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Global conservation laws and femtoscopy of small systems
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It is increasingly important to understand, in detail, two-pion correlations measured in p + p and d + A

collisions. In particular, one wishes to understand the femtoscopic correlations to compare to similar
measurements in heavy-ion collisions. However, in the low-multiplicity final states of these systems, global
conservation laws generate significant N -body correlations that project onto the two-pion space in nontrivial ways
and complicate the femtoscopic analysis. We discuss a formalism to calculate and account for these correlations in
collisions dominated by a single particle species (e.g., pions). We also discuss effects on two-particle correlations
between nonidentical particles, the understanding of which may be important in the study of femtoscopic
space-time asymmetries.
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I. INTRODUCTION

The unique and distinguishing feature of collisions between
heavy ions is their large (relative to the confinement scale)
size and the possibility of generating bulk systems, which
may be described in thermodynamic terms, allowing us to
discuss the equation of state of strongly interacting matter.
The primary evidence for the creation of bulk matter at the
highest energies [1–4] is the existence of strong collective flow
[5]. The dominant feature of flow is the correlation between
space and momentum it generates; thus, momentum-only
observables such as pT spectra and azimuthal anisotropies
[1–4] represent only an indirect projection of the effect.
Femtoscopic measurements access space as a function of
particle momentum, thus providing the most direct probe of
the most crucial feature of heavy-ion collisions (see, e.g.,
Ref. [6]). In particular, flow is manifest by a negative
correlation between the “HBT radius” and the transverse mass
(mT ) of the particles [7].

Clearly, then, a detailed understanding of femtoscopic
measurements in heavy-ion collisions is crucial to proving
the existence of, or probing the nature of, the bulk system
generated in the collision. It is in fact possible to quanti-
tatively interpret both the femtoscopic and momentum-only
observations at RHIC—in A + A collisions—in consistent,
flow-dominated models of the system (e.g., Ref. [8]). All seems
well.

However, it is important to understand the system size
dependence of the apparent bulk behavior. In this paper we
discuss the possible complications in the comparison of large
and small systems.

A. Hadron collisions as a reference to heavy-ion collisions

One of the most exciting signals at RHIC is the modification
of the jet structure caused by the bulk medium. In particular,
leading particle distributions [9,10] and azimuthal correlations
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[11] in A + A collisions are strongly suppressed relative to
those from p + p collisions at high pT .

Especially since low-pT observables directly reflect the
bulk medium, it is reasonable to ask whether similar com-
parisons between Au + Au and p + p collisions reveal com-
parable differences in the soft sector.

Common measurements of this type include total particle
yields, pT spectra, and azimuthal correlations (v2). However,
in each case, it is not clear whether qualitative differences
between small and large systems are observed. Quantum
number conservation laws in small systems can strongly
affect particle yields (e.g., Refs. [12,13]). However, modulo
canonical suppression effects based on equilibrium thermo-
chemical fits to yields from p + p collisions [14] produce
results quite similar to those from A + A collisions [15]. Blast-
wave fits [8,16] to pT spectra from p + p collisions indicate
sizable radial flow, though smaller than that seen in Au + Au
collisions [17]. Intrinsic anisotropies from p + p collisions are
considered as a nonflow contribution to azimuthal correlations
in A + A. However, it is far from obvious that the finite values
of v2 from p + p collisions [18] do not arise from collective
flow in the p + p collision itself.

A quark-gluon plasma is usually considered a form of
matter. If a quark-gluon plasma were created in p + p

collisions, as suggested by Bjorken [19], would it display bulk
properties? A direct comparison of soft-sector observables
in p + p and A + A collisions is necessary to address these
issues [20,21]. The imminent hadronic and heavy-ion program
at the LHC brings the relevance of such studies into strong
relief.

B. Femtoscopy in p + p collisions

More light might be brought to bear on this important
question through femtoscopic measurements, which probe
more directly the space-momentum correlations generated in
a collective system.

Though not as plentiful as in heavy-ion collisions, two-pion
femtoscopic measurements are common in e+ + e− or p +
p(p̄) collisions [22]. In these collisions, too, “HBT radii” are
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observed to fall with mT . Speculations of the physics behind
this observation have included Heisenberg-uncertainty-based
arguments, string-breaking phenomena, and temperature gra-
dients; an excellent overview may be found in Ref. [23].
Preliminary measurements by the STAR Collaboration [24]
even suggest that p + p collisions show collective behavior
similar to A + A collisions. Distinguishing different physical
mechanisms, however, requires a detailed understanding of the
correlations themselves.

Such an understanding is complicated by the clear obser-
vation of nonfemtoscopic effects in two-pion correlations in
small systems. For example, in A + A collisions the functional
form (Gaussian or not) fitted to two-pion correlations (e.g.,
Ref. [6]) incorporates only femtoscopic effects. Such fits for
smaller systems (e.g., Ref. [25]) have required additional
ad hoc terms of nonfemtoscopic nature.

C. Nonfemtoscopic correlations

Femtoscopic correlations are those that depend directly on
the two-particle coordinate-space separation distribution (cf.
Ref. [6]). In general, such correlations are confined to low
relative velocity. Nonfemtoscopic correlations may arise from
string fragmentation or global conservation laws, for example,
and there is no reason to expect that such correlations appear
only in kinematic regimes (e.g., ranges of relative momentum)
different than the femtoscopic ones. Thus, separating those
correlations may be a nontrivial exercise.

Nonfemtoscopic correlations may arise from a variety of
sources. Jets will clearly induce momentum-space correlations
between their fragmentation products. Although these effects
may not be negligible, the low momentum of the pions under
consideration (pT ∼ 0.4 GeV) puts us squarely in the region
in which factorization breaks down and the jet interpretation
becomes significantly murkier. In the kinematic region under
consideration, string fragmentation may play a role; this is
an area for future study, though significant model dependence
will be present. Collective bulk flow (e.g., anisotropic elliptic
flow) will generate N -body correlations that will project
onto the two-body space. “Clusters” within events—that is,
several independent particle-emitting sources—may generate
additional structure [26,27]; indeed, such clusters may be
treated as “large resonances” with a many-body decay channel.
Each of these sources of nonfemtoscopic correlations may
play a greater or lesser role in a collision, depending upon
the physical scenario. In this paper, we do not focus on these
sources of correlation.

In this work, we focus on effects that must be at play in
any physical system: energy- and momentum-conservation-
induced correlations (EMCICs). These global conservation
laws provide an N -body constraint on the event, which
projects down onto two-body spaces and should become more
pronounced at lower event multiplicity (N ).

EMCIC effects on femtoscopic correlation functions have
been estimated (see Appendix C of Ref. [27]) recently in
the context of a numerical model of Bose-Einstein correla-
tions from emitting cells, using a rough but fast numerical
algorithm to conserve energy-momentum. An earlier study by
Bertsch et al. [28] included energy-momentum conservation

in an analytically solvable model in the limit of one spatial
dimension and nonrelativistic particles. Both studies were
confined to correlation functions in one dimension of relative
momentum. In this paper, effects of EMCICs on three-
dimensional correlation functions are studied in detail using
numerical simulations and analytic expressions, both based on
the restricted phase-space integral.

D. Structure of this paper

In Sec. II we describe GENBOD, an event generator that
samples an inclusive momentum distribution subject only to
constraints of energy and momentum conservation. In Sec. III
we briefly discuss the harmonic representation that provides
a complete and natural characterization of the shape of the
correlation function. An extensive discussion of symmetry
constraints on the harmonics is given in Appendix B.

For the next three sections, we focus on events in which only
pions are emitted. In Sec. IV we use pion-only events from
GENBOD to illustrate the effects of varying constraints, frames,
and kinematic cuts on EMCICs. A method to calculate ana-
lytically (but using information from measured distributions)
EMCICs is shown in Sec. V. This leads to an “experimentalist’s
formula,” given in Sec. VI, intended to disentangle EMCICs
from other (e.g., femtoscopic) correlations in the data. The
formula involves several approximations that may break down
in reality; these are discussed and effects are evaluated
quantitatively.

In Sec. VII we discuss two effects that can complicate a
direct comparison of EMCICs for identical and nonidentical
particle correlations. Several interesting effects are observed,
which might be important for the increasingly common studies
of space-time asymmetries. We find that, for nonidentical par-
ticles, the “experimentalist’s formula” is only approximately
applicable. We summarize our discussion in Sec. VIII.

II. CALCULATING EVENTS WITH ENERGY AND
MOMENTUM CONSERVATION

To clearly understand the role of EMCICs, we would like
to study events in which there is no other physics involved
besides the conservation laws. Such a tool has been provided
40 years ago in the form of the GENBOD computer program (see
Ref. [29] for an excellent write-up of the method and physics)
in the CERN library. Given a requested total multiplicity (N ),
a list of masses (mi) of emitted particles, and a total amount
of energy (Etot) to distribute among them, GENBOD returns an
event of random momenta (four-vectors pj ), subject only to
the condition of energy and momentum conservation. More
importantly, it returns, for each event, a weight proportional
to the probability that the event will actually occur in nature.
Thus, it is a much different tool than, say, transport codes such
as RQMD [30], in which each event returned may be treated as
equally probable.

This weight is based on the phase-space integral RN [31] ,

RN =
∫ 4N

δ4


P −

N∑
j=1

pj


 N∏

i=1

δ
(
p2

i − m2
i

)
d4pi, (1)
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FIG. 1. (Color online) A high-probability multiplicity-30 event
calculated by GENBOD. Lines correspond to particle momenta
px, py, pz.

where P = (Etot, �0) is the total momentum four-vector of the
event. RN figures dominantly in Fermi’s statistical theory [32],
in which the probability of having N particles in the final
state is proportional to S̄N · RN ; here S̄N is the phase-space-
averaged S-function (or matrix element) associated with the
process generating the final state.

In the limit for which momentum distribution is dominated
by phase-space restrictions alone, S̄ is a constant, and the spec-
trum of a quantity α (say, an angle or transverse momentum)
is given by [29,31,32]

f (α) = d

dα
RN. (2)

In the limit that α represents the ensemble of momenta
constituting a given event, Eq. (2) returns the event weight.
See Ref. [29] for a practical iterative prescription to calculate
RN and the weights.

We select (via Monte Carlo) GENBOD events according to
their weight and run them through identical software as used
for experimental analysis. Fortunately, the code is fast, since
one must calculate large statistics from which to select. This
is because the phase-space weights vary by large factors. As
a very extreme case, Figs. 1 and 2 show a likely and unlikely
event, respectively, for multiplicity N = 30. As one would
expect, the “rounder” event is more likely, though one might
be surprised by the fact that the first event is a hundred million
times more likely than the second one.

III. SPHERICAL HARMONIC DECOMPOSITION
OF CORRELATION FUNCTIONS

Measurements of the space-time extent of a particle-
emitting source at the femtometer scale is commonly done by
analyzing two-particle correlation functions C(�q) as a function
of the relative momentum �q. Experimentally, C(�q) is the
ratio of the �q distribution when both particles are measured
in the same event to the same distribution when the two
particles come from different events (see, e.g., Ref. [6] and
references therein for more details). In this section, we present
correlation functions produced in exactly the manner in which
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FIG. 2. (Color online) A low-probability multiplicity-30 event
calculated by GENBOD. Lines correspond to particle momenta
px, py, pz.

experimental ones are formed. GENBOD-generated events are
selected according to the returned event weight.

Ideally, then, any structure remaining in this ratio reflects
the correlation between particles in the same event. In the
present study, these correlations come from energy and
momentum conservation effects.

In this paper we will use the commonly used Bertsch-Pratt
(“out-side-long”) decomposition of the relative momentum �q
[33,34], where qo is parallel to the transverse total momentum
of the pair, ql is parallel to the beam direction, and qs is
perpendicular to those.

Usually the three-dimensional (3-D) correlation functions
are presented in one-dimensional (1-D) Cartesian projec-
tions (or slices) along these axes (e.g., qo) with the other
q-components (e.g., qs and ql) small. Such 1-D slices for
GENBOD calculations are presented on Fig. 3. At asymptotically
high relative momentum |�q|, femtoscopic contributions to
the correlation function (those described by the Koonin-Pratt
equation as discussed Ref. [6]) must approach a constant value,
usually normalized to unity, independent of the direction of
�q. Naturally, there are no femtoscopic correlations in these
events; correlations induced by the global conservation laws
are signaled by the nonunity value of the correlation function.
The correlation function depends on the direction of �q as well
as |�q|.

However, 1-D projections represent a set of zero measure
of the 3-D correlation function and are thus a poor tool for
exploring its detailed and potentially important structure. In
principle, one could visualize the full structure of the 3-D
correlation function via a series of Cartesian projections in qi

over different ranges in qj,k , where i �= j �= k. This would,
however, constitute a large number of figures, and relevant
patterns that cut across projections might not stand out.

By exploiting symmetries in �q-space, the spherical har-
monic decomposition (SHD)1 becomes a much more efficient
representation that uses all of the data to show the shape of the

1Danielewicz and Pratt have studied a similar decomposition of the
correlation function in terms of Cartesian harmonics [35,36].
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FIG. 3. (Color online) 1-D projections of 3-D correlation function
calculated in LCMS frame for multiplicity-9 event calculated by
GENBOD.

correlation function. Here, the spherical coordinates θ, φ, and
Q = |�q| relate to the Cartesian ones as

qo = Q sin θ cos φ, qs = Q sin θ sin φ,

ql = Q cos θ, (3)

and we define harmonic moments Al,m’s as

Al,m(Q) ≡ 1√
4π

∫
dφd(cos θ )C (Q, θ, φ) Yl,m (θ, φ) . (4)

Usually, experimentally measured correlation functions are not
continuous functions of Q, cos θ , and φ but are constructed
with bins of finite size. In this case, Eq. (4) needs modification
to account for finite-bin-size effects. For the experimental prac-
titioner, we discuss one way to deal with this in Appendix C.
For the remainder of this manuscript, we will assume these
binning effects have been dealt with; that is, we assume
negligible bin size in cos θ and φ.

Symmetry constrains the number of relevant components.
For femtoscopic analyses of identical particles at midrapidity
that integrate over reaction-plane orientation (i.e., almost all
analyses to date), only real parts of Al,m’s with even values of
l and m do not vanish. For the complete list of symmetries of
Al,m’s, see Appendix B. Further, it is natural to expect that the
statistical relevance of high-l components is diminished.
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FIG. 4. (Color online) Correlation function for the same data
presented in Fig. 3 shown at a fixed value of Q = 0.79 GeV/c

(approximately indicated by the shaded region in Fig. 3) as a function
of φ for five bins in cos(θ ). Curves represent the SHD components of
various orders; see text for more details.

As an example, Fig. 4 shows the calculated correlation
function (the same as shown in Fig. 3) for one value of Q as
a function of cos θ and φ. Also shown are curves representing
SHD with increasingly higher order components. In particular,
the curves correspond to

CL,M (Q, θ, φ) ≡
√

4π

(
L−2∑
l=0

l∑
m=−l

Al,m(Q)Y ∗
l,m(θ, φ)

+
M∑

m=−M

AL,m(Q)Y ∗
L,m(θ, φ)

)
. (5)

For example, the curve labeled as “L = 2 M = 0” contains
A0,0 (the constant term) and A2,0 components.

Clearly, for this example, only the first few components are
required to represent the structure of the correlation function.
Although a few higher l terms may be required in some cases,
the number of relevant Al,m’s is generically expected to be
small. This is from general considerations of smoothness and,
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FIG. 5. (Color online) SHD coefficients for GENBOD-generated
events consisting of 9 pions having average kinetic energy per particle
K̄ = 0.9 GeV, as measured in the pair LCMS frame. No kinematic
cuts were applied to the data. Green squares are Al,m’s from the
GENBOD events. Red solid lines are the SHD coefficients of Eq. (24)
for k = 2. Black dotted, red dot-dash-dotted, and blue dash-dotted
lines are SHD coefficients of the first, second, and third terms,
respectively, of the right side of Eq. (25). Black dashed lines are
SHD coefficients of the right side of Eq. (25).

for experimental data, statistical issues. Thus, by glancing
at only a few one-dimensional plots, one views the entire
correlation structure in orthogonal components. The number
of plots is usually reduced further by symmetry constraints
(cf. Appendix B).

As an example, the first few Al,m’s for the same GENBOD

calculations presented in this section are plotted as a function
of Q in Fig. 5. The odd-l and odd-m moments (not shown)
vanish as required by symmetry (cf. Appendix B).

IV. EMCICS FROM GENBOD

In this section, we briefly discuss factors that affect the Al,m

moments, using Figs. 5–10. For the present, we focus only on
the green squares, labeled “CF (GenBod),” in those figures.

Figures 5, 6, and 7 show the Al,m’s calculated in the
longitudinally co-moving system (LCMS) frame [6] from
GENBOD events that have the same average kinetic energy per
particle (K̄ = 0.9 GeV) but different multiplicity. As expected,
the strength of the EMCICs decreases with event multiplicity.
Similarly, for a given event multiplicity, one expects larger
EMCICs when there is less available energy. As shown in
Figs. 6 and 8 for multiplicity-18 events, this is indeed the case.

Since the definition of the “out,” “side,” and “long”
directions—and thus the angles θ and φ—depend on the
frame of measurement, one expects the spherical harmonic
coefficients Al,m to depend on reference frame. This is shown
in Figs. 6 and 9 for correlations measured in LCMS and pair
center of mass (CMS) frames.
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FIG. 6. (Color online) SHD coefficients for GENBOD-generated
events consisting of 18 pions having average kinetic energy per
particle K̄ = 0.9 GeV, as measured in the pair LCMS frame. No
kinematic cuts were applied to the data. Green squares are Al,m’s
from the GENBOD events. Red solid lines are the SHD coefficients
of Eq. (24) for k = 2. Black dotted, red dot-dash-dotted, and blue
dash-dotted lines are SHD coefficients of the first, second, and third
terms, respectively, of the right side of Eq. (25). Black dashed lines
are SHD coefficients of the right side of Eq. (25).
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FIG. 7. (Color online) SHD coefficients for GENBOD-generated
events consisting of 6 pions having average kinetic energy per particle
K̄ = 0.9 GeV, as measured in the pair LCMS frame. No kinematic
cuts were applied to the data. Green squares are Al,m’s from the
GENBOD events. Red solid lines are the SHD coefficients of Eq. (24)
for k = 2. Black dotted, red dot-dash-dotted, and blue dash-dotted
lines are SHD coefficients of the first, second, and third terms,
respectively, of the right side of Eq. (25). Black dashed lines are
SHD coefficients of the right side of Eq. (25).
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FIG. 8. (Color online) SHD coefficients for GENBOD-generated
events consisting of 18 pions having average kinetic energy per
particle K̄ = 0.5 GeV, as measured in the pair LCMS frame. No
kinematic cuts were applied to the data. Green squares are Al,m’s
from the GENBOD events. Red solid lines are the SHD coefficients
of Eq. (24) for k = 2. Black dotted, red dot-dash-dotted, and blue
dash-dotted lines are SHD coefficients of the first, second, and third
terms, respectively, of the right side of Eq. (25). Black dashed lines
are SHD coefficients of the right side of Eq. (25).

Less intuitive is the observation that the correlation strength
depends also on kinematic cuts. Figures 9 and 10 show the
Al,m’s calculated by GENBOD for 18-pion events without and
with a selection of |η| < 0.5, respectively. (Note that this cut
applies to the pions that are used in the analysis, not to the
set of particles for which energy and momentum is conserved;
energy and momentum is always conserved for the full event.)

Finally, we note two important and generic effects. First,
EMCICs are present at all values of | �Q|, reminding us that
we cannot (responsibly) ignore these effects in a femtoscopic
analysis. Second, in Figs. 9 and 10, we have included Al,m

components up to l = 4. Typically, |Al+2,m/Al,m| ∼ 0.1, an-
other reminder that characterization of the three-dimensional
correlation function requires only a few harmonic components.

V. ANALYTIC CALCULATION OF EMCICS

Even if EMCIC effects generated by GENBOD “resemble”
the experimental data, it is likely unwise to use GENBOD

itself to correct the data for several reasons. First, there is
strong sensitivity to the (not completely measured) number
and species mix of all particles emitted in the event, including
neutrinos and possible magnetic monopoles (or, less exotically,
particles escaping detector acceptance). Second, there is strong
sensitivity to the energy “available” in the event; it is not
obvious that this is

√
sNN of the collision. Third, EMCIC

effects depend on the individual momenta �p1 and �p2 of the
particles entering the correlation function. This will depend
on acceptance, efficiency, kinematic cuts, and, to a degree, the
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FIG. 9. (Color online) SHD coefficients for GENBOD-generated
events consisting of 18 pions having average kinetic energy per
particle K̄ = 0.9 GeV, as measured in the pair CMS frame. No
kinematic cuts were applied to the data. Green squares are Al,m’s
from the GENBOD events. Red solid lines are the SHD coefficients
of Eq. (24) for k = 2. Black dotted, red dot-dash-dotted, and blue
dash-dotted lines are SHD coefficients of the first, second, and third
terms, respectively, of the right side of Eq. (25). Black dashed lines
are SHD coefficients of the right side of Eq. (25).

underlying single-particle phase space. (Whereas correlation
functions are insensitive to the single-particle phase space, the
correlations they measure may, in fact, depend on this phase
space, owing to physical effects.)

Thus, one would like to calculate EMCICs based on the data
themselves. In this section, we begin by following arguments
similar to those in Refs. [37–39] to obtain correction factors
that implement EMCICs onto multiparticle distributions. In
the course of the calculation, we make some simplifying
approximations. The derived expressions are then tested for
accuracy against the numerical GENBOD simulations. Finally,
the expressions are used to extract an “experimentalist’s
formula” discussed in the next section.

A. Restricted phase-space corrections

Danielewicz [37], and later Borghini, Dinh, and
Ollitrault [38], considered EMCIC-type effects on two-particle
azimuthal correlations (quantified by v2 and often used as
a measure of elliptic flow [5]). They focused mostly on
transverse momentum ( �PT ) conservation only, but Borghini
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FIG. 10. (Color online) SHD coefficients for GENBOD-generated
events consisting of 18 pions having average kinetic energy per
particle K̄ = 0.9 GeV, as measured in the pair CMS frame. Only
particles with |η| < 0.5 are used in the correlation function. Green
squares are Al,m’s from the GENBOD events. Red solid lines are
the SHD coefficients of Eq. (24) for k = 2. Black dotted, red
dot-dash-dotted, and blue dash-dotted lines are SHD coefficients of
the first, second, and third terms, respectively, of the right side of
Eq. (25). Black dashed lines are SHD coefficients of the right side
of Eq. (25).

later [39] generalized to the case of an arbitrary number
of independent (orthogonal) spatial dimensions and recently
considered momentum conservation effects on three-particle
analyses of jetlike behavior [40].

As we shall see in the following, for correlation functions
used in femtoscopy, conservation of energy generates effects
of similar magnitude to those from conservation of (three-)
momentum. We deal only with on-shell particles, for which
energy cannot be treated as independent of the momentum (as,
say, px would be largely independent of py). Thus, unlike the
aforementioned works, we will explicitly begin with the more
general multivariate central limit theorem.

We start with the case of interest—D = 3 spatial
dimensions—and conserve three-momentum �p. We imple-
ment energy conservation and on-shell constraints a bit later.

We define2

f ( �pi) ≡ d3N

d �p3
i

(6)

as the single-particle momentum distribution unaffected by
EMCICs. This may be considered the unmeasured “parent”
distribution. Then, the k-particle distribution (k less than the
total multiplicity N ) including EMCICs is

fc ( �p1, . . . , �pk)

=
(

k∏
i=1

f ( �pi)

) ∫ (∏N
j=k+1 d3 �pjf ( �pj )

)
δ3
(∑N

i=1 �pi

)
∫ (∏N

j=1 d3 �pjf ( �pj )
)

δ3
(∑N

i=1 �pi

) .

(7)

Note the difference between numerator and denominator in the
starting value of the index j on the product.

We implement total energy conservation
∑

Ei = √
s, by

replacing δ3(
∑N

i=1 �pi) → δ4(
∑N

i=1 pi − P ) in Eq. (7). Here,
P = (

√
s, �0) is the total energy-momentum of the event, and

p0,i = Ei =
√

�p2
i + m2

i is the energy of the on-shell particle.
We denote Lorentz-invariant distributions as

f̃ (pi) ≡ 2Ei

d3N

d �p3
i

= 2Eif (pi) (8)

and rewrite Eq. (7) as

2Our use of symbols f and fc follows the convention used in
Ref. [38], which is significantly different than (if unfortunately similar
looking to) that used in Refs. [39] and [40].

f̃c (p1, . . . , pk) =
(

k∏
i=1

f̃ (pi)

) ∫ (∏N

j=k+1
d3 �pj

Ej
f̃ ( �pj )

)
δ4
(∑N

i=1 pi − P
)

∫ (∏N

j=1
d3 �pj

Ej
f̃ ( �pj )

)
δ4
(∑N

i=1 pi − P
)

=
(

k∏
i=1

f̃ (pi)

) ∫ (∏N

j=k+1 d4pjδ
(
p2

j − m2
j

)
f̃ (pj )

)
δ4
(∑N

i=1 pi − P
)

∫ (∏N

j=1 d4pjδ
(
p2

j − m2
j

)
f̃ (pj )

)
δ4
(∑N

i=1 pi − P
)

=
(

k∏
i=1

f̃ (pi)

) ∫ (∏N

j=k+1 d4pjg(pj )
)

δ4
(∑N

i=1 pi − P
)

∫ (∏N

j=1 d4pjg(pj )
)

δ4
(∑N

i=1 pi − P
) . (9)
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Thus, we arrive at an integral over four independent variables,
in which the integrand function g(p) is “highly peaked” and
with strong correlations in the 4-D p-space.

According to Eq. (9), the k-body momentum distribution,
including EMCICs, is the k-body distribution not affected
by EMCICs (i.e., just an uncorrelated product of single-
particle distributions) multiplied by a “correction factor,”
which enforces the EMCIC. The numerator of this factor
counts the number of configurations in which the remaining
N − k on-shell particles conspire to conserve total energy and
momentum, and the denominator normalizes the distribution.

B. Application of the central limit theorem

To arrive at a useful result, we argue along lines similar to
those of Refs. [37–39]. The distribution of a large number M

of uncorrelated momenta W = ∑M
i=1 pi is, by the central limit

theorem (CLT), a multivariate normal distribution

FM (W )

≡
∫ (

M∏
i=1

d4pig(pi)

)
δ4

(
M∑
i=1

pi − W

)

=
√

|B|
(2π )4 exp

(
−1

2
(Wµ − 〈P µ〉) Bµν (Wν − 〈P ν〉)

)
.

(10)

Here, the average of the sum of four-momenta is simply related
to the single-particle average of the four-momenta as

〈P µ〉 =
M∑
i=1

〈
p

µ

i

〉 = M
〈
p

µ

i

〉
, (11)

where

〈pn
µ〉 ≡

∫
d4pg(p) · pn

µ∫
d4pg(p)

,

(12)

〈pµpν〉 ≡
∫

d4pg(p)pµpν∫
d4pg(p)

.

Finally, in Eq. (10), |B| denotes the determinant of the matrix
B. Up to a factor of M,B is the inverse of the covariance
matrix of the distribution g(p):

Bµν = 1

M
bµν, (13)

(b−1)µν = 〈pµpν〉 − 〈pµ〉〈pν〉. (14)

We can now apply the CLT by recognizing the integral in
the numerator in Eq. (9) as the distribution of N − k momenta∑N

j=k+1 pj = P −∑k
j=1 pj so that for “large enough” N − k,

we find

f̃c (p1, . . . , pk)

=
(

k∏
i=1

f̃ (pi)

)
FN−k

(
P −∑k

i=1 pi

)
FN (P )

=
(

k∏
i=1

f̃ (pi)

)
·
(

N

N − k

)2

exp

[
−
(

k∑
i=1

(
p

µ

i − 〈pµ〉)
)

× bµν

2 (N − k)

(
k∑

i=1

(
pν

i − 〈pν〉)
)]

. (15)

It is appropriate at this point to repeat the two approximations
we have employed up to now. The first assumption, always
important in using the CLT, is that N − k is sufficiently large;
recall that N is the total multiplicity and k is the order
of the correlation being calculated (k = 2 for two-particle
correlations). Second, we have implicitly assumed that all
particles in the system are governed by the same single-particle
distribution g(p). Strictly speaking, then, the system must
consist of particles all of the same mass, and if there are
several species with the same mass (say, π− and π+), they
must furthermore have the same momentum distribution. This
is at best an approximation for hadron or ion collisions, in
which other particles contribute to the pion-dominated final
state.

C. Observable EMCIC effects

Even the single-particle momentum distribution is affected
by EMCICs:

f̃c (pi)

= f̃ (pi) ·
(

N

N − 1

)2

× exp

[
− (pµ − 〈pµ〉) bµν

2 (N − k)
(pν − 〈pν〉)

]
. (16)

The product of such a single-particle distribution forms the
denominator of the k-particle correlation function

C
(
p1, . . . , pk

)
≡ f̃c

(
p1, . . . , pk

)
f̃c (p1) · · · f̃c (pk)

=
(

N
N−k

)2

(
N

N−1

)2k

×
exp

[
−1

2(N−k)

∑k
i,j=1

(
p

µ

i − 〈pµ〉)bµν

(
pν

j − 〈pν〉)]
exp

[
−1

2(N−1)

∑k
i=1

(
p

µ

i − 〈pµ〉)bµν

(
pν

i − 〈pν〉)] .

(17)

In this paper we concentrate on correlation functions in
qout, qside and qlong, as is done in femtoscopic studies. However,
the two-particle correlation function in relative azimuthal
angle, which probes elliptic flow, may also contain EMCIC
contributions through Eq. (17). These effects turn out to be
small and are discussed in Appendix A.

To first order in 1/N , the two-particle correlation function
becomes

C(p1, p2) = 1 − 1

N

(
p

µ

1 − 〈pµ〉)bµν

(
pν

2 − 〈pν〉). (18)

The multivariate CLT used in Sec. V B accounts for
correlations between vector components via the covariance
matrix b−1 [Eq. (14)], which has, in general, 10 nonvanishing
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elements. The average vector P [Eq. (11)] has in general
four nonvanishing elements. We now reduce these numbers
significantly by considering the specific case of our interest.

First, we choose to work in the global center-of-momentum
frame, so that

〈pµ〉 = δµ,0〈E〉. (19)

For the correlations, we are interested in signals generated
by EMCICs alone, not, for example, dynamical correla-
tions resulting from flow. Neglecting elliptic flow (azimuthal
anisotropies in the parent distribution [5,41]) implies

(b−1)1,2 = 〈pxpy〉 = 0. (20)

The same approach was adopted in earlier work [37,38,40].
Similarly, we assume no dynamical correlations from directed
flow [41], implying

(b−1)1,3 = (
b−1

)
2,3 = 0. (21)

The on-shell constraint generates an unavoidable depen-
dence between energy and three-momentum components.
However, in the CLT limit, only the second moment (covari-
ance) comes into play, and this vanishes. For i �= 0,

(b−1)0,i = 〈Epi〉 − 〈E〉〈pi〉 = 〈Epi〉

=
∫

dE
∫

d3 �p · Eg (p) · pi∫
dE

∫
d3 �p · g (p)

= 0. (22)

In the last step, we recognize that pi is an odd function of
momentum, whereas E and g are even.

In this scenario of interest, then, b is diagonal, and Eq. (16)
becomes

f̃c (pi) = f̃ (pi) ·
(

N

N − 1

)2

exp

[
− 1

2(N − 1)

×
(

p2
i,x〈

p2
x

〉 + p2
i,y〈

p2
y

〉 + p2
i,z〈

p2
z

〉 + (Ei − 〈E〉)2

〈E2〉 − 〈E〉2

)]
. (23)

Similarly, Eq. (17) becomes

C(p1, . . . , pk)

≡ f̃c(p1, . . . , pk)

f̃c(p1) · · · f̃c(pk)
=

(
N

N−k

)2

(
N

N−1

)2k

×
exp

[
−1

2(N−k)

{∑3
µ=1

((∑k
i=1 p2

i,µ

)2〈
p2

µ

〉
)

+
(∑k

1(Ei−〈E〉)
)2

〈E2〉−〈E〉2

}]

exp

[
−1

2(N−1)

∑k
i=1

{∑3
µ=1

p2
i,µ〈

p2
µ

〉 + (Ei−〈E〉)2

〈E2〉−〈E〉2

}]
(24)

and Eq. (18) becomes

C(p1, p2) = 1 − 1

N

(
2

�p1,T · �p2,T〈
p2

T

〉 + p1,z · p2,z〈
p2

z

〉
+ (E1 − 〈E〉) (E2 − 〈E〉)

〈E2〉 − 〈E〉2

)
, (25)

where we have taken 〈p2
x〉 = 〈p2

y〉 = 〈p2
T 〉/2 in the azimuthally

symmetric case of interest. In what follows and in Figs. 5–10,
we shall refer to the first, second, and third terms within
the parentheses of Eq. (25) as the “pT ,” “pz,” and “E”
components, respectively.

If we somehow know N, 〈p2
T 〉, 〈p2

z 〉, 〈E2〉, and 〈E〉, we
can calculate EMCICs using Eq. (24). (See, however, the
discussion at the start of the next section.) Better yet, if N

is large enough, then we can use Eq. (25). This is what is done
in Figs. 5–10. The open circles and orange inverted triangles
represent the results of Eq. (24) and Eq. (25), respectively. The
black circles, blue stars, and red triangles show the individual
components of Eq. (25); this decomposition will be relevant
when we discuss the “experimentalist’s formula” in the next
section.

Figures 5–10 make clear that each of the three terms in
Eq. (25) produces nontrivial behavior of the Al,m’s. Also clear
is the importance of not neglecting the energy term. We find
also that the pz term affects A2,2; this may be surprising
since A2,2 quantifies the behavior of the correlation function
in the “out-side” plane, whereas ẑ is the “long” direction in
the Bertsch-Pratt system. Clearly, EMCICs projected onto a
two-particle space are nontrivial objects.

The first-order expansion [Eq. (25)] agrees well with the
full expression [Eq. (24)] for N >∼ 10. Such multiplicities are
relevant for p + p measurements at RHIC (where we recall
that N includes all particles, even unmeasured ones). We see
also that the analytic calculations (open circles and inverted
triangles) approximate the results of the GENBOD simulation
(green squares), especially as the multiplicity and total energy
of the event increases; increasing agreement for large N and
Etot is expected, given the approximations leading to our
analytic expressions. We observe also that the analytically
calculated expressions respond identically to the kinematic
cuts as does the simulation (cf. Figs. 9 and 10).

Finally, the analytic calculations never reproduce exactly
the simulations; we discuss this further in the next section.

VI. AN EXPERIMENTALIST’S FORMULA

Even for large N and energy, the calculations do not
exactly reproduce the EMCIC effects in the simulation. One
reason for this may be found, in fact, in the definition
of the average values (e.g., 〈p2

z 〉) themselves. In Eq. (12),
average quantities are calculated by using the distribution
f̃ (p), which is not affected by EMCICs. Naturally, the only
measurable distribution available to the experimentalist (even
when GENBOD simulations serve as the “experiment”) is f̃c(p).

Thus, it appears that experimentalists cannot plug their data
into Eqs. (12) and (25) to fully calculate EMCICs. However,
such an ambition would have been hopeless anyhow. After all,
even the total multiplicity N (again, including photons, etc.)
is rarely fully measured, and in principle N is a number of
“primary” particles, a murky concept in itself.

To the practicing femtoscopist, there is a natural solution.
Having at hand (1) educated guesses for the quantities N, 〈E2〉,
etc. and (2) a physically motivated functional form that
connects these quantities to the correlations, one may perform
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a fit. Let us rewrite Eq. (25) as

C(p1, p2) = 1 − M1 · { �p1,T · �p2,T } − M2 · {p1,z · p2,z}

−M3 · {E1 · E2} + M4 · {E1 + E2} − M2
4

M3
,

(26)

where

M1 ≡ 2

N
〈
p2

T

〉 , M2 ≡ 1

N
〈
p2

z

〉 ,
(27)

M3 ≡ 1

N (〈E2〉 − 〈E〉2)
, M4 ≡ 〈E〉

N (〈E2〉 − 〈E〉2)
.

The notation {X} in Eq. (26) highlights the fact that X

is a two-particle quantity that depends on p1 and p2 (or �q,
etc.). From a practical point of view, X will be averaged
over the same �q bins as used for the correlation function. For
infinitesimally narrow q bins, {X} = X. The binned functions
{X} then automatically reflect the same event and particle
selection as the correlation function. This involves nothing
more than adding four more histograms to the several already
being constructed by the experimentalist in processing pairs
in the data.

Here, we should emphasize that, in Eq. (26), �p1, E1, �p2, and
E2 should be calculated in the collision center-of-momentum
(CCM) frame. The reason is that Eq. (9) [hence Eqs. (10)–
(27)] assumes some fixed total energy and momentum to be
conserved. The event’s total energy and momentum [hence
〈E〉, 〈 �p〉, etc. appearing in Eqs. (10)–(27)] are fixed quantities
in any given frame. In a pair-dependent frame (e.g., LCMS),
the total energy and momentum of the event will fluctuate,
pair-by-pair. Thus, although the correlation function may be
binned in whatever frame one chooses, the momenta p

µ

i on
the right side of Eqs. (9)–(27) must be calculated in a pair-
independent frame. In fact, starting with Eq. (19), we have
chosen the CCM, for simplicity.

The parameters Mi defined in Eq. (27), however, are global
and independent of p1 and p2. It is these which we will use
as fit parameters. The task is then fast and straightforward;
the EMCIC part of the correlation function C(�q) is simply a
weighted sum of four functions. Indeed, one may calculate
coefficients as in Eq. (4) for the four new functions. For
example,

A
pZ

l,m(Q) ≡
∑
bins i

{p1,z · p2,z}(Q, cos θi, φi) · Yl,m(cos θi, φi),

(28)

etc. Then, because of the linearity of Eq. (26) and the
orthonormality of the Yl,m’s, the measured Al,m’s themselves
are similarly just weighted sums of harmonics,

Al,m(Q) = δl,0 · (1 − M2
4

/
M3

)− M1 · A
pT

l,m(Q)

−M2 · A
pZ

l,m(Q) − M3 · A
(E·E)
l,m (Q)

+M4 · A
(E+E)
l,m (Q). (29)

Treating Eq. (29) as a fit, we have a few (say six, for l � 4)
one-dimensional functions to fit with four adjustable weights.
The number of degrees of freedom in this four-parameter fit
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FIG. 11. (Color online) Green inverted triangles show the π -π−

correlation function, in the pair rest frame, from 18-pion GENBOD-
generated events. The black curve is a result of a fit with the
“experimentalist’s formula” from Eq. (29). Other curves represent the
three component terms of the fit: M1 · A

pT

l,m(Q) in the brown dotted
line; M2 · A

pZ

l,m(Q) in the blue dashed line; and M3 · AE·E
l,m (Q) + M4 ·

AE+E
l,m (Q) in the red dash-dot line. See text for details.

remains high: ∼ 300, for six Al,m’s, each with 50 bins in
|Q|.

An example is shown in Fig. 11, where GENBOD-calculated
correlation functions are fitted with the form of Eq. (29).
Not surprisingly, the minimization procedure returned fit
parameters Mi very close to the values calculated via
Eq. (27). However, exact agreement between the “best”
parameter values returned by the fit and those from Eq. (27)
is not expected. This is because the large-N approximation
is only approximately valid and because f̃ (p) �= f̃c(p), as
discussed previously. Treating the Mi as adjustable parameters
leads to a slightly different weighting of the terms and a slightly
better fit to the data.

Our original goal was not to understand EMCICs per se,
but to extract the femtoscopic information from measured two-
particle correlations. Assuming that the only nonfemtoscopic
correlations are EMCICs, one may simply add the femtoscopic
terms �femto(p1, p2) to the fitting function in Eq. (26) or (29):

C(p1, p2) = �femto(p1, p2)

×
(

1 − M1 · { �p1,T · �p2,T } − M2 · {p1,z · p2,z}
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−M3 · {E1 · E2} + M4 · {E1 + E2} − M2
4

M3

)
.

(30)

Common femtoscopic fitting functions (e.g., Gaussian in
the out-side-long space) usually contain ∼five parameters
(e.g., N, λ,Ri, i = o, s, l). In the imaging technique [42], one
assumes the separation distribution is described by a sum of
splines, rather than a Gaussian; here, too, there are usually
four or five fit parameters (spline weights). So, by including
EMCIC effects, we have roughly doubled the number of fit
parameters, relative to a “traditional” fit, which ignores them.
This is a nontrivial increase in analysis complexity. However,
we keep in mind two points.

First, the increased effort is simply necessary. EMCICs
(and possibly other important nonfemtoscopic correlations)
are present and increasingly relevant at low multiplicity. One
option is to ignore them, as has sometimes been done in early
high-energy experiments. However, with the new high-quality
data and desire for detailed understanding at RHIC, ignoring
obvious features such as those presented in Ref. [43] is clearly
unacceptable. Perhaps a slightly better option is to invent an
ad hoc functional form [25] without a strong real physical
basis. We hope that the results here present a relatively painless
and more reasonable third option.

Second, whereas the nonfemtoscopic EMCICs are not
confined to the large-Q region (an important point!), the
femtoscopic correlations are confined to the small-Q region.
Therefore, one hopes that the addition of four new parameters
to the fit of the correlation function will not render the
fit overly unwieldy. Although we cannot expect complete
block-diagonalization of the fit covariance matrix, one hopes
that the Mi are determined well enough at high Q that the
femtoscopic fit parameters can be extracted at low Q.

VII. NONIDENTICAL PARTICLE CORRELATIONS

For at least two reasons, it is important to turn attention to
correlations between nonidentical particles.

First, it is natural to ask whether one can use other particle
combinations to “correct” for effects of EMCICs in, say,
identical-pion correlation functions. After all, EMCICs are
induced by global constraints on the entire event, not a
specific particle species. For example, various experiments
have explored using (π+, π−) correlations to account for
EMCICs in (π+, π+) correlation functions [44–46].

Second, it is also important to know whether EMCICs could
cloud the interpretation of correlations between nonidentical
particles. It is increasingly common to study asymmetries in
the correlation functions of, say π -K pairs [47], interpreting
such as a “shift” in the average point of emission between the
two particles [48]. In the spherical harmonic decomposition,
such shifts appear in the l = 1 moments (cf. Appendix B). We
will find that EMCICs can indeed generate an asymmetry that
might naively be considered proof of a femtoscopic shift.

Here we discuss two effects—one immediately obvious
and one more subtle—that are relevant to these issues. The
discussion is broken into three parts. Neglecting EMCICs and

any other source of correlation at first, we briefly show the
effects of two common resonances on correlations between
oppositely charged pions in a toy model. Thus calibrated, we
use the more realistic and complex PYTHIA model to illustrate
a nontrivial interplay between EMCICs and the resonances,
which can mock up a femtoscopic asymmetry signal. Finally,
we return to a toy model—now with nonidentical particles and
EMCICs, but without resonances or the several other sources of
correlation present in PYTHIA—to make clear the mechanism
behind the special effects EMCICs have on nonidentical
particle correlations.

A. Effect of resonances

First we consider the effect of resonances. To focus on
effects other than global EMCICs we use a toy model in
which only 10 identical resonances per event are generated
but no other particles are produced. The momentum of each
resonance is generated from a thermal distribution; energy and
momentum are conserved for each decay separately, but not
globally for the whole event.

Figure 12 shows the spherical harmonic moments of
(π+, π−) correlation functions for events including ω (blue
squares) and ρ resonances (red triangles).

As seen, even without considering EMCICs, the correla-
tions among particles coming from resonance decays produce
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FIG. 12. (Color online) (π+, π−) correlation functions calculated
in the LCMS frame for events including ω (blue squares) and ρ (red
triangles) resonances.
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ZBIGNIEW CHAJĘCKI AND MIKE LISA PHYSICAL REVIEW C 78, 064903 (2008)

nontrivial structure. In this case, one cannot simply divide
the (π+, π+) correlation function by (π+, π−) to “remove”
EMCICs.

B. Entrance channel asymmetries

In addition to the correlation between daughters of res-
onance decays (cf. Fig. 12), there is a more subtle effect
to consider. This happens when the two particles have
different inclusive momentum distributions and energy and
momentum are globally conserved. Under these conditions
nonidentical particle correlations exhibit structure absent in
identical particle correlations.

Figure 13 shows PYTHIA [49] calculations of (π+, π−)
correlations for p + p and p + p̄ collisions at 200 GeV.
In addition to obvious correlations between daughters of
resonance decays (K0

s , ω, ρ), we see additional structure. We
focus on the structure in the l = 1 moments. In general, such
moments need not vanish for correlations of nonidentical
particles, as discussed in Appendix B.

Correlations between sibling daughters of ρ and ω res-
onance decay do not generate l = 1 moments, as seen in
Sec. VII A. However, pions that are daughters of these decays
will in general have a different single-particle momentum
distribution than pions from other sources in the event. If
the fraction of pions from resonance decay, as a function
of pion momentum, is different for π+ and π−, then the
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FIG. 13. (Color online) SHD moments of (π+, π−) correlation
function from p + p and p + p̄ collisions at 200 GeV calculated
from PYTHIA events.

single-particle distributions of positive and negative pions
will be different. We argue in the following that it is this
difference in single-particle distributions that is the key to the
nonvanishing l = 1 moments; that this difference may arise
from resonances in the case at hand is irrelevant.

In the p + p̄ collisions, the fraction of π+ coming from any
given source (e.g., ρ decay) must be identical to that of π−,
for a given value of pT . Thus the pT distribution of π− must
be identical to that of π+. However, the rapidity distributions
will be mirror images of each other. Thus, any asymmetry in
π -π+ correlations from p + p̄ collisions will be associated
with qlong and will appear in A1,0, as seen in Fig. 13. Similarly,
the vanishing (nonvanishing) moment A1,0(A1,1) for p + p

collisions reflects the fact the single-particle distributions will
show no asymmetry in rapidity but may differ as a function
of pT .

Since single-particle distributions divide out of a correlation
function, a difference between π+ and π− momentum distri-
butions, by itself, cannot generate a signal in Al,m’s. Rather, a
global correlation, coupled with this difference, generates the
signal. We discuss this further in the following.

C. A simpler case

In Sec. VII B, we argued that the small difference in
single-particle momentum distributions between positive and
negative pions produced by PYTHIA, coupled with global
conservation laws, generated nontrivial EMCICs in the non-
identical particle correlations. However, PYTHIA contains
many non-EMCIC sources of correlations, related to string
fragmentation and other processes, that might be flavor or
isospin dependent. To make clearer our argument, we here
show a simple GENBOD simulation, containing both pions
and protons, but no explicit correlations between them such
as a � resonance. Owing at least to their different masses,
f̃proton �= f̃pion is guaranteed.

Figures 14 shows the π -p correlation function. Since the
underlying single-particle proton and pion distributions are
isotropic, A1,0 [sensitive to shape elongation in C(�q) in ql

relative to transverse components] is expected to vanish. A1,1

is finite, however, owing to differences in pT distributions.
Since there is no other source of correlation in the simulation,
this obviously is an EMCIC.

From Fig. 14 it is also clear that neither Eq. (24) nor its
first-order expansion [Eq. (25)] fully describes the correlation
function. This is because our formalism is built on the
assumption that all particles in the system follow the same
parent distribution, as pointed out after Eq. (12).

VIII. SUMMARY

To truly claim an understanding of the bulk nature of
matter at RHIC and the LHC, a detailed picture of the
dynamically generated geometric substructure of the system
created in heavy-ion collisions is needed. It is believed that
this substructure, and the matter itself, is dominated by strong
collective flow. The most direct measure of this flow is a mea-
surement of the space-momentum correlation [e.g., R(mT )] it
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FIG. 14. (Color online) Green squares show the π -p correlation
function, in the pair rest frame, from GENBOD-generated events. Red
solid lines are the SHD coefficients of Eq. (24) for k = 2. Black
dotted, red dot-dash-dotted, and blue dash-dotted lines are SHD
coefficients of the first, second, and third terms, respectively, of the
right side of Eq. (25). Black dashed lines are SHD coefficients of the
right side of Eq. (25).

generates. The physics of this large system, and the signals
it generates, should be compared to the physics dominating
p + p collisions, as is increasingly important in high-pT

studies at RHIC. For small systems, however, nonfemtoscopic
effects contribute significantly to the correlation function,
clouding the extraction and interpretation of femtoscopic ones.

We have discussed a spherical harmonic representation of
the correlation function that clearly separates components of
the three-dimensional shape measured in modern experiments.
This representation is maximally efficient, inasmuch as only a
few 1-Dl plots need be examined to extract full 3-D shape
information. The relevant number of such plots is further
reduced from symmetry conditions, discussed in detail in
Appendix B.

EMCICs, correlations generated by kinematic conservation
laws, are surely present and increasingly relevant as the event
multiplicity is reduced. Using the code GENBOD to study
correlation functions solely driven by EMCICs, we found
highly nontrivial 3-D structures strongly influenced by event
characteristics (multiplicity and energy) and kinematic particle
selection.

We extended the work of Danielewicz, Ollitrault, and
Borghini to include four-momentum conservation and applied
it to correlation functions commonly used in femtoscopy.

We found structures associated individually with the conser-
vation of the four-momentum components, which interfere
in nontrivial ways. Comparison of the analytic EMCIC
calculations with the GENBOD simulation gave confidence
that the approximations (e.g., “large” multiplicity N ) entering
into the calculation were sufficiently valid, at least for the
multiplicities considered here. We further showed that the full
EMCIC calculation can safely be replaced with a first-order
expansion in 1/N .

Based on this first-order expansion, we developed a prac-
tical, straightforward “experimentalist’s formula” to generate
histograms from the data that are later used in a generalized fit
to the measured correlation function, including EMCICs and
femtoscopic correlations. The degree to which this functional
form fully describes measured experimental correlation func-
tions has not been discussed and will need exploration on a
case-by-case basis.

There is strong interest in correlations between nonidentical
particles, for two reasons. First, sometimes π -π− correlations
are divided by π+-π− correlations in an attempt to “divide
out” EMCICs. (In such a procedure, resonance regions are
avoided, naturally.) We discussed potential problems with
such an approach, related to entrance-channel asymmetries
coupled with EMCICs. Secondly, 3-D asymmetries (some-
times quantified as “double ratios”; e.g., see Ref. [47]) in the
correlation function for different-mass particles (e.g., π -K) are
often interpreted in terms of dynamically generated differences
in the average space-time emission point between the two
particles. Using a very simple example, we discussed that
EMCICs might significantly cloud such an interpretation.

The huge systematics of results and interest in femtoscopy
in heavy-ion collisions is renewing similar interest in the
space-time signals from p + p collisions. Direct comparisons
between the two systems are now possible at RHIC and have
already produced intriguing preliminary results. Very soon,
p + p collisions will be measured in the LHC experiments,
and the heavy-ion experimentalists will be eager to apply
their tools. The femtoscopic tool is one of the best in the
box—so long as we keep it sufficiently calibrated with respect
to nonfemtoscopic effects increasingly relevant in small
systems.
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APPENDIX A: EMCIC EFFECTS ON v2

Since EMCICs can produce a structure in the correlation
function even in the absence of femtoscopic correlations, it
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FIG. 15. (Color online) v2(pT ) for different event multiplicities.
See text for details.

is worthwhile to check analytically and then confirm with
simulations whether v2—a common measure of collective
elliptic flow [5]—may be affected by EMCICs.

When calculating flow from two-particle correlations we
have the following relations:∫

cos(m�φ) cos(n�φ)d�φ = δm,nπ, (A1)

where for v2, n = 2.
This means that in the absence of flow all EMCIC terms

vanish except for the ones that exhibit cos(2�φ) dependence
of �φ. For example, in the first-order expansion of EMCICs
[see Eq. (24)] there is a term �pT,1 �pT,1 ∼ cos(�φ). This term
gives no contribution to v2, nor do any other terms from 1/N

expansion. The first term that gives a nonzero contribution
to v2 [which means goes like cos(2�φ)] is the second-order
expansion term in �pT , which is proportional to ( �pT,1 �pT,1)2 ∼
cos2(�φ) ∼ cos(2�φ). This term (as well as a few other
terms in higher order 1/N expansions) will give a nonzero
contribution to v2. In our GENBOD simulations we do not have
a flow so we can study the magnitude of the EMCIC effects on
v2 measurements. Such results are presented in Fig. 15, where
we plot v2 versus pT for three different event multiplicities
while the free kinetic energy per particle is fixed (K̄ =
0.9 GeV).

As seen, the magnitude of a nonflow contribution to
v2 from EMCICs is getting smaller with increasing mul-
tiplicity and even for low-multiplicity events the magni-
tude is of order of a few per mile for large pT . From
this dependence we can predict that this effect will be
so small in heavy-ion collisions that it can be simply
neglected.

APPENDIX B: SYMMETRY CONSIDERATIONS

The spherical harmonic decomposition representation, in
which three-dimensional correlation functions are represented

by several one-dimensional moments, Al,m, efficiently con-
denses the shape information. A much greater increase in
efficiency comes, however, with the realization that many
Al,m’s must vanish by symmetry, depending on the cuts and
conditions of the analysis. Besides reducing information by
significant factors, this realization also provides diagnostic
power—nonphysical artifacts often appear in Al,m’s that do
not vanish when they should. Digging out such effects in
the traditional 3-D Cartesian representation can be quite
difficult.

In the most general case, the 3-D correlation function may
have any shape, with no symmetry constraints. In this case,
none of the Al,m’s need vanish. Usually, however, an analysis
is less than fully general, and symmetry consequences then
arise.

In particular, we will consider four common conditions used
in practice:

(i) One measures correlations between identical particles.
(ii) The measurement covers a symmetric rapidity region

about y = 0 and the collision is between identical ions
(e.g., Au + Au rather than Au + Si).

(iii) The measurement is integrated over reaction-plane
angle.

(iv) The measurement might be correlated with the second-
order reaction plane, but the first-order reaction plane is
not known. In other words, the direction of the impact
parameter is known at best only modulo π .

Our strategy begins by identifying transformations in
relative momentum �q under which the measured correlation
must be invariant. As an example, since the overall sign of �q is
meaningless when discussing pairs of identical particles (con-
dition (i)), C(qo, qo, ql) = C(−qo,−qo,−ql), or, in spherical
coordinates, C(Q, cos θ, φ) = C(Q,− cos θ, φ − π ).

We then use a symmetry of the spherical harmonics, here
Yl,m(cos θ, φ) = (−1)lYl,m(− cos θ, φ + π ) to find

Al,m(Q) ≡ 1

4π

∫ 2π

0
dφ

∫ 1

−1
d cos θC(Q, cos θ, φ)

×Yl,m (cos θ, φ)

= 1

4π

∫ 2π

0
dφ

∫ 1

−1
d cos θC(Q,− cos θ, φ − π )

×Yl,m (cos θ, φ)

= 1

4π

∫ π

−π

dφ

∫ −1

1
(−d cos θ )C(Q, cos θ, φ)

×Yl,m (− cos θ, φ+π )

= 1

4π

∫ 2π

0
dφ

∫ 1

−1
d cos θC(Q, cos θ, φ)(−1)l

×Yl,m (cos θ, φ)

= (−1)lAl,m(Q). (B1)

Thus, all odd-l moments Al,m must vanish for correlations
between identical particles.

The same type of reasoning is used in the following in
identifying symmetry constraints for various combinations of
analysis conditions.
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TABLE I. The possible transformations (numbered in the left
column) in which the signs of �q components flip and the effect of
the transformation on the Yl,m’s.

# Transformation Yl,m consequence

0 (qo, qs, ql) → (+qo, +qs, +ql) Yl,m → Yl,m

1 (qo, qs, ql) → (+qo, +qs, −ql) Yl,m → (−1)l+mYl,m

2 (qo, qs, ql) → (+qo, −qs, +ql) Yl,m → Y ∗
l,m

3 (qo, qs, ql) → (+qo, −qs, −ql) Yl,m → (−1)l+mY ∗
l,m

4 (qo, qs, ql) → (−qo, +qs, +ql) Yl,m → (−1)mY ∗
l,m

5 (qo, qs, ql) → (−qo, +qs, −ql) Yl,m → (−1)lY ∗
l,m

6 (qo, qs, ql) → (−qo, −qs, +ql) Yl,m → (−1)mYl,m

7 (qo, qs, ql) → (−qo, −qs, −ql) Yl,m → (−1)lYl,m

A. �q transformations and Yl,m response

Table I lists all combinations in which one or more of the
components of �q can change sign. For later reference, the
transformations are numbered 0, . . . , 7, according to a binary
scheme. The effect of the transformation on the spherical
harmonics appears in the last column of the table.

Transformation (0), of course, is the trivial identity trans-
formation, under which any correlation function is invariant,
and which imposes no symmetry constraint. We include it
in the table only for completeness and do not discuss it
further.

B. Restrictions, invariants, and consequences on Al,m’s

Under which of the transformations in Table I does the
correlation function remain invariant? Since identical-particle
correlations are more common than correlations between
nonidentical particles, there will be a greater familiarity with
the symmetries of the former. Thus, we begin with this
more familiar case and then discuss nonidentical particle
correlations. Our observations are collected in Table II.

1. Correlations between identical particles

To systematically identify those transformations in Table I
that leave a correlation function invariant, it helps to have a
concrete functional form to discuss. For identical pions, the
correlation function is often parametrized as a Gaussian with
six “radius” parameters,

C(qo, qo, ql) = 1 + λ · exp
(− R2

oq
2
o − R2

s q
2
s − R2

l q
2
l

− 2R2
osqoqs − 2R2

olqoql − 2R2
slqsql

)
. (B2)

Whereas measured correlation functions often have non-
Gaussian features not captured by this parametrization, the
form given in Eq. (B2) contains the generic and most
general symmetries of all correlation functions using identical
particles. Thus, we use this familiar example to focus the
discussion. The six parameters in Eq. (B2) describe an
ellipsoid described by three axis lengths and rotated by three

TABLE II. Symmetry consequences of analysis conditions. The left four columns show various combinations of analysis cuts and conditions,
identified (i)–(iv) as discussed in the beginning of this Appendix. [Note that condition (iii) implies condition (iv); this is indicated by the
symbol (

√
) in column (iv).] The middle seven columns indicate the consequent invariance symmetries of the correlation function according

to the numbering scheme of Table I. The right-most column indicates which, if any, spherical harmonic moments of the correlation function
must vanish.

Conditions C(�q) invariances Which Al,m ’s vanish

(i) (ii) (iii) (iv) 1 2 3 4 5 6 7
√ √

l odd
√ √ √

l odd
√ √

(
√

)
√ √ √

Re[Al,m]: l odd
Im[Al,m]: ∀ l, m

√ √ √
(
√

)
√ √ √ √ √ √ √

Re[Al,m]: l and/or m odd
Im[Al,m]: ∀l, m

√ √ √
l odd

√ √ √ √ √ √
l and/or m odd

–
√

–
√

(
√

)
√

Im[Al,m]: ∀l, m

√ √
(
√

)
√ √ √

Re[Al,m]: odd (l + m)
Im[Al,m]: ∀l, m

√
–

√ √ √
odd (l + m)
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Euler angles in �q-space. Measured examples are shown and
discussed in Ref. [50].

Clearly, the form of Eq. (B2) is invariant under trans-
formation (7), as discussed earlier. Invariance under any of
transformations (1)–(6) requires that one or more of the
“radius” parameters R2

ij vanish. In general, none of them
do [50,51], even when a region symmetric about midrapidity
in a collision between identical ions (condition (ii)) is
considered.3

If the measurement is integrated over reaction-plane an-
gle, then the “side” direction has no relevant sign, R2

os =
R2

sl = 0, and the correlation function is invariant under
transformation (2). Although R2

ol need not vanish [53], the
correlation function is unchanged if qo and ql change sign
together [transformation (5)].

Further constraining the measurement to a symmetric
region about midrapidity implies also that R2

ol vanish, and the
correlation function is then invariant under all transformations
(0)–(7). This is the most common set of measurement
conditions.

At high energies, it is common only to determine
the second-order reaction plane. This corresponds to
condition (iv). If the measurement is performed at midrapidity
(condition (ii)), then R2

os is the only nonvanishing cross-
term radius, so the correlation function is invariant under
transformation (1). Away from midrapidity, R2

ol need not
vanish, so (7) is again the only remaining transformation
leaving C(�q) invariant.

2. Correlations between nonidentical particles

Correlations between nonidentical particles are no longer
invariant under transformation (7), as they may depend on
odd-power terms of the components of �q. In the case of
femtoscopic correlations, the strengths of these odd powers
probe asymmetries in the average emission point between the
two particle species [48].

From a symmetry standpoint, the correlation function will
be characterized by nine parameters, rather than the six “HBT
radii” of Eq. (B2). In the simple case that C(qo, qo, ql) would
be Gaussian, these new parameters might represent the offset
from the origin of the ellipsoid in �q-space.

In the absence of any cuts—or if only the midrapidity
condition (ii) is applied [3]—all nine parameters may take any
value, and there are no required invariances or symmetry con-
straints. If the reaction plane is integrated over (condition (iii))

3At first, it seems surprising that, in the absence of reaction-plane
assumptions, no additional symmetry constraint is imposed onto the
correlation function by a symmetric selection about midrapidity (i.e.,
none of the “radius” parameters R2

ij are required to vanish). However,
the selection does impose symmetry constraints at a “higher” level.
In identical-particle correlations, for example, although R2

ol need not
vanish at midrapidity for any given measured correlation function,
symmetry demands a relationship between R2

ol measured in different
correlation functions; in particular R2

ol(φK,RP + π ) = −R2
ol(φK,RP),

where φK,RP is the angle between the total pair momentum and the
reaction plane. Symmetries at this level are discussed in detail in
Ref. [52].

then C(qo, qo, ql) may remain sensitive to the sign of qo

(reflecting, for example, a different average time of emission
between the particles [48]) and ql (reflecting the difference
in emission point in the beam direction, for analyses away
from midrapidity), but not qs , since an angle-averaged physical
source must be symmetric with respect to the beam axis.

Unlike the case in which it is the sole condition, if the
midrapidity condition (ii) is imposed together with condition
(iii), then it does have an effect. In particular, a dependence on
the sign of ql vanishes.

If condition (iii) is relaxed to condition (iv) (i.e., the analysis
is sensitive to the second-order reaction plane), then the sign
of qs may matter. This is because the sign of qo always affects
correlations between nonidentical particles and, as in identical
particle correlations in which R2

os may be finite, so the sign of
qoqs may separately matter. Thus, imposition of condition (iv)
alone implies no symmetry constraints.

APPENDIX C: FINITE BINNING EFFECTS

Equation (4) defines the harmonic moments in terms
of a continuous correlation function. Most experimentally
measured correlation functions are constructed via histograms
with discrete, finite bins. For decomposition into spherical
harmonics, a natural choice would be to use bins in Q, cos θ

and φ [cf. Eq. (3)]. Here, we will find an approximate
expression, analogous to Eq. (4), for the harmonic moments
in terms of the discretized correlation function.

We denote the fixed bin sizes in the angular coordinates as
�cos θ and �φ . Binning in Q is unimportant here, since Q is
carried as an explicit argument in both C and Al,m. The binned
correlation function (denoted with superscript �) is related to
the continuous one as

C�(Q, cos θi, φi)

= 1

�φ�cos θ

∫ φi+�φ/2

φi−�φ/2
dφ

∫ cos θi+� cos θ/2

cos θi−� cos θ/2
d(cos θ )

×C (Q, cos θ, φ)

=
√

4π

�φ�cos θ

∞∑
l′=0

+l′∑
m′=−l′

Al′,m′ (Q)

×
∫ φi+�φ/2

φi−�φ/2
dφ

∫ cos θi+�cos θ /2

cos θi−�cos θ /2
d(cos θ )Y ∗

l′,m′(cos θ, φ)

=
√

4π

∞∑
l′=0

+l′∑
m′=−l′

Al′,m′ (Q) · Fl′,m′ (�φ,�cos θ , cos θi)

×Y ∗
l′,m′ (cos θi, φi). (C1)

Here,

Fl′,m′ (�φ,�cos θ , cos θi)

= sin(m�φ/2)

m�φ/2

1

�cos θPl′,m′(cos θi)

×
∫ cos θi+�cos θ /2

cos θi−�cos θ /2
d(cos θ )Pl′,m′ (cos θ ) (C2)

is the term that includes the finite binning effects.

064903-16



GLOBAL CONSERVATION LAWS AND FEMTOSCOPY OF . . . PHYSICAL REVIEW C 78, 064903 (2008)

Assuming that Al,m’s vanish for l, m greater than the
sampling Nyquist frequency, by the sampling theorem [54,55],
the Al,m’s are completely determined by C�. In fact, if Fl,m

were independent of cos θi , then we would have

Al,m(Q) = �φ�cos θ

Fl,m

(
�cos θ ,�φ

)√
4π

×
∑
bins i

C� (Q, cos θi, φi) Yl,m (cos θi, φi) ,

where the summation is over all bins of cos θ and φ for a given
Q.

However, Fl,m does depend on cos θi , so this equation does
not strictly hold. Nevertheless, we find, numerically, that an

excellent approximation is

Al,m(Q) ≈ �φ�cos θ√
4π

∑
bins i

C� (Q, cos θi, φi) Yl,m (cos θi, φi)

Fl,m

(
�cos θ ,�φ, cos θi

) .

(C3)

For any given measurement, one may check the validity of
this approximation by plugging the result of Eq. (C3) into
the expression on the last line of Eq. (C1). To the extent
that it returns the measured correlation function C�, the
Al,m’s returned by Eq. (C3) are correctly extracted. If there
are deviations, the correct Al,m’s can be found by iterative
techniques.

Other methods to remove binning effects have also been
proposed [56].
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