (5)

With the total jet source distribution dNj/dpj coming from
all binary collisions in a nucleus-nucleus collision, we have

Nbin =
∫

dpj

dNj

dpj

D(ptrigpj ). (6)

In the presence of jet-medium interactions, the total number
of trigger particles, Ntrig, with momentum ptrig is

Ntrig

=
∫

dpj

dNj

dpj

Nmax∑
N=0

P (N )e−ζaND

(
ptrig; pj −

N∑
n=1

qn − �r

)
,

(7)

where N is the number of medium partons kicked by a
jet of momentum pj along its way, Nmax is the maximum
N considered, and P (N ) is a probability distribution of N ,
normalized by

∑Nmax
N=0 P (N ) = 1. The factor e−ζaN describes

the absorption of the jet resulting from the inelastic fraction
of jet–medium-parton collisions. The quantity qn is the
momentum kick on the medium parton from the nth jet–
medium-parton collision, and �r is the jet momentum loss
from the gluon radiation of the jet. We shall postpone our
discussion of P (N ) to Sec. XII. It suffices to indicate here
that P (N ) depends on the medium parton density along the
trajectory and the jet–medium-parton scattering cross section.

As is obvious from Eq. (7), the number of trigger particles,
Ntrig, in a nucleus-nucleus collision (with the momentum ptrig)
will be equal to the number of binary collisions, Nbin, in the
absence of any jet-medium interaction,

Ntrig({ζa, qn,�r} = 0) = Nbin. (8)

The ratio of Ntrig({ζa, qn,�r} �= 0) in a nucleus-nucleus
collision with respect to Ntrig({ζa, qn,�r} = 0) in the absence
of any jet-medium interaction is the RAA measure of jet
quenching,

RAA = 1

Nbin

∫
dpj

dNj

dpj

Nmax∑
N=0

P (N )e−ζaN

×D

(
ptrig; pj −

N∑
n=1

qn − �r

)
. (9)
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Because the kicked partons are identified as ridge particles by
parton-hadron duality and two-thirds of the produced hadrons
are charged, the distribution of associated ridge particles is
therefore

dNAA
ridge

dp
=

∫
dpj

dNj

dpj

Nmax∑
N=1

P (N )e−ζaN

×D

(
ptrig; pj −

N∑
n=1

qn − �r

)

×
{

2

3

N∑
n=1

fRn

dFn

dp
(qn)

}
, (10)

where 0 < fRn � 1 is the ridge attenuation factor for the
nth kicked parton to reach the detector and dFn/dp is the
normalized momentum distribution of the nth kicked medium
parton, normalized to

∫
dpdFn/dp = 1. We note that the

right-hand sides of Eq. (7) and (10) differ only by the quantity
in the curly braces. It is convenient to define the expectation
value 〈O〉 of a quantityO in the presence of the jet distribution,
jet momentum loss, and jet fragmentation by

〈O〉 =
∫

dpj

dNj

dpj

Nmax∑
N=1

P (N )e−ζaN

×D

(
ptrig; pj −

N∑
n=1

qn − �r

)
O

÷
∫

dpj

dNj

dpj

Nmax∑
N=1

P (N )e−ζaN

×D

(
ptrig; pj −

N∑
n=1

qn − �r

)
. (11)

By using this definition, the momentum distribution of the
ridge particle momentum distribution per trigger particle is
then the expectation value of the sum of the final momentum
distribution of the kicked medium partons:

1

Ntrig

dNAA
ridge

dp
=

〈
2

3

N∑
n=1

fRn

dFn

dp
(qn)

〉
. (12)

This equation can be rewritten as

1

Ntrig

dNAA
ridge

dp
= 2

3

{
〈fR〉〈N〉

〈
dF

dp

〉
+

〈
N∑

n=1

(fRn − 〈fR〉)

×
[
dFn

dp
(qn) −

〈
dF

dp

〉] 〉}
, (13)

where fR is the average attenuation factor, fR = ∑N
n=1 fnR/N ,

and 〈N〉 is the expectation value of the total number of kicked
medium partons per trigger particle. The quantity 〈N〉 is also
the expectation value of the number of jet–medium-parton
collisions per trigger particle. We shall often label 〈N〉
alternatively as 〈Nk〉 with the subscript k to emphasize that
this is the averaged number of kicked medium partons per
trigger.

As defined by Eq. (11), 〈N〉 and 〈Nk〉 are given by

〈N〉 ≡ 〈Nk〉 = 1

Ntrig

∫
dpj

dNj

dpj

Nmax∑
N=0

NP (N )e−ζaN

×D

(
ptrig; pj −

N∑
n=1

qn − �r

)
. (14)

To understand the gross features of the phenomenon, we
neglect the second term in the curly braces of Eq. (13), which
arises from the fluctuation of the quantities from their mean
values. The formulation can also be simplified by taking the
different momentum kicks qn to be the average q. Using these
simplifying assumptions, we then obtain

1

Ntrig

dNAA
ridge

dp
= 〈fR〉2

3
〈Nk〉

〈
dF

dp

〉
. (15)

Thus, the ridge particle distribution is separated into a
geometry-dependent part 〈fR〉(2/3)〈Nk〉 and the average nor-
malized momentum distribution of ridge particles, 〈dF/dp〉.
For brevity of notation, the bracket symbol, 〈〉, for 〈dF/dp〉
will be made implicit, and the normalized ridge momentum
distribution dF/dp will be understood to represent the average
over the jet source distribution, jet collision locations, and jet
energies.

If one is interested in the total ridge yield by integrating
over the ridge particle momentum, we then get

NAA
ridge

Ntrig
= 〈fR〉2

3
〈Nk〉. (16)

Our strategy is to study first the case of the most-
central Au + Au collisions at

√
sNN = 200 GeV where the

momentum distribution of the ridge particles and the average
number of kicked medium partons can be inferred from
experimental data [5,7,9]. In Secs. XI, XII, and XIII, we shall
then examine the average number of kicked medium partons
and the experimental ridge yield as a function of centrality,
collision energies, and nuclear mass numbers [7,8,14], using
the number of kicked medium partons for the most-central
Au + Au collision at

√
sNN = 200 GeV as a reference.

III. RELATION BETWEEN THE INITIAL AND FINAL
MOMENTUM DISTRIBUTIONS

In the momentum kick model, the normalized final parton
momentum distribution E dF/dp at p is related to the
normalized initial parton momentum distribution Ei dF/dpi

at pi at a shifted momentum, pi = p − q, and we have [19]

dF

ptdptdηdφ
=

[
dF

ptidptidyidφi

E

Ei

]
pi=p−q

×
√

1 − m2(
m2 + p2

t

)
cosh2 y

, (17)

where the factor E/Ei ensures conservation of particle
numbers and the last factor changes the rapidity distribution
to the pseudorapidity distribution [44]. The momentum kick q
is expected to lie within a narrow cone in the trigger particle

064905-4



MOMENTUM KICK MODEL DESCRIPTION OF THE NEAR- . . . PHYSICAL REVIEW C 78, 064905 (2008)

direction for a high-energy jet. To minimize the number of
parameters, we approximate q to lie along the trigger particle
direction.

To relate the final parton momentum distribution to
the observed hadron momentum distribution, we assume
hadron-parton duality, which is a reasonable descrip-
tion for the hadronization of energetic partons. The fi-
nal parton momentum distribution Eq. (17), multiplied by
〈fR〉(2/3)〈Nk〉, can then be identified with the observed
(charged) hadron associated particle momentum distribution
per trigger, dNch/Ntrigdηdφptdpt , as given by Eq. (15).
By a simple change of variables, we can further obtain
dNch/Ntrigd�ηd�φptdpt in terms of �η = η − ηjet and
�φ = φ − φjet, relative to the trigger particle. The basic
ingredients of the momentum kick model are then the
magnitude of the momentum kick q, the normalized initial
parton momentum distribution dF/dpi , and the average
number of jet–medium-parton collisions per jet. For numerical
calculations, we set m = mπ .

The initial and final parton momenta can be represented
in terms of Cartesian components in the collider frame,
p = (p1, p2, p3), with a longitudinal p3 component, a trans-
verse p1 component, and another transverse p2 component
perpendicular to both p1 and p3. The coordinate axes can be
so chosen that the trigger jet lies in the p1-p3 plane. The initial
parton momentum pi = (pi1, pi2, pi3) is related to the final
momentum pf = (pf 1, pf 2, pf 3) and the trigger jet rapidity
ηjet by

pi1 = pf 1 − q

cosh ηjet
, (18a)

pi2 = pf 2, (18b)

pi3 = pf 3 − q sinh ηjet

cosh ηjet
. (18c)

For a given trigger particle pseudorapidity, these relations
allow one to obtain pi from pf = p for the evaluation of the
ridge yield per trigger particle.

IV. PARAMETRIZATION OF THE INITIAL PARTON
MOMENTUM DISTRIBUTION

As the jet–medium-parton collisions take place at different
spatial and temporal locations during the passage of the near-
side jet through the medium, the initial momentum distribution
Ei dF/dpi in Eq. (17) refers actually to an average over spatial
and temporal regions during the early stage of the nucleus-
nucleus collision. The “initial” momentum distribution can
also be called the “early” parton momentum distribution.
This initial parton momentum distribution Ei dF/dpi of the
medium partons at the time of jet–medium-parton collisions is
not yet a quantity that can be obtained from first principles of
QCD, although some of its qualitative features can be inferred
from basic principles, as will be discussed in Secs. VIII and
IX. Furthermore, jets occur at an early stage of the nucleus-
nucleus collisions, whereas the momentum distribution of
the bulk medium pertains to the state of the medium at the
endpoint of the nucleus-nucleus collision. Therefore the early
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t
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pp, Jet
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d
=mπ

 Central Au+Au 200 GeV
STAR Preliminary Data

FIG. 2. (Color online) STAR experimental data [5,7] (symbols)
and theoretical results (curves) of dNch/Ntrigptdpt for p + p and
central Au + Au collisions.

parton momentum distribution near the beginning stage of the
nucleus-nucleus collision need not be the same as that of the
bulk matter at the endpoint of the nucleus-nucleus collision.

Under the circumstances, the parton momentum distri-
bution at the early stage of the nucleus-nucleus collision
can only be obtained phenomenologically from the ridge
particle data by representing it as a simple function whose
distinct characteristics can be determined by comparison with
experimental ridge data.

The initial momentum distribution was parametrized pre-
viously as e−y2

i /2σ 2
y exp{−

√
m2 + p2

t i/T }/
√
m2 + p2

t i , with m

taken to be mπ [19]. Although this is adequate for mid-rapidity
and high-pt ridge particles [19], it leads to too large a ridge
yield both at pt ∼ 1 GeV (dotted curve in Fig. 2) and at forward
rapidities. Our understanding of the behavior of the early
parton transverse momentum distribution has not reached such
a stage that we can predict its low pt behavior definitively. If the
partons arise from a deconfined medium with a finite transverse
boundary, then the transverse parton momentum distribution
at small pt will be flattened from an exponential distribution,
as shown in Figs. 1 and 2 of Ref. [53]. Transverse distributions
of this type can be described by replacing the denominator√
m2 + p2

t i with
√
m2

d + p2
t i , where md can be adjusted to lead to

the correct ridge yield at pt ∼ 1 GeV. The extracted transverse
momentum distribution may provide useful information to
study the transverse radius of the deconfined parton medium
[53,54].

The difficulty with the forward rapidity region can be
resolved by noting that the Gaussian rapidity distribution of
Ref. [19] does not take into account the kinematic boundary
restrictions on phase space. The large values of σy extracted
from the mid-rapidity data in Ref. [19] imply that the rapidity
distribution is quite flat in the mid-rapidity region. We can use a
rapidity distribution that retains the flatness at mid-rapidity but
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also respects the kinematic boundaries at large rapidities and
large pt . Accordingly, we parametrize the normalized initial
parton momentum distribution as

dF

ptidptidyidφi

= Aridge(1 − x)a
e−

√
m2+p2

t i /T√
m2

d + p2
t i

, (19)

where Aridge is a normalization constant defined (and deter-
mined numerically) by

∫
dyi dφi pti dptiAridge(1 − x)a

exp{−
√

m2 + p2
t i/T }√

m2
d + p2

t i

= 1.

(20)

In Eq. (19), x is the light-cone variable [44]

x =
√

m2 + p2
t i

mb

e|yi |−yb , (21)

a is the fall-off parameter that specifies the rate of decrease of
the distribution as x approaches unity, yb is the beam parton
rapidity, and mb is the mass of the beam parton whose collision
and separation lead to the inside-outside cascade picture of
particle production [41–45]. As x � 1, there is a kinematic
boundary that is a function of yi and pti ,√

m2 + p2
t i = mbe

yb−|yi |. (22)

We expect yb to have a distribution centered around the nucleon
rapidity, yN = cosh−1(

√
s

NN
/2mN ). For lack of a definitive

determination, we shall set yb equal to yN and mb equal
to mπ , pending their future experimental determination by
examining the ridge boundaries. This form of the initial parton
distribution leads to a restricted phase space that is smaller than
that for a Gaussian rapidity distribution. As a consequence, it
can lead to a smaller associated particle yield that agrees with
experimental forward rapidity data as shown in Sec. VI.

V. PARTICLE MOMENTUM DISTRIBUTION OF THE JET
COMPONENT

As a jet passes through the parton medium, the medium par-
tons kicked by the jet will materialize to become particles in the
associated “ridge component,” whereas the jet will fragment
and radiate into the trigger and associated “jet-component”
particles. If the contribution from the jet component is known,
we can separate out the ridge component using experimental
data of total associated particles. The distribution of the “jet
component” of (charged) associated fragmentation products is
given by

dNAA
jet

dp
=

∫
dpj

dNj

dpj

Nmax∑
N=0

P (N )e−ζaN

×D2

(
ptrig, p; pj −

N∑
n=1

qn − �r

)
, (23)

where D2(pa, pb; pc) is the double fragmentation function for
fragmenting into hadrons of momentum pa and pb from a

jet parton of momentum pc. Fragmentation measurements [7]
suggest an approximate scaling relation

D2(ptrig, p; pc) ≈ D(ptrig; pc)Dz(p; ptrig), (24)

where Dz(p; ptrig) is approximately the same (within a factor
of about 0.6 to 1.2) for d + Au and Au + Au collisions in
2.5 < pt,trig < 6 GeV (Figs. 5b and 5c of Ref. [7]). By applying
this approximate scaling relation to Eq. (23) and using Eq. (7),
the (charged) jet component in an AA central collision per
trigger is

1

Ntrig

dNAA
jet

dp
≈ Dz(p; ptrig) ≈ dN

pp

jet

dp
. (25)

Because of the approximate nature of this relation (up to a
factor of about 0.6 to 1.2), we need to make a quantitative
check. In the region where the jet component has a prominent
appearance, as in Fig. 3(d) for 2 < pt < 4 GeV, the total
dNch/Ntrigd�η distribution at �η ∼ 0 has indeed a shape
similar to, but a peak magnitude about equal to, the pp

near-side jet distribution. The total yield is the sum of the
jet component and the ridge yield, and the ridge yield at
�η ∼ 0 is nonzero and nearly flat (Fig. 3(d)). The near-side
jet component in Au + Au central collisions per trigger is
thus an attenuated pp near-side jet distribution, as expected
for production in an interacting medium. If one assumes
that fragmentation products lying deeper than an absorption
length from the surface are all absorbed, then the average jet
fragment attenuation factor is fJ = ∫ λ

0 e−x/λdx/λ = 0.632,
which leads semiempirically to a reasonable description of the
experimental data as indicated in Figs. 2 and 3.

The sum of the distributions [Eqs. (15) and (25)], relative
to the trigger particle ηjet and φjet, is therefore given more
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FIG. 3. (Color online) Experimental data [5] (symbols) and
theoretical results (curves) for p + p and central Au + Au collisions.
(a) and (b) give the dNch/Ntrigd�φ distributions. (c) and (d) give the
dNch/Ntrigd�η distributions.
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precisely as[
1

Ntrig

dNch

ptdptd�ηd�φ

]AA

total

=
[
〈fR〉2

3
〈Nk〉 dF

ptdpt d�ηd�φ

]AA

ridge

+
[
fJ

dN
pp

jet

ptdptd�ηd�φ

]AA

jet

. (26)

The experimental momentum distribution of (charged)
near-side particles associated with the trigger in a pp collision,
measured relative to the trigger jet, can be parametrized as

dN
pp

jet

ptdptd�ηd�φ

= Njet
exp

{(
m −

√
m2 + p2

t

)/
Tjet

}
Tjet(m + Tjet)

× 1

2πσ 2
φ

e−[(�φ)2+(�η)2]/2σ 2
φ , (27)

where Njet is the number of (charged) near-side jet particles in
a pp collision, and Tjet is the jet inverse slope (“temperature”)
parameter. This functional form of the jet fragmentation
product cone in terms of �φ and �η was chosen because
p2 = pt sin �φ and p3 = pt sinh �η, and the square of the
momentum perpendicular to the jet direction has a magnitude
of

p2
2 + p2

3 = p2
t sin2 �φ + p2

t sinh2 �η ∼ p2
t [(�φ)2 + (�η)2]

for small �φ and �η. (28)

This equation indicates the symmetry between �φ and �η for
a narrow jet cone. In this functional form of Eq. (27) for the
jet cone, the width in �η is equal to the width in �φ.

In our search for parameter values we find that the width
parameter σφ depends slightly on pt , which we parametrize as

σφ = σφ0
ma√

m2
a + p2

t

. (29)

Experimental data for near-side jet particles in pp and
central Au + Au collisions obtained by the STAR Collab-
oration, within the detector acceptance of |ηassociated| < 1
and |ηjet| < 0.7, are given in Figs. 2 and 3 [5]. Figure 2
gives the dNch/Ntrigptdpt data, obtained by integrating
dNch/Ntrigptdptd�φd�η over the domain of |�η| < 1.4 and
|�φ| < 1.0. Figures 3(a) and 3(b) give dNch/Ntrigd�φ data,
and Figs. 3(c) and 3(d) give dNch/Ntrigd�η data. They are
obtained by integrating dNch/Ntrigptdptd�φd�η over the
domains indicated in the figures. Specifically, Fig. 3(a) covers
the domain of |η| < 1 and 0.15 < pt < 4 GeV, 3(b) the domain
of |η| < 1 and 2 < pt < 4, 3(c) the domain of |�φ| < 0.5 and
0.15 < pt < 4 GeV, and finally 3(d) the domain of |�φ| < 0.5
and 2 < pt < 4 GeV. The domains of integration in a pp

collision and a nucleus-nucleus collision are the same, and the
distribution in �η has been corrected for detector acceptance.

The set of experimental pp near-side jet data of
dN

pp

ch /ptdpt , dN
pp

ch /d�φ, and dN
pp

ch /d�η, represented by

open circles in Figs. 2 and 3, can be described by Eqs. (27)
and (29), with the following parameters:

Tjet = 0.55 GeV, σφ0 = 0.50, ma = 1.1 GeV, and
(30)

Njet = 0.75.

Theoretical pp jet results obtained with this set of parameters
within the specified experimental domain are shown as the
dash-dot curves in Figs. 2 and 3. They yield a reasonable
description of the experimental momentum distributions of jet
particles associated with the near-side jet in a pp collision.

VI. COMPARISON OF THEORETICAL NEAR-SIDE
ASSOCIATED PARTICLE YIELDS WITH

EXPERIMENT

Theoretical evaluation of both the jet component and
the ridge component for central Au + Au collisions allows
one to determine the total yield of associated particles as
determined by Eq. (26). A self-consistent search for the initial
parton momentum distribution in Eqs. (19) and (17) can be
made by comparing the momentum kick model results with
experimental data for dNch/Ntrigptdpt , dNch/Ntrigd�φ, and
dNch/Ntrigd�η for mid-rapidities in Figs. 2 and 3 and those
for dNch/Ntrigd�φ for forward rapidities in Fig. 4. We find
that the totality of the STAR associated particle data, from
pt = 0.15 to 4 GeV and η from zero to 3.9 in central Au + Au
collisions at

√
sNN = 200 GeV [6,7,9], can be described by
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FIG. 4. Azimuthal angular distribution data at forward pseudo-
rapidities for central Au + Au collisions from the STAR Collabo-
ration [9], compared with theoretical results shown as solid curves
from the momentum kick model for (a) 0.20 < pt < 2 GeV and
(b) 1 < pt < 3 GeV.
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Eqs. (26) and (17) with parameters

q = 1.0 GeV and 〈fR〉〈Nk〉 = 3.8, (31)

in conjunction with the initial parton momentum distribution
Eq. (19) with parameters

T = 0.50 GeV, md = 1 GeV, and a = 0.5. (32)

We now discuss the comparison of the experimental data
with theoretical results involved in this analysis. In Fig. 2
the STAR experimental dNch/Ntrigptdpt data [5,7] are repre-
sented by solid circles for central Au + Au collisions and by
open circles for pp collisions. The theoretical results for pp

collisions obtained with the parametrization of Eq. (27) with
parameters in Eq. (30) are shown as the dash-dot curves, which
agree with pp near-side data in all experimental kinematic
regions. Experimental ridge dNch/Ntrigptdpt data in central
Au + Au collisions [7] are also shown as solid squares and
they are calibrated by using the data of Fig. 2 of Ref. [7]. The
solid curve is the theoretical result for dNch/Ntrigptdpt for
central Au + Au collisions, as the sum of the jet part and the
ridge part, with the ridge part of the contribution shown as the
dashed curve. They have been calculated with md = 1 GeV.
If we set md equal to mπ , then we will get the ridge yield
represented by the dotted curve, which overpredicts the ridge
yield at pt ∼ 1 GeV.

Figure 2 shows good agreement between theoretical
dNch/Ntrigptdpt with experimental data for central Au + Au
collisions. The theoretical transverse momentum distributions
of the jet and the ridge components have very different shapes
in the low-pt region. The jet component dNch/Ntrigptdpt de-
creases exponentially as a function of increasing pt . However,
the magnitude of the final transverse parton momentum ptf

is greater than the initial transverse momentum pti approxi-
mately by the amount q. The initial momentum distribution
dF/ptidpti has a peak at pti = 0. As a consequence, the
theoretical ridge yield of final partons, dNf /Ntrigptf dptf , has
a peak around ptf ∼ q ∼ 1 GeV and it decreases significantly
for small values of pt , in contrast to the exponential behavior
of the jet component.

It is interesting to note that the theoretical ratio of the jet
yield to the ridge yield is greater than 1 for pt <∼ 0.6 GeV, but
it is less than 1 in the interval 0.6 <∼ pt <∼ 3.7 GeV. The ratio
reverts to become greater than 1 at 3.7 GeV <∼ pt . The change
of the dominance of the ridge component as pt changes may
lead to experimentally observable variations of the shape of
dNch/Ntrigd�η as a function of pt .

In Fig. 3, the experimental total associated particle yields
[5,9] are represented by solid circles for central Au + Au
collisions and by open circles for pp collisions. The theoretical
results for pp collisions obtained with the parametrization of
Eq. (27) are shown as the dash-dot curves, which agree with
experimental pp near-side data. In these figures, the theoretical
total yield and the ridge yield for central Au + Au collisions
are represented by solid and dashed curves, respectively.
Comparison of the theoretical total yield and the experimental
total associated particle yield for central Au + Au colli-
sions indicates general agreement over all azimuthal angles
[Figs. 3(a) and 3(b)] and over all pseudorapidities [Figs. 3(c)

and 3(d)], for both 0.15 < pt < 4 GeV [Figs. 3(a) and 3(c)]
and 2 < pt < 4 GeV [Figs. 3(b) and 3(d)].

One notes from Fig. 3(a) that for the region of 0.15 < pt <

4 GeV, which receives the dominant contributions from the
low-pt region, the widths of the azimuthal angular distributions
of the ridge and the jet components are nearly the same, with
the magnitude of the ridge yield slightly higher than the pp

yield. However, in the region of 2 < pt < 4 GeV in Fig. 3(b),
which receives the dominant contributions from the region
near pt ∼ 2 GeV, the azimuthal angular distributions of the jet
component is narrower than the ridge component azimuthal
angular distribution.

We observe from Fig. 3(c) that the theoretical Au + Au jet
and ridge components have different shapes in dNch/Ntrigd�η.
The jet component maintains a sharp peak in dNch/Ntrigd�η.
In the low-pt region, the pseudorapidity distribution of
the theoretical ridge component is significantly broader than
the jet component and its magnitude remains at a nonzero
value at large |�η|. In the high-pt region in Fig. 3(d),
the ridge pseudorapidity distribution is essentially flat and
nonzero. The broad peak structure for the low-pt region comes
from the factor E/Ei in Eq. (17), arising from the difference of
the momenta of the parton before and after the collision. This
factor is close to 1 for the high-pt region, and the flatness of the
distribution is a reflection of the initial rapidity distribution.

We turn now to forward rapidities where preliminary exper-
imental data for central Au + Au collisions have been obtained
for 2.7 < |η| < 3.9 [9]. We note that dNch/Ntrigd�φd�η at
�φ ∼ 0 for |η| < 1 in Fig. 3(a) is an order of magnitude
greater than the corresponding dNch/Ntrigd�φd�η for 2.7 <

|η| < 3.9 in Fig. 4(a). This implies a substantial fall-off of
the ridge yield dNch/Ntrig�φd�η at �φ ∼ 0 in going from
mid-rapidities to large rapidities. Even though the mid-rapidity
data place a constraint on the flatness of the mid-rapidity
distribution, they do not otherwise constrain the rate of
fall-off of the distribution in the forward rapidity region.
Measurements at forward rapidities in Fig. 4 contain events
with large η and pt that are either already outside the
kinematic limits or close to the kinematic limits. Therefore,
even with large errors, the forward rapidity data in Fig. 4
are sensitive to the constraint of the kinematic limits and the
rate of fall-off of the initial parton momentum distribution as
specified by the fall-off parameter a. The data of Fig. 4 lead to
a = 0.5.

Using the parameters we have extracted from the STAR
ridge data as given by Eqs. (31) and (32), we can predict
the pseudorapidity distribution for the PHOBOS experimental
acceptance defined by �φ � 1, 0 < ηtrig < 1.5, and 0.02 <

pt < 2.5 GeV. The theoretical total associated particle yield,
which is the sum of the ridge yield and the attenuated
pp jet yield, is shown as the solid curve in Fig. 5. The
theoretical pp jet yield and the ridge component of the
associated particles are shown as the dash-dot and the dashed
curves, respectively. The result has been corrected for �η

acceptance. The present prediction of the momentum kick
model for the near-side jet associated particle yields was found
to agree well with experimental measurements obtained by the
PHOBOS Collaboration [18] up to large |�η| for the region of
small pt .
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FIG. 5. (Color online) The momentum distribution of the asso-
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predictions from the momentum kick model. The solid, dashed, and
dash-dot curves give the total yield, the ridge yield, and the pp jet
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VII. EXTRACTED INITIAL PARTON MOMENTUM
DISTRIBUTION

It is illuminating to examine the initial parton momen-
tum distribution extracted from the totality of experimental
data in Figs. 2, 3, and 4. We find that the normalized
initial parton momentum distribution at the jet–medium-
parton collisions can be represented by dF/dydφptdpt =
Aridge (1 − x)a exp {−

√
m2 + p2

t ) / T } /
√
m2

d + p2
t , where

x =
√

m2 + p2
t e

|y|−yb/mb, a = 0.5, T = 0.5 GeV, and md =
1 GeV. Here, (y, φ, pt ) represent the initial parton momentum
coordinates. We show explicitly the extracted, normalized
initial parton distribution dF/ptdptdy at the moment of
jet–medium-parton collisions in Fig. 6. It is given as a function
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FIG. 6. (Color online) Normalized initial parton momentum
distribution dF/dyptdpt extracted from the STAR Collaboration
data [5,7,9]. (a) dF/dyptdpt as a function of pt for different y.
(b) dF/dyptdpt as a function of y for different pt .

of pt for various y in Fig. 6(a), and conversely as a function
of y for various pt in Fig. 6(b). It has a thermal-like transverse
momentum distribution and is nearly flat in rapidity at y ∼ 0,
with sharp kinematic boundaries at large |y|.

In Fig. 6(a), the momentum distribution for y = 0 and
high pt has a slope parameter T that is intermediate between
that of the jet and inclusive bulk particles. This indicates that
partons at the moment of jet–medium-parton collision are at
an intermediate stage of dynamical equilibration.

The parton momentum distribution cannot be separated as
the product of two independent distributions. The momentum
distribution as a function of pt depends on the rapidity
variable y, which affects the boundaries of the distribution.
The distribution as a function of pt does not change much
for y up to y = 2. For y = 3, the maximum value of pt is
1.54 GeV and the distribution changes significantly as the
kinematic boundary is approached. For y = 4, the boundary
of pt is located at 0.55 GeV.

In Fig. 6(b), the momentum distribution as a function of y

for a fixed pt is essentially flat near central rapidities and it
extends to a maximum value of |y|max that depends on pt , as
given by Eq. (22). The flat distribution changes rather rapidly
as it approaches the kinematic limits. The kinematic boundary
becomes more restrictive to cover a smaller allowed region of
y as pt increases. For example, for pt = 0, 1, 2, 3, and 4 GeV,
the maximum values of |y| are 5.36, 3.4, 2.7, 2.33, and 2.05,
respectively. The extracted early rapidity distribution exhibits
the feature of a plateau structure in rapidity. The width of the
plateau decreases as pt increases.

The locations on the kinematic boundaries in Figs. 6(a)
and 6(b) depend on the value of yb and mb, which have been
taken to be yN and mπ, respectively, in the present analysis.
Better determination of these quantities using the measured
locations of the kinematic boundaries may require more refined
measurements of the ridge momentum distribution in many
locations in pseudorapidity space.

VIII. EARLY PARTICLE PRODUCTION AT HIGH
ENERGIES

The momentum distribution extracted from the near-side
ridge data indicates that the early parton rapidity distribution
has a plateau structure that extends well into the high-rapidity
region. The width of the plateau depends on pt . The greater
the value of pt , the narrower is the width of the plateau. The
evolution scenario of the early rapidity distribution has been
outlined in Sec. VIII of Ref. [19]. Here we would like to
elaborate in more detail the origin of the rapidity plateau.

It should be kept in mind that the plateau rapidity struc-
ture has been known in QCD particle production processes
both experimentally and theoretically. In e+-e− annihilation
experiments, the produced particles exhibit a rapidity plateau
structure [36–40]. Many earlier theoretical investigations of
QCD particle production processes give a rapidity plateau
distribution when a quark pulls away from an antiquark at high
energies [41–45]. We shall review here the theoretical basis for
the occurrence of the rapidity plateau in an elementary particle
production process.
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As an exact solution of particle production at high energies
starting from the first principle of QCD is not available,
many phenomenological models have been presented to
describe particle production in nucleus-nucleus collisions [55].
Common to many of these models (such as the Lund model,
the dual parton model, the multiple collision model, the ART
model, the Lexus model, the Venus model, and the glasma
model) is the elementary particle production process of a
color charge pulling away from an anticolor charge at high
energies at the early stage of a nucleus-nucleus collision,
and the nucleus-nucleus collision consists of many of these
elementary production processes.

We can single out one of the elementary production
processes for examination and study the particle production
process in a model that has many essential features as those in
QCD [41–45]. The model of QED2 [41,46–49] are quantum
mechanical systems in which a neutral boson exists as a
nonperturbative bound state, much as mesons are bound
states in QCD. When a positive and negative charge pair are
separated in such a system, the vacuum is so polarized that
the positive and the negative charges are completely screened,
in a manner similar to the confinement of quarks, in which
a quark cannot be isolated. It was demonstrated by Casher,
Kogut, and Susskind [41] in QED2 that the rapidity distribution
of produced boson particles in a system of two oppositely
charged fermions separating at high relative velocities exhibits
a plateau rapidity structure. Such a rapidity plateau structure
of produced particles is indeed observed in high-energy e+-e−
annihilation experiments as previously mentioned [36–40].
The quark fragmentation function obtained from QED2 [56]
agrees with that of Field and Feynman [57] in their phe-
nomenological treatment of QCD strings. These desirable
properties of confinement, charge screening, the existence of
neutral bound states, and the proper high-energy behavior
make it useful for Casher et al. [41], Bjorken [42], and
many others [43–45] to infer the rapidity plateau structure
of produced particles when a color charge recedes away from
an anticolor charge at high energies.

Previously, a scaling argument was presented to reduce
QCD at high energies to an effective two-dimensional field
theory by scaling the longitudinal and temporal coordinates
by λ and expanding the action in powers of 1/λ [58]. We shall
try an alternative approach by using the physical argument of
transverse confinement to establish the connection between
QCD and QED2, to study particle production in a quantum
mechanical framework.

We consider the elementary particle production process in
a flux tube in a nucleus-nucleus collision as a color charge
and an anticolor charge separate from each other at high
energies. Produced particles are quanta of the interacting
fields. Depending on the environment temperature, they can be
considered as partons in the environment of a strongly coupled
quark-gluon plasma and as hadrons in a cold QCD environment
at zero temperature. The QCD fields inside the tube consists
of the gauge fields and the fermion degrees of freedom. At
high energies, the gauge fields can be greatly simplified by
noting that the transverse gauge fields Ax and Ay are expected
to be proportional to the fermion source transverse velocities,
which are smaller as compared to the longitudinal velocity in

the z-direction. It is reasonable to ignore the transverse gauge
fields Ax and Ay so that Aµ = (A0, 0, 0, Az) containing only
A0 and Az degrees of freedom confined in the tube.

The fermion sector can also be approximated. We shall
assume that, as a result of the nonperturbative non-Abelian
gauge interaction, transverse confinement is established, and
this confinement can be conveniently described by a scalar
potential m(r) that limits the amplitude of the fermions to
the region around the flux tube, as in previous descriptions
[54,59–62]. The Dirac equation for a fermion in the tube in
cylindrical coordinates (r, ϕ, z) is

{γ µ(πµ − eAµ) − m(r)}
(r, ϕ, z, t) = 0. (33)

Following the results of Ref. [59,62], we seek a solution of the
Dirac equation [Eq. (33)] in the form


(r, ϕ, z, t) = [γ µ(πµ − eAµ) + m(r)]ψ(r, ϕ, z, t). (34)

The equation for ψ is

{(p0 − eA0)2 − (pz − eAz)
2 + iα3e(∂zA0 − ∂0Az)

+ p2
⊥ − m2(r) + i[(γ 1∂1 + γ 2∂2)m(r)]}ψ(r, ϕ, z, t)

= 0, (35)

where e is the coupling constant. We note that [α3, Jz] = 0,
where Jz = −i∂/∂φ + σz/2 is the third component of the
angular momentum operator. Furthermore, both Jz and α3

commute with the operator acting on ψ(r, φ, z, t) in Eq. (35).
Upon using the representation in Ref. [59], the eigenfunction
of α3 satisfying α3µλ = ηλµλ are

µ1 = 1√
2




1
0
1
0


 , µ2 = 1√

2




0
1
0
−1


 , µ3 = 1√

2




1
0
−1
0


 ,

µ4 = 1√
2




0
1
0
1


 , (36)

with η1,2 = +1 and with η3,4 = −1. Therefore, we may choose
ψ(r, ϕ, z, t) to be factorized as

ψJz
(r, ϕ, z, t) =

∑
η=−1,1

fJzη(z, t)RJzη(r, ϕ), (37)

with RJzη(r, ϕ) to be simultaneous eigenfunctions of Jz and α3.
The eigenfunctions of Jz satisfying JzRJzη = (ν + σz/2)RJzη

are

RJz1(r, φ) = g1ν(r)eiνφµ1 − g2ν(r)ei(ν+1)φµ2, (38a)

RJz−1 = g1ν(r)eiνφµ3 + g2ν(r)ei(ν+1)φµ4. (38b)

As a result of the transverse confinement, the gauge
fields A0 and Az are confined within the transverse di-
mensions of the flux tube. For high-energy collisions, the
transverse dimensions of the flux tube are much smaller than
the longitudinal dimension. To study the dynamics along the
longitudinal direction, it is reasonable to average the gauge
fields A0 and Az over the transverse profile of the flux tube.
After such a transverse averaging, the dynamics of A0 and
Az along the longitudinal direction can be approximated to be
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independent of the transverse coordinates. One can then use the
method of the separation of variables to separate the equation
of motion. By introducing the transverse eigenvalue m⊥, the
Dirac equation can be separated into the set of equations in
different coordinates

[p0 − A0(z, t)]2 − [pz − eAz(z, t)]
2 − m2

⊥
− ηie[∂zA0(z, t) − ∂0Az(z, t)]fJzη(z, t) = 0, (39)

[ p2
⊥(ν) + m2(r) − m2

⊥]g1ν(r) = i
∂m(r)

∂r
g2ν(r), (40)

[ p2
⊥(ν + 1) + m2(r) − m⊥2]g2ν(r) = −i

∂m(r)

∂r
g1ν(r), (41)

where

p2
⊥(ν) = −1

r

∂

∂r
(r

∂

∂r
) + ν2

r2
. (42)

Here, m⊥ is the eigenvalue for the coupled transverse equations
[Eqs. (40) and (41)], obtained by imposing the boundary
condition that the transverse wave functions g1ν and g2ν are
transversely confined with a vanishing probability at r → ∞.
The eigenvalue m⊥ depends on Jz and is independent of
the quantum number η. Some examples of m(r),m⊥, and
transverse wave functions have been presented previously
[54,61,62].

We can write the wave function ψ with the quantum number
Jz and a mass m⊥ as a two-component wave function in an
abstract two-dimensional QED2 space as

ψqed2 =
(

fJz1

fJz−1

)
. (43)

In terms of this wave function, Eq. (39) becomes[
γ 0

qed2[p0 − eA0(x1, t)] + γ 1
qed2[p1 − eA1(x1, t)] − m⊥

]
×ψqed2(x1, t) = 0, (44)

where we relabel the longitudinal z-axis as the x1-axis in
QED2, and

γ 0
qed2 =

(
0 1

1 0

)
, (45)

γ 1
qed2 = iσ2 =

(
0 1

−1 0

)
. (46)

For brevity of notation, the subscript “qed2” will be omitted.
It should be kept in mind that the transverse state with Jz

in different transverse excitations correspond to QED2 with
different m⊥. We shall be interested in the state with the lowest
m⊥.

This discussion shows how the fermion and the gauge field
in QCD4 in a flux tube can be approximately mapped into
elements in QED2 for high-energy processes. Although the
non-Abelian nature of the gauge field in QCD is needed to lead
to the formation of the confining flux tube, the non-Abelian
property is not needed for particle production in QED2 at
high energies. An Abelian QED2 field theory possesses the
desirable properties of confinement and charge screening, and
it suffices to describe the particle production process at high

energies. Furthermore, in the non-Abelian field tensor

F i
01 = ∂0A

i
1 − ∂1A

i
0 + gf ijkA

j

0A
k
1, (47)

the nonlinear quadratic term contains the product of A
j

0 and
Ak

1. One can conveniently choose the Coulomb gauge Ak
1 = 0

such that the nonlinear quadratic term does not contribute. We
can therefore ignore the non-Abelian nature of the gauge fields
and approximate them to be

Fµν = ∂µAν − ∂νAµ, (48)

where µ, ν = 0, 1. The fermions give rise to the current

jµ = eψ̄γ µψ, (49)

which generates the gauge fields according to

∂νF
µν = −jµ. (50)

Equations (44), (48), and (50) constitute the equations for
the quantum mechanical system of QED2 with a fermion
of mass m⊥. Thus, by assuming QCD confined within a
flux tube, the longitudinal dynamics of the system can be
approximated as those of QED2 with a mass m⊥. The gauge
fields Aµ(µ = 0, 1) depend on the fermion field ψ . The
fermion field ψ , in turn, depends on the gauge field Aµ.
The coupling is quite complicated and leads to a nonlinear
problem of great complexity. Remarkably, Schwinger found
that QED2 involving massless fermions with the gauge
interaction is equivalent to a free boson field φ with a mass
µ0 = e/

√
π , where e is the coupling constant [46].

IX. PARTICLE PRODUCTION AS AN INITIAL-VALUE
PROBLEM IN BOSONIZED QED2

In mapping elements of QCD4 approximately into elements
of massive QED2, what is the relationship between the
coupling constant g in QCD4 and the coupling constant e

in QED2? By limiting the motion and the source distribution
to reside in the longitudinal direction, the coupling constant e

in QED2 acquires the dimension of a mass. The confinement
property is a nonperturbative property of QCD4. The coupling
constant e in QED2 should therefore be nonperturbatively
related to g. The relationship can be retrieved by comparing
nonperturbative quantities. In QED2 with the Coulomb gauge
A1 = 0, the interaction energy between a quark and an
antiquark separated at a separation of x is e2A0(x) = e2x/2.
However, in QCD4, the nonperturbative confining interaction
energy between a quark and an antiquark is bx, where b is
the string tension. Therefore, equating the two interaction
energies, we find a relation between e in QED2 and the
nonperturbative string tension b in QCD4,

e =
√

2b. (51)

If we take the string tension to be b = 1 GeV/fm, then
e = 0.628 GeV. The boson mass in massless QED2 is µ0 =
e/

√
π = 0.354 GeV.

The case of massive QED2 with a fermion mass m⊥ can be
studied by bonsonization. It is equivalent to the system of free
bosons of mass µ0 interacting with an interaction that depends
on m⊥ [48,49]. Does QCD correspond to the case of strong
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coupling with e � m⊥ or to the case weak coupling with e �
m⊥? The case of strong coupling is characterized by quasifree
bosons with confining fermions and charge screening, whereas
the limit of weak coupling approaches free Dirac theory with
almost free fermions dressed up as bosons having a mass close
to the free fermion rest mass [49].

We can estimate m⊥ to be of the order of h̄/(tube radius)
where the flux tube radius is of order 1 fm, leading to m⊥ ∼ 0.2
GeV. We have µ0 � m⊥, which corresponds to the case of
strong coupling with fermion confinement and color-charge
screening, rather than quasifree Dirac particles. Accordingly,
the mass-perturbation theory can be used to discuss the particle
production process in our case of massive QED2.

In the mass-perturbation theory, the unperturbed theory is
massless QED2 and the mass m⊥ is treated as a perturbation.
Up to the second order in m⊥, the mass-perturbation theory
gives a quasifree boson with a mass M given by [63]

M2 = µ2
0 + 2eγ µ0m⊥ + 1.0678e2γ m2

⊥, (52)

where γ = 0.5772 is the Euler constant. We therefore have
M ∼ µ0 + eγ m⊥. For our case of µ0 = 0.354 GeV and m⊥ ∼
0.2 GeV, we get M ∼ 0.71 GeV, which comes close to the
spin-spin averaged mass of 0.62 GeV for the π -ρ pair. Thus,
the boson of massive QED2 finds its correspondence as the
boson in QCD that splits into π and ρ when the spin-spin
interaction is taken into account.

As mass-perturbation theory is based on massless QED2
with m⊥ as a perturbation, the application of the theory
to particle production process involves using the results
of massless QED2 and replacing the boson mass µ0 in
these massless QED2 results by the corrected mass M . In
practical applications, this amounts to replacing µ0 with the
physical mass, including the effects of the effective mass
increase owing to the transverse momentum. As pions are the
most predominantly produced particle, the phenomenological

treatment then involves replacing µ0 by M =
√
m2

π + p2
⊥,π .

We can review the rapidity distribution for massless QED2
obtained previously [62]. The relation between the bosonic
and the fermionic quantities in massless QED2 is [41,48,49]

jµ = −eεµν∂νφ/
√

π, (53)

where jµ is the fermionic current, which can be taken to be
a real quantity, and εµν is the antisymmetric tensor ε01 =
−ε01 = −1. We note that, as jµ is a vector field and εµν is
a pseudotensor, the field φ is a real pseudoscalar field, and it
represents the color electric field F 01, as F 01 = eφ/

√
π . If the

current jµ arising from the fermions is initially known, then
the dynamics of the pseudoscalar field φ can be inferred at all
times. By treating the problem as a system of quasifree bosons
with a mass M , the initial value conditions will allow us to
determine the dynamics of the system. To apply the results to
our case, we will work within mass-perturbation theory, which
is a quasifree boson system with e/

√
π replaced by M .

Given an initial fermion charge distribution jµ(x, t = 0),
its Fourier transform is

˜jµ(p1) = 1√
2π

∫
dxe−ip1xjµ(x, 0). (54)

We showed previously [43] that the momentum distribution of
the bosons is then given by

dN

dp1
= π

2p0e2

[
p0

p1
j̃ 0(p1) + j̃ 1(p1)

]

×
[
p0

p1
j̃ 0(−p1) + j̃ 1(−p1)

]
, (55)

and the rapidity distribution of the produced particles is

dN

dy
= π

2e2

[
p0

p1
j̃ 0(p1) + j̃ 1(p1)

]

×
[
p0

p1
j̃ 0(−p1) + j̃ 1(−p1)

]
. (56)

This gives a simple relation between the rapidity distribution
and the Fourier transforms of the initial fermionic charge
current.

We can review how this initial-value problem in massless
QED2 can be formulated for the case of a positive charge νe

separating from a negative charge −νe with a center-of-mass
energy

√
s [43]. We work in the center-of-mass system and

start at t = 0 with the charge and anticharge pair superimposed
so that the total charge density of the system at t = 0 is zero:

j 0(x, 0) = 0. (57)

To construct the initial longitudinal current, we introduce a
distribution that depends on σ :

j 1(x, t) = ∂

∂t

{ν

2
[tanh((x + t)/σ ) + 1]

+ ν

2
[tanh((x − t)/σ ) + 1]

}
. (58)

In this case, the initial current, which arises from a charge νe

moving in the positive x direction and another charge −νe

moving in the negative x direction, is given by

j 1(x, 0) = νe

σ cosh2(x/σ )
. (59)

In the limit as σ approaches zero, this current is proportional
to a delta function. The diffusivity σ is related to the total
invariant mass

√
s of the system; using the energy P 0 = √

s at
the initial time t = 0, we obtain a relation between σ and

√
s:

σ = 2πν2

3
√

s
. (60)

For this current distribution jµ(x, 0) the Fourier transform of
j 1(x, 0) is

j̃ 1(p1) = νeπp1σ√
2π sinh(πp1σ/2)

, (61)

and the rapidity distribution in massless QED2 is [43]

dN

dy
= ν2ξ 2

sinh2 ξ
, (62)

where

ξ = ν2π2µ0 sinh y

3
√

s
. (63)
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The rapidity distribution therefore shows a plateau structure
around y ∼ 0. In the limit of very high energy, the rapidity
distribution is dN/dy = ν2, which agrees with the result of
Casher et al. [41] (for ν = 1).

Within the mass-perturbation theory, we can approximate
the particle production process of massive QED2 using the
results from massless QED2 and replacing the µ0 of massless
QED2 in Eq. (63) by M in massive QED2, with the result

ξ = ν2π2M sinh y

3
√

s
. (64)

Using Eqs. (62) and (64) by replacing µ0 with the phenomeno-
logical mass M = √

m2
π + 〈p⊥,π 〉2 = 0.30 GeV and ν =

2.45 gives a good phenomenological fit to the dNπ±/dy data in
e+-e− experiments at

√
s = 29 GeV (in Fig. 40 of Ref. [36]).

X. EVOLUTION OF THE MEDIUM PARTON MOMENTUM
DISTRIBUTION

We conclude from our discussions in the last two sections
that, in addition to experimental evidence for the rapidity
plateau in elementary QCD particle production processes,
theoretical investigations in plausible models also show the
occurrence of a rapidity plateau when a color charge pulls away
from an anticolor charge at high energies. As a nucleus-nucleus
collision consists of elementary production processes of string
fragmentation, there can be a similar plateau structure in
the rapidity distribution of the produced medium partons,
consistent with the parton rapidity plateau we have extracted
at the early stage of the nucleus-nucleus collision.

In nucleus-nucleus collisions, this early parton momentum
distribution can be probed by a jet produced in the early
stage of the collision. Those medium partons kicked by the
jet subsequently materialize as ridge particles and they retain
the property of the rapidity plateau.

The plateau rapidity structure of the early parton momen-
tum distribution differs from the Gaussian rapidity distribution
of the bulk matter [64–66]. How does one understand such a
difference?

It is important to point out that the early momentum
distribution represents the momentum distribution at the early
stage of the nucleus-nucleus collision as it involves the direct
reaction with the jet, which occurs only at the early stage
of the nucleus-nucleus collision. However, the momentum
distribution of the bulk matter represents the momentum
distribution of the bulk matter at the endpoint of the nucleus-
nucleus collision. A considerable period of time separates
the beginning, early stage of the nucleus-nucleus collision
and the endpoint of the nucleus-nucleus collision. Significant
dynamical evolution must have occurred between these two
separate time points, as described schematically in Fig. 9 of
Ref. [19]. The time evolution of the momentum distribution
will make the endpoint momentum distribution of the bulk
matter different from the early parton momentum distribution.

Evidence for the occurrence of a dynamical evolution of
the momentum distribution presents itself in the difference of
(i) the transverse momentum distribution extracted at the
moment of the jet–medium-parton collisions and (ii) the

transverse momentum distribution of the bulk matter at
the endpoint of the nucleus-nucleus collision. The extracted
early parton transverse momentum distribution, as given by
Eqs. (19) and (32), has a thermal-like distributions, with an
initial inverse slope T = 0.5 GeV that is slightly greater than
the inverse slope of the endpoint transverse momentum distri-
bution, consistent with the direction of transverse momentum
evolution from a higher inverse slope T to a lower inverse
slope T value [7]. We expect that the rapidity distribution will
likewise evolve and its shape will change with time. There is no
reason to expect that the longitudinal momentum distribution
at the early stage of the nucleus-nucleus collision should
be the same as the corresponding longitudinal momentum
distribution at the endpoint of the nucleus-nucleus collision.

To understand the evolution of the medium parton mo-
mentum distributions, we should think of the full momen-
tum distribution as a six-dimensional distribution function
F (r, p, t) of the medium that depends both on the spatial and
momentum coordinates, as well as on the elapsed time t . The
parton momentum distribution extracted here is in effect an
average of this the six-dimensional distribution function F

over spatial and temporal coordinates of the collision points in
the early stage of the nucleus-nucleus collision, using the jet as
a probe. After the early stage of jet–medium-parton collisions,
partons from one position will collide with partons of adjacent
positions. These collisions will modify the momenta of the
colliding partons, leading to a change of the distribution
function F (r, p, t) as a function of time. How the evolution
will take place is a problem of great complexity that depends
on models with many unknown theoretical elements [55].
Nevertheless, one expects that starting with a nonisotropic
plateau rapidity distribution that is much elongated in the
longitudinal direction, a collision of two partons with large and
opposing longitudinal momenta in adjacent spatial locations
will redistribute the partons from the longitudinal direction
toward the transverse directions, with a decrease in the
longitudinal momenta of the colliding partons. Hence, the
evolution will smooth out the anisotropic plateau rapidity
structure to a significant degree as time proceeds.

XI. DEPENDENCE OF THE FRAGMENTATION
FUNCTION ON THE JET–MEDIUM-PARTON

COLLISION NUMBER

We turn now to investigate the geometry-dependent part
of the ridge and trigger particle yields, as given previously
in Eqs. (7), (14), and (15). The jet fragmentation function in
these equations depends on the number of collisions N (or Nk)
suffered by the jet parton, and the observed physical quantities
depend on the distribution P (N ). We envisage jet partons to be
produced by binary nucleon-nucleon hard-scattering processes
and we focus our attention on one of the jet partons. We
consider the jet parton to occur at ηjet = 0 such that the jet
momentum pj , the trigger particle momentum ptrig, and the
momentum kick q all lie in the mid-rapidity transverse plane
in the collider system, pointing in the same direction. The
vector symbol for these quantities can be understood.
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We envisage that, in the passage of the parent jet parton
in the dense medium, the jet parton with initial momentum
pj imparts a momentum q to each kicked medium parton and
loses a momentum Nq after N jet–medium-parton collisions.
In addition to collisional momentum loss, the jet parton can
lose momentum by gluon radiation [50]. As the radiated
gluon will likely come out in a cone along the jet direction
in random azimuthal angles, the average momentum loss
from gluon radiation 〈�r〉 lies along the jet direction ej .
We can parametrize the radiative gluon momentum loss
phenomenologically by |�r | = Nqr, where the qr value
obtained from experimental data will need to be compared with
theoretical models. In practice, the collisional and radiative
momentum losses appear together as the sum total (q + qr )
in the fragmentation function [Eq. (70)]. Furthermore, there
can be additional attenuation ζa from absorptive inelastic
processes of removing the jet from the jet channel. Only the
sum of the absorptive, collisional, and radiative contributions,
leading to the total attenuation coefficient ζ , can be obtained by
comparison with experimental jet-quenching data [Eqs. (72)
and (74)].

Upon including the momentum loss from jet–medium-
parton collisions and gluon radiation in the momentum kick
model, Eq. (7) becomes

Ntrig =
∫

dpj

dNj

dpj

Nmax∑
N=0

P (N )e−ζaND[ptrig; pj −N (q + qr )].

(65)

We wish to write out the dependence of the fragmentation
function D on N in this equation explicitly. The dominant
contribution of the jet production process comes from gluon-
gluon collisions [67]. The relevant fragmentation function of
fragmenting a pion out of a gluon at the momentum scale Q2

0
can be written in the form [67]

zD
(
z,Q2

0

) ∼ Cπ (1 − z)a1 , (66)

where z = ptrig/pj and Cπ is a constant. In perturbative QCD,
the fragmentation function near z = 1 varies with the QCD
momentum scale Q according to [67,68]

zD(z,Q2)  zD
(
z,Q2

0

)
e0.69Gs̄(− ln z)4Gs̄ �(a1 + 1)

�(a1 + 1 + 4Gs̄)
,

(67)

where G = 4/25 and s̄ = ln[ln(Q2/�2)/ ln(Q2
0/�

2)]. After
the jet suffers N jet–medium-parton collisions with the
medium partons, the fragmentation function for a pion to
fragment out of the final jet of momentum zN = ptrig/[pj −
N (q + qr )] is

D(zN,Q2) = Cπe0.69Gs̄ exp{− ln zN + a1 ln(1 − zN )

+ 4Gs̄ ln[(− ln zN )]} �(a1 + 1)

�(a1 + 1 + 4Gs̄)
. (68)

Upon expanding the exponent index of this function in powers
of N (q + qr )/pj and retaining the term first order in N (q +
qr )/pj , we obtain the dependence of the jet fragmentation

function on the jet–medium-parton collision number N ,

D[ptrig/(pj − N (q + qr )),Q2]  D(ptrig/pj ,Q
2)e−ζDN ,

(69)

where

ζD =
(

1

ptrig/pj

+ a1

1 − ptrig/pj

+ 4Gs̄

ln (pj/ptrig)

pj

ptrig

)

× ptrig(q + qr )

p2
j

. (70)

Substituting this relationship into Eq. (65), we get

Ntrig =
∫

dpj

dNj

dpj

D(ptrig; pj )
Nmax∑
N=0

P (N )e−ζN , (71)

where we have combined ζa with ζD as

ζ = ζa + ζD. (72)

Because of the normalization condition [Eq. (5)] for the
fragmentation function and the definition of dNj/dpj in
Eq. (1), we obtain

Ntrig = Nbin

Nmax∑
N=0

P (N )e−ζN , (73)

and we get the jet-quenching measure

RAA = Ntrig

Nbin
=

Nmax∑
N=0

P (N )e−ζN (74)

and the average number of jet–medium-parton collisions per
trigger

〈N〉 = 〈Nk〉 =
Nmax∑
N=1

NP (N )e−ζN

/ Nmax∑
N=0

P (N )e−ζN . (75)

The presence of the attenuation factor e−ζN implies that
detected trigger particles are likely to originate near the surface
where the number of jet–medium-parton collisions, N, is
smallest. The quantity ζa is not known. The quantity ζD

depends on q + qr and pj . We can estimate the contribution
of the collisional term to the value of ζD by inferring the
approximate average value of pj for ptrig ∼ 5 GeV. As pj ∼
(ptrig + 〈N〉q + 3NjetTjet) with 〈N〉 ∼ 6, q ∼ 1 GeV, Njet =
0.75, Tjet = 0.55 GeV, we estimate that pj ∼ 2.5ptrig. If we
use Q2 = p2

j ,Q
2
0 = 3 GeV2, a1 = 1.5, and � = 0.5 GeV as

in Ref. [67] we can use Eq. (70) and estimate the contribution
to ζD from q to be approximately 0.22. There can be additional
contributions from the radiative energy loss qr . We shall set
ζ as a free parameter to describe the experimental RAA data
by searching for ζ around the neighborhood of about 0.22.
We find in Sec. XIII that the experimental jet-quenching and
ridge yield data are consistent with a value of ζ = 0.20 which
comes very close to the value of 0.22 estimated here.
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XII. GEOMETRY DEPENDENCE OF TRIGGER AND
RIDGE YIELDS

Because the ridge particle yield has been measured on
the basis of the yield per trigger particle, it is necessary to
determine the trigger yield Ntrig as a function of the geometrical
variables, in addition to determining the number of ridge
particles. The trigger particle yield is quenched owing to the
energy loss of the jet parton. We therefore need to study jet
quenching and follow the trajectory of the jet.

From our earlier considerations, the relevant physical
quantities are given in terms of N , the number of medium
partons kicked by the jet on its way to emerge from the
medium. This quantity N , in turn, is equal to the number of
jet–medium-parton collisions, Nk, suffered by the jet parton.
We assume for simplicity that the energetic jet parton travels
along a straight-line trajectory with a velocity nearly the speed
of light, making an angle φs with respect to the reaction plane,
φs = φjet − φRP. Using the mid-point O between the centers of
the two nuclei as the origin, we set up a transverse coordinate
system for the jet source point b0 and the jet trajectory point
b′ as shown in Fig. 7.

We consider the jet source point at b0, from which a
mid-rapidity jet parton originates. The number of jet–medium-
parton collisions along the jet trajectory making an angle φs

with respect to the reaction plane is

Nk(b0, φs) =
∫ ∞

0
σdl

dNparton

dV
[b′(b0, φs)], (76)

where 0 < l < ∞ parametrizes the jet trajectory, σ is the jet–
medium-parton scattering cross section, and dNparton(b′)/dV

is the parton density of the medium at b′ along the trajectory
l. Jet–medium-parton collisions take place along different
parts of the trajectory at different l and involve the medium
at different stages of the expansion. They depend on the
space-time dynamics of the jet and the medium. To follow the
jet–medium-parton collisions along the jet trajectory, we need
a time clock to track the coordinates of the jet and the motion
of the medium. We start the time clock for time measurement
at the moment of maximum overlap of the colliding nuclei,

l

b
B

b
A

O
Ab→

→→

O
B

φ
s

0

b′

b
0

jet

FIG. 7. (Color online) The transverse coordinate system used for
the jet source point b0 and the trajectory point b′. The coordinate
origin is located at the midpoint O between the two colliding nuclei,
whose centers are located at OA and OB separated by an impact
parameter b. The jet trajectory lies along l and makes an angle φs

with respect to the reaction plane.

and the jet is produced by nucleon-nucleon collisions at a time
t ∼ h̄/(10 GeV), which can be taken to be ∼0. The trajectory
path length l is then a measure of the time coordinate, t ≈ l,
which is needed to follow the longitudinal and transverse
expansions of the medium.

The trajectory point b′ depends on the jet source origin
point b0 and the jet azimuthal angle φs as

b′(b0, φs) = (b′
x, b

′
y) = (b0x + l cos φs, b0y + l sin φs). (77)

If we approximately represent the modification of the
density arising from longitudinal and transverse expansion by
an effective time parameter τeff using the initial parton density
in the approximation

Nk(b0, φs) = σ

τeff

∫ ∞

0
dl

dNparton

db′
[
b′(b0, φs)], (78)

then we find that the data can be described by ζ = 0.22 and
σ/τeff ∼ 0.025 fm. Such a picture only gives a rather crude
description of the path-length dependence of the ridge yield.

To give a more realistic picture, we describe the medium
by an expanding fluid with an initial density given by the
distribution of the participants at the moment of maximum
nuclear overlap. We assume that the longitudinal expansion
begins at the moment of maximum overlap as the initial mo-
menta are directed along the longitudinal direction. A period
of time t0 is however needed to convert the longitudinal kinetic
energy into entropy to produce particles with a transverse
mass. The transverse hydrodynamical expansion can then
commence at t � t0. The time for producing a particle with a
typical transverse mass of about 0.35 GeV is h̄/(0.35 GeV) ∼
0.6 fm/c, which is also the time estimated for the thermalization
of the produced matter [69]. We therefore take t0 = 0.6 fm/c.

As we will focus our attention in the mid-rapidity region
where experimental data are available, Bjorken hydrody-
namics [42] and Landau hydrodynamics [70,71] coincide
[72,73] and we can use Bjorken hydrodynamics to describe
the longitudinal expansion. For a hydrodynamical system
undergoing Bjorken longitudinal expansion, the transverse
expansion can be described by the hydrodynamical solution
of Baym et al. [74]. Using the method of characteristics, they
find that the energy density and velocity field in the transverse
direction can be described well approximately by analytic
formulas.

Accordingly, we follow the jet along its trajectory at l

specified by the trajectory point b′ with a transverse magnitude
b′ = |b′| (measured from the origin O) at time t = l. The time
after the onset of the transverse expansion is then tR = t − t0,
and a rarefaction wave travels from the transverse radius R

inward with the speed of sound, cs . The dynamics is different
whether the rarefaction wave has reached this medium point
b′ or not. The transverse space of the medium can be divided
into Region I and Region II.

In Region I, characterized by b′ < R − cstR , the rarefaction
wave has not reached this medium point at b′. In this region, the
medium has not started to expand transversely with transverse
velocity v⊥ = 0 while the longitudinal expansion has already
commenced. Owing to the longitudinal expansion the density
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is depleted and the temperature is decreased as [74]

T ∝ (t0/t)c
2
s . (79)

As the entropy density and number and entropy densities are
proportional to T 1/c2

s , we have

dNparton

dV
(b′, t) = dNparton

dV
(b′

init, t = t0)
t0

t
, (80)

with b′
init = b′ in Region I.

In Region II, defined by R − cstR < b′ < R + tR , the
inward-traveling rarefaction wave has passed through already.
The medium is expanding transversely outward and the
transverse velocity v⊥ at the point b′ at the time t is

v⊥ = b′ − R + cstR

tR + cs(b′ − R)
. (81)

The transverse velocity v⊥ is unity (speed of light) at the
surface point R + tR and is zero at the point b′ − cstR where
the rarefaction wave has just arrived. The medium temperature
in this region is given by [74]

T (b′, t) = T0(b′
init, t = t0)

(
tR − b′ + R

tR + b′ − R

1 − cs

1 + cs

)cs/2(
t0

t

)d

,

(82)

where b′
init = b′ − v⊥tR is the initial position that reaches b′ at

tR , and if b′ − v⊥tR � 0 we set b′
init = 0. Here the exponential

index d is [74]

d = c2
s

2

[
1 + 1

1 − v⊥(b′, t)cs

]
. (83)

The corresponding medium number density in the coordinate
frame in which the trajectory l is measured (Fig. 7) is therefore

dNparton

dV
(b′, t) = γ

dNparton

dV
(b′

init, t = t0)

×
(

tR − b′ + R

tR + b′ − R

1 − cs

1 + cs

)1/2cs
(

t0

t

)d/c2
s

,

(84)

where

γ = 1√
1 − v2

⊥
(85)

and γ is to take into account the change in the medium
number density owing to the flow velocity of the medium
along the transverse direction. Although the boundary R is
independent of the azimuthal angle of b′ for the central
collision, the boundary radius is a function of the azimuthal
angle for noncentral collisions. We shall assume that the
relations between the density and the radius given here remain
applicable by using a radius R that depends on the azimuthal
angle. These results of the number density at various transverse
points allow one to obtain the absorption exponent index for
a jet to pass through an expanding medium. In numerical
calculations, we take the speed of sound to be cs = 1/

√
3.

The medium parton density dNparton/dV at (b′
init, t = t0) is

related to the parton transverse density dNparton/db at t0 by

dNparton

dV
(b′

init, t = t0) = dNparton

2t0db′ (b′
init, t = t0). (86)

We can relate the initial parton number transverse density
dNparton/db′ at t = t0 to the corresponding participant initial
number transverse density dNpart/db′ as

dNparton

db′ = dNparton

dNpart

dNpart

db′ = κ
dNpart

db′ , (87)

where κ = dNparton/dNpart is the number of partons per partic-
ipant. A previous collection of data gives Nch/〈Npart/2〉 = 28
for

√
sNN = 200 GeV and 16 for

√
sNN = 62 GeV (see

Refs. [75,76]). If we use the parton-hadron duality and count
the parton number by (3/2) times the charged multiplicity of
detected hadrons, then we get

κ =
{

21 for
√

sNN = 200 GeV,

12 for
√

sNN = 62 GeV.

}
(88)

A given source point b0 and a given azimuthal angle φs

will lead to Nk(b0, φs) number of kicked medium partons,
which we shall identify by parton-hadron duality as ridge
particles. The jet number transverse density is given by the
binary nucleon-nucleon collision number transverse density,
as nucleon-nucleon collisions are the source of jets. We need
to weight the number of kicked medium particles by the local
binary collision number element db0 × dNbin/db0. The nor-
malized probability distribution P (N,φs) with respect to the
number of ridge particles (or jet–medium-parton collisions) is

P (N,φs) = 1

Nbin

∫
db0

dNbin

db0
(b0)δ[N − Nk(b0, φs)], (89)

which leads to the desired normalization of the distribution
P (N,φs), ∫

dNP (N,φs) = 1, (90)

and the total number of binary nucleon-nucleon collisions,

Nbin =
∫

db0
dNbin

db0
. (91)

Thus, the number of ridge particle yield per trigger particle (or
the number of jet–medium-parton collisions per trigger) at an
azimuthal angle φs , averaged over all source points of binary
collisions at all b0 points, is

N̄k(φs) =
∫

NP (N,φs)e
−ζNdN

/∫
P (N,φs)e

−ζNdN.

(92)

In practical calculations, it is convenient to discretize N by
replacing the delta function in Eq. (89) as

δ(N − Nk) → {�[Nk − (N − �N/2)]

−�[Nk − (N + �N/2)]}/�N. (93)
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Upon choosing �N = 1, the normalization condition
[Eq. (90)] becomes

Nmax∑
N=0

P (N,φs) = 1, (94)

as in our previous definition with the φs dependence now
explicitly written out. Equation (89) in the discretized form of
N becomes

P (N,φs)

= 1

Nbin

∫
db0

dNbin

db0
(b0){�[(N − �N/2) − Nk(b0, φs)]

−�[(N + �N/2) − Nk(b0, φs)]}/�N. (95)

This equation facilitates the evaluation of P (N,φs). For
a given φs , we evaluate Nk(b0, φs) at different source
points b0, place the quantity dNbin/db0 at the appropriate
[N − �N/2 � Nk(b0, φs) � N + �N/2] bin, and accumu-
late the contributions from all jet source points at all b0.
The accumulated distribution, divided by Nbin�N, is then
the distribution function P (N,φs). For these calculations, we
need the transverse densities of the binary nucleon-nucleon
collisions and participant numbers. The transverse density of
binary nucleon-nucleon collisions in Eq. (95) can be obtained
from the Glauber model to be

dNbin

db0
(b0) = ABT (bA0)T (bB0)σNN

in , (96)

where bA0 = b0 + b/2 and bB0 = b0 − b/2. The quantity
σNN

in is the nucleon-nucleon inelastic cross section, which we
can take to be 42 mb at

√
sNN = 200 [77]. The participant

number transverse density needed in Eqs. (78) and (87) along
the jet trajectory can be similarly obtained from the Glauber
model to be

dNpart

db′ (b′) = AT (b′
A) + BT (b′

B), (97)

where the transverse coordinates are given by b′
A = b′ + b/2

and b′
B = b′ − b/2. These relations allows us to use Eq. (95)

to evaluate P (N,φs). The distribution P (N,φs) can then be
used in Eq. (74) to evaluate RAA(φs), and in Eq. (75) or
(92) to evaluate N̄k(φs). After N̄k(φs) and RAA(φs) have been
evaluated, we can average over all azimuthal angles φs and we
obtain the ridge particles [or jet–medium-parton collision] per
trigger,

〈Nk〉 =
∫ π/2

0
dφsN̄k(φs)/(π/2), (98)

and

〈RAA〉 =
∫ π/2

0
dφsRAA(φs)/(π/2), (99)

which is usually expressed just as RAA.
Equation (15) separates the ridge particle distribution into a

geometry-dependent part, 〈fR〉(2/3)〈Nk〉, and the normalized
ridge momentum distribution, dF/dp. From the magnitude
of the ridge yield, we have extracted phenomenologically in
Sec. VI the values of 〈fR〉〈Nk〉 = 3.8 for central Au + Au

collisions at
√

sNN = 200 GeV. Ridge particles after pro-
duction are attenuated before reaching the detector. It is
reasonable to take the average ridge particle attenuation factor
〈fR〉 to be the same as the average attenuation factor for jet
component particles, fJ = 0.632, as both types of particles
come out from the interacting region. We then get an estimate
of 〈N〉 = 〈Nk〉 = 6.0 as the total number of kicked partons per
trigger for the most-central Au + Au collisions at 200 GeV.
For numerical purposes, we shall use these average numbers
as references, keeping in mind however that they depend on
the attenuation factor 〈fR〉 that may be uncertain.

XIII. COMPARISON OF RIDGE YIELD WITH
EXPERIMENTAL CENTRALITY DEPENDENCE

For a given impact parameter and azimuthal angle φs , the
unknown parameters are ζ and σ . Although all quantities
depend on these two parameters, the quantity RAA for the
quenching of the trigger is more sensitive to ζ , and the ridge
yield per trigger is more sensitive to σ . We find that the totality
of experimental data of the centrality dependence of RAA and
the centrality dependence of the ridge yield can be explained
well when we use

ζ = 0.20 and σ = 1.4 mb. (100)

We discuss here the comparison of theoretical results with
experimental data using these two parameters for Au + Au
collisions at

√
sNN = 200 GeV. Solid circles in Fig. 8 give

experimental PHENIX RAA data for high-pt π0 yields [78].
The theoretical RAA result in the momentum kick model
obtained with Eq. (74) as a function of the participant number
is shown as the solid curve. It gives good agreement with
experimental RAA data. The quenching of the jet is well
accounted for in the momentum kick model.
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FIG. 8. (Color online) The ratio RAA of the high-pt π 0 trigger
yield in AA collision, as a function of the number of participants,
Npart. The solid curve is the theoretical result from the momentum
kick model, using ζ = 0.20 and σ = 0.7 mb. The data points are
from PHENIX high-pt π0 measurements for Au + Au collisions at√

sNN = 200 GeV [78].
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FIG. 9. The ridge yield per trigger as a function of the participant
number Npart for nucleus-nucleus collisions at

√
sNN = 200 GeV.

The solid curve gives the theoretical result for Au + Au collisions
in the momentum kick model. The solid circular data points are
from the STAR Collaboration [7].

The STAR Au + Au ridge yield per trigger at
√

sNN =
200 GeV, shown as solid circles in Fig. 9, are taken from
Fig. 2 of Ref. [7]. They were obtained for 3 < pt, trig

< 4 GeV and 2.0 < pt, associated < pt, trig. The solid curve in
Fig. 9 is the theoretical ridge yield per trigger for Au + Au
collisions. It has been normalized to match the data point
(within errors) for the most-central collision examined in
Secs. IV–VI. Our comparison of momentum kick model results
and the experimental data in Fig. 9 indicates that theoretical
ridge yields per trigger agree with experiment. It increases as
the number of participants increases.

The value of ζ = 0.20 is nearly the same as our earlier
estimate of ζ = 0.22 arising from collisional jet momentum
loss alone. This indicates that collisional momentum loss may
contribute the dominant component of the jet momentum
loss, but more research on theoretical predictions for ζ are
needed to separate out the different absorptive and radiative
contributions. The cross section corresponds to a parton
interacting radius of 0.21 fm, which means that a parton having
the entropy content of a hadron appears to the jet probe as a
strongly interacting scattering disk with a radius of 0.21 fm.

XIV. DEPENDENCE OF THE RIDGE YIELD ON
COLLIDING NUCLEI MASSES AND ENERGIES

Whereas our attention so far has been focused on Au + Au
collisions at

√
sNN = 200 GeV, we would like to investigate

in this section how the ridge yield scales with the mass
numbers and the energies of the colliding nuclei. Experimental
data for such an analysis have been obtained by the STAR
Collaboration with the acceptance region of 3 < pt, trig <

4 GeV and 2.0 < pt, associated < pt, trig [8,14]. This region of
acceptance is slightly different from the acceptance region
for Fig. 9 used in Ref. [7]. The measurements of the ridge
yield for Au + Au and Cu + Cu collisions at

√
sNN = 200 and

62 GeV within the same acceptance region in Refs. [8,14]
allows a consistent comparison across mass numbers and
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FIG. 10. (Color online) The ridge yield per trigger as a function of
the participant number Npart for nucleus-nucleus collisions at

√
sNN =

200 and 62 GeV. The solid curves are theoretical results for Au + Au
collisions and the dashed curves are for Cu + Cu collisions in the
momentum kick model. The solid points represent Au + Au data and
the open points represent Cu + Cu data from the STAR Collaboration
[8,14].

energies of the colliding nuclei. The experimental ridge
yield as a function of the participant numbers are shown in
Fig. 10 as solid points for Au + Au collisions and open points
for Cu + Cu collisions [8,14]. The circular data points are for√

sNN = 200 GeV and the square points are for 62 GeV. One
notes that the ridge yield appears to increase with increasing
number of participants and increasing collision energies. The
ridge yield for Cu + Cu collisions is small and contains large
systematic errors.

We show in Fig. 10 the theoretical ridge yield for Au + Au
and Cu + Cu collisions as a function of the number of par-
ticipants for

√
sNN = 200 and 62 GeV. The experimental and

theoretical ridge yields are matched for the most-central Au +
Au collision data point at

√
sNN = 200 GeV. Our comparison

of momentum kick model results and the experimental data
at different energies, different nuclear masses, and different
participant numbers indicates that the theoretical ridge yield
agrees well with experiment. For the same nucleus-nucleus
collision at different energies, the theoretical ridge yield
scales approximately with κ , the number of medium partons
produced per participant, which increases with increasing
collision energy as (ln

√
s)2 [75]. For the same collision energy,

the theoretical ridge yields per trigger for Cu + Cu collisions
follow approximately those of the ridge yields for Au + Au
collisions, when plotted in terms of the number of participants.

XV. DISCUSSION AND CONCLUSIONS

The experimental near-side ridge data have guided us to
the momentum kick model as a description of the ridge
phenomenon. The narrow cone of associated particles along
the jet direction reveals that the trigger particle is connected
with the occurrence of a jet. The yield of the associated
particles as increasing with increasing participant numbers
and the similarity of their inverse slope reveal that the
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ridge particles come from medium particles. The short-range
behavior of the strong interaction owing to color screening and
the narrow azimuthal correlation of a ridge particle with the
trigger particle reveal further that the ridge particles and the jet
are related by collisions. Hence, a picture of the momentum
kick model emerges as a plausible description of the ridge
phenomenon.

In the momentum kick model, a jet parton produced in high-
energy heavy-ion collisions makes collisions with medium
partons. The kicked medium partons subsequently materialize
as ridge particles while the jet loses energies and fragments
into the trigger particle and other fragmentation products.

The implementation of the momentum kick model can
proceed numerically by a Monte Carlo approach, following the
trajectory of the jet and the medium particles as the medium
evolves. The space-time dynamics of the medium and the jet
is a problem of great complexity and contains many complex,
unknown, and nonperturbative elements. However, before we
implement such an elaborate undertaking, it is useful to explore
with simplifying assumptions whether the momentum kick
model contains promising degrees of freedom.

Following the dynamics of a jet and and its interaction
with the medium, we show how the ridge yield can be greatly
simplified by using the average distribution of the medium
particles and the average momentum kick. We are then able to
separate the ridge particle yield into a factor that depends
on the average number of partons kicked by the jet and
another factor related to the (average) momentum distribution
of the kicked parton after acquiring a momentum kick from
the jet. The ridge particles therefore carry information on
the momentum distribution of the partons at the moment of
jet–medium-parton collisions. They also carry information on
the (average) magnitude of the momentum kick a medium
parton acquires. These complications of space-time dynamics
of medium and jet partons have been subsumed under the
probability distribution PN (N ), which depends on geometry,
medium parton dynamics, jet parton trajectories, and jet–
medium-parton cross sections.

The medium partons kicked by the jet materialize as
ridge particles that can be used to extract the early parton
momentum distribution. The extracted early parton mo-
mentum distribution provides valuable information for the
mechanism of early parton production and the later evolution
of the system toward the state of quark-gluon plasma. For
central Au + Au collision at

√
sNN = 200 GeV, we find

the extracted early parton momentum distribution to have
a thermal-like transverse distribution but a rapidity plateau
structure whose width decreases as the transverse momentum
increases. We should note that plateau rapidity structure has
been known in QCD particle production experiments [36–40]
and in QCD particle production theories [41–45]. From this
viewpoint, the occurrence of a plateau structure at the early
stage of nucleus-nucleus collision should not come as a
surprise.

The rapidity plateau distribution differs from the rapidity
distribution of the bulk matter, which is found to have a
Gaussian shape [64–66]. It is important to note that jets occur
at an early stage of the nucleus-nucleus collisions, whereas
the bulk medium properties are measured at the endpoint

of the nucleus-nucleus collision. A significant dynamical
evolution must have occurred between the early beginning of
the nucleus-nucleus collision and the endpoint of the nucleus-
nucleus collision. Therefore the early parton momentum
distribution near the beginning stage of the nucleus-nucleus
collision need not be the same as the bulk matter distribution at
the endpoint of the nucleus-nucleus collision. One expects that
starting with a nonisotropic plateau rapidity distribution that
is much elongated in the longitudinal direction, a collision of
two partons with large and opposing longitudinal momenta in
adjacent spatial locations will redistribute the partons from the
longitudinal direction toward the transverse directions, with a
decrease in the longitudinal momenta of the colliding partons.
Hence, the evolution will likely smooth out the anisotropic
plateau rapidity structure to a significant degree as time
proceeds.

The subject of our focus has been the near-side ridge
and jet quenching in the early collision history, so how the
parton distribution function F (r, p, t) evolves subsequently
from the initial state to the endpoint of nucleus-nucleus
collision is beyond the scope of the present manuscript.
The complete problem of parton evolution is a problem
of great complexity [30,31,55,79–82], involving perturbative
and nonperturbative elements. For example, in one of the
descriptions using the color-glass-condensate treatment of
the initial conditions [31], it is not well understood even
within the color-glass-condensate community how the initial
large rapidity correlations can evolve to a thermal distribution
in a short period of time of 1–2 fm/c or to a Gaussian
rapidity distribution at the endpoint of the nucleus-nucleus
collision. Some recent advances suggest intrinsic color plasma
instabilities that can lead to a breaking of the boost invariance
[30,79,80], and other investigations suggest the bottom-up
scenario involving gg → ggg [81,82]. The extracted early
momentum distribution of a rapidity plateau obtained here
serves to highlight the important and unsolved issues of parton
evolution that are left outstanding by the present findings of
this manuscript.

The momentum loss of the jet parton and the geometry of
the jet trajectory are other important aspects of the momentum
kick model. The magnitude of the momentum kick imparted
onto the medium parton has been found to be q = 1.0 GeV
per jet–medium-parton collision. This momentum gain by
the kicked parton is clearly related to the momentum loss
of the jet as a result of the jet–medium-parton collisions.
One obtains a good phenomenological description of the
experimental data of the centrality dependence and collisional
energy dependence of RAA and the ridge yield. The extracted
physical quantities furnish important, albeit approximate,
empirical data for future investigations on the dynamics of
parton production, parton evolution, and jet energy loss. The
subject will come up over and over again, each time with
more and more accuracy and refinement, as we go through our
course in physics.

The successes of the simplifying model indicate that the
momentum kick model contains promising degrees of freedom
for the description of the gross features of the ridge phe-
nomenon and jet quenching. There is however a limited range
for the application of a completely analytical formulation, as
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many refinements and improvements necessitate additional
degrees of freedom. Among other things, we envisage the need
for a better description of the elementary jet–medium-parton
collision process, a better description of the dynamics of the
medium, and the inclusion of effects of medium transverse
collective and elliptic flows that depend on the reaction plane
orientations and medium spatial locations. There is the further
complication for intermediate-pt trigger particles that some
of the trigger particles may arise not from the jets but from
the medium [33]. A Monte Carlo implementation of the
momentum kick model will allow the inclusion of many

refinements and improvements and will therefore be of great
interest.
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