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The microscopic optical model potential (OMP) of α-nucleus elastic scattering based on a double-folding model
(DFM) is studied. The nucleon OMPs in nuclear matter as well as the nucleon-nucleon (NN ) effective interaction
are calculated in the framework of the Dirac-Brueckner-Hartree-Fock (DBHF) approach, in which the density
and energy dependence is parametrized by polynomial expansions. The microscopic OMP of nucleus-nucleus
scattering is obtained by doubly folding the complex NN effective interaction with respect to the densities of
both projectile and target nuclei. An improved local-density approximation is adopted to take account of the
finite-range correction. Renormalization factors on the real and imaginary OMP are introduced to obtain the
best fit to the experimental data. A systematic analysis of 4He elastic scattering off 12C, 16O, 28Si, and 40Ca is
performed. The calculated cross sections over a wide range of incident energies and scattering angles are in good
agreement with the experimental data, which confirms the applicability of this model. Moreover, for the same
projectile and target, the renormalization factors are found to be almost constant at various incident energies.
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I. INTRODUCTION

The study of the microscopic optical model potential
(OMP) of nucleus-nucleus elastic scattering is one of the
fundamental subjects in nuclear physics. It has attracted much
attention for a long time and recent renewed interest owing
to the development of the physics of unstable nuclei. The
microscopic OMP is important not only for understanding the
relevant reaction dynamics involved but also for developing a
practical tool in the study of colliding systems for which the
elastic scattering measurement is absent or difficult, such as
in the case of neutron-rich or proton-rich β-unstable nuclei.
The double-folding model (DFM) is one of the simplest
and most practical tools for constructing the OMP between
complex nuclei. In the DFM, the nucleon-nucleon (NN )
effective interaction in the nuclear medium is doubly folded
with nucleon density distributions of both projectile and target
nuclei. One of the most successful effective NN interactions is
the so-called M3Y G-matrix interaction [1] and its density- and
energy-dependent versions, such as CDM3Y6 [2,3]. The DFM
with the CDM3Y6 interaction, however, provides us only with
the real part of the NN OMP and an imaginary potential must
be added by hand [4,5]. Normally, the imaginary potential is
assumed to have some suitable functional forms [6,7], such
as a Woods-Saxon form or its derivative, and the potential
parameters included are determined phenomenologically so
as to reproduce the experimental elastic-scattering data. In
addition, the so-called frozen approximation for the density
in the NN effective interaction, which is assumed in this
approach, may overestimate the overlap of two colliding
nuclei. Another successful example employed by the DFM
is the so-called JLM folding model [8–10]. In this model a
complex Brueckner Hartree-Fock (BHF) G-matrix interaction
is adopted, so both real and imaginary parts of the OMP can be
obtained at the same time. Unfortunately, the nucleon effective
interactions were parametrized a long time ago, when the BHF

approach without a three-body force could not reproduce the
nuclear matter saturation properties. The relativistic micro-
scopic optical potential (RMOP) of nucleon scattering off
nucleus has been discussed for many years [11–13]. Recently,
the Dirac-Brueckner-Hartree-Fock (DBHF) approach has been
of great success in describing the isospin-dependent RMOP of
nucleon-nucleus scattering [14]. By considering the target as
just a scatterer the nucleus-nucleus scattering was obtained
by folding the isospin-dependent nucleon-nucleus OMP with
respect to the density of the projectile [15]. The 4He scattering
off 12C and 6He + 12C elastic scattering differential cross
sections were reproduced. In this paper we parametrize the
density and energy dependence of the nucleon OMP in nuclear
matter as well as the NN effective interaction with polynomial
expansions. The OMPs of the nucleus-nucleus scattering are
obtained by a double-folding method with the NN effective
interaction. They are applied to a systematic analysis of 4He
elastic scattering off 12C, 16O, 28Si, and 40Ca in this work. In
the present calculations the geometric average of the individual
densities in the nucleus-nucleus scattering is assumed. The
effect of the density overlap will be further investigated in
sequential works later.

The outline of this paper is as follows. The theoretical
framework of the double-folding potential of nucleus-nucleus
scattering is described briefly in Sec. II. The nucleon OMPs in
nuclear matter are parametrized by polynomial expansions. In
Sec. III, the cross sections of α scattering off 12C, 16O, 28Si, and
40Ca at various incident energies are analyzed systematically.
Finally, we give a summary and conclusions in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Parametrizations of the nucleon OMP in nuclear matter

It is well known that the nucleon self-energy in the
nuclear medium is equivalent to the nucleon OMP [16]. The
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energy- and density-dependent nucleon self-energy in nuclear
matter can be calculated in the DBHF approach [12,14]. A
detail description of the nucleon self-energy obtained in the
DBHF approach is presented in Refs. [12,14,15]. For the sake
of completeness of this paper, we report briefly the method
to obtain the nucleon self-energy in the DBHF. The DBHF
G can be decomposed into the bare NN interaction V and
a correlation term �G, where G = V + �G [17]. The bare
NN interaction is depicted by meson exchanges and the Bonn
B NN interaction is adopted here. The correlation term is
parametrized by four vertices: scalar, vector, isoscalar, and
isovector. Because of the characteristics of the short-range
correlation, they can be described by infinite masses and finite
ratios of strengths to the corresponding masses [17]. The
nucleon self-energy in nuclear matter is calculated with V

and �G in the relativistic Hartree-Fock approach. The general
form of the self-energy of a nucleon in nuclear matter can be
written as [14]

�(|k|, kF , β) = �s(|k|, kF , β) − γ0�0(|k|, kF , β)

+ γ · k�v(|k|, kF , β), (1)

where �s,�0, and �v are the scalar potential and time,
space components of vector potentials, respectively. They are
functions of the nucleon momentum, density, and asymmetry
parameter β = (ρn − ρp)/ρ, where ρn, ρp, and ρ are neutron,
proton, and matter densities, respectively. The imaginary part
of the nucleon self-energy can be obtained by the G-matrix
polarization diagram. An effective nucleon interaction was
introduced to avoid difficulties caused by π mesons and
simplify the calculation [14]. Four scalar and vector mesons
with density-dependent coupling constants were adopted to
reproduce the saturation curves and nucleon self-energy at
various densities and asymmetric parameters calculated with
the DBHF G matrix. The isovector mesons allow the potentials
for neutrons and protons to be distinguished.

The Dirac equation of a nucleon in the nuclear medium
with scalar and vector potential has the form

[α · k + γ0(M + Us) + U0]ψ = Eψ, (2)

where

Us = �s − M�v

1 + �v

, U0 = −�0 + E�v

1 + �v

. (3)

In these expressions, M is the mass of nucleons, Us and U0 are
Lorentz scalar and vector potentials, respectively, E = ε + M ,
and ε is the kinetic energy of the nucleon in the free space.
Its momentum in the nuclear medium can be calculated by
solving the following equation:

E =
√

k2 (1 + �v)2 + (M + �s) − �0. (4)

The Schrödinger-equivalent equation for the upper compo-
nent of the Dirac spinor can be obtained by eliminating the
lower component of the Dirac spinor in a standard way,

[
k2

2E
+ Ueff

]
ϕ = E2 − M2

2E
ϕ, (5)

where

Ueff = M

E
Us + U0 + 1

2E
[(Us)

2 − (U0 + VC)2], (6)

where VC is the Coulomb potential for protons. Ueff is
the Schrödinger-equivalent potential, which is known as the
nucleon OMP in nuclear matter in the nonrelativistic approach
and is complex with both real and imaginary parts.

The nucleon OMP in the nuclear medium depends on the
density and the nucleon energy. To simplify the calculation we
parametrize the density and energy dependence of the nucleon
OMP in polynomial expansions. This procedure changes the
numerical results into an analytical form and is convenient for
application in the DFM calculations. The scattering energy is
chosen as ε � 120 MeV and the density as ρ < 0.22 fm−3. In
the DFM we do not distinguish proton and neutron effective
interactions; therefore only the isoscalar part of the OMP is
adopted in this work.

The parametric forms of the real and imaginary parts of the
nucleon OMP in nuclear matter can be expressed as

ReUeff(ρ, ε) =
3∑

i=1

3∑
j=1

aij ε
j−1ρi (7)

and

ImUeff(ρ, ε) =
4∑

i=1

4∑
j=1

bij ε
j−1ρi, (8)

where the coefficients aij and bij are gathered in Tables I
and II, respectively. The real and imaginary parts of the OMP
at energies ε = 10, 30, 60, 90, and 120 MeV are shown as
functions of the density ρ in Figs. 1 and 2, respectively. The
solid points are obtained in the DBHF [Eq. (6)] and the curves
are calculated with the parametrizations in Eqs. (7) and (8).
It is clearly shown that the nucleon OMP in nuclear matter
calculated in the DBHF approach can be fairly well reproduced
by the parametrizations.

To compare with the JLM model [8], the nucleon OMPs
in the JLM model are also plotted in Figs. 1 and 2 with
dashed curves. The nucleon OMPs in the JLM model were
calculated in the framework of the BHF approximation with
Reid’s hard-core NN interaction. It is well known that the BHF
calculations with Reid’s hard-core NN interaction produce
binding energies that are too small at the nuclear matter
saturation density [18,19]. Therefore the real parts of the
nucleon OMP obtained in the JLM model are relatively
weaker than those obtained in our DBHF calculations with
the Bonn B NN interaction, especially at low densities. The
parametrizations in the JLM model were constructed within
the nuclear saturation density kF = 1.4 fm−1. The extension to

TABLE I. Values of the coefficients aij in Eq. (7).

aij 1 2 3

1 −0.797 × 103 0.222 × 101 −0.825 × 10−3

2 0.366 × 104 −0.438 × 101 −0.696 × 10−2

3 −0.515 × 104 0.584 × 101 0.221 × 10−1
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TABLE II. Values of the coefficients bij in Eq. (8).

bij 1 2 3 4

1 −0.503 × 102 −0.426 × 101 0.270 × 10−1 −0.328 × 10−4

2 0.203 × 103 0.636 × 102 −0.601 × 100 0.163 × 10−2

3 0.829 × 103 −0.416 × 103 0.408 × 101 −0.122 × 10−1

4 −0.348 × 104 0.958 × 103 −0.100 × 102 0.327 × 10−1

high densities may give unphysical results, which are shown
in Fig. 1. To reproduce the nuclear saturation properties in
the BHF approximation inclusion of a three-body force or
relativistic effects is necessary, both of which play roles mainly
at the density above the saturation density. The difference in
the imaginary parts of the OMPs between the JLM model and
our approach is quite large, as shown in Fig. 2. Unfortunately,
the imaginary part of the BHF G matrix is not well constrained
and depends on the bare NN interaction adopted in the
BHF calculations. It was found that the imaginary part of
the G matrix is sensitive to the π -meson exchange [14]. The
imaginary parts of the OMP in the JLM model are much larger
at low energies and tend to a surface-like shape at high energies,
they become very weak at the saturation density as the energy
increases. It is clearly seen in Fig. 2 that the extension of
the imaginary OMP with the JLM parametrizations to high
densities approaches zero and even becomes positive, which is
of course unphysical. The imaginary part of the nucleon OMP
in our model is calculated by the effective nucleon interaction
Geff , which consists of four effective meson exchanges that
reproduce the real part of the nucleon self-energies and
properties of symmetric and asymmetric nuclear matter [14].
The imaginary parts of the nucleon OMP in our model increase
monotonically as the energy increases.

FIG. 1. The density dependence of the real part of the nucleon
OMPs in nuclear matter at the energies ε = 10, 30, 60, 90, and
120 MeV. Points are calculated in the DBHF approach [14]. The
solid and dashed curves show the results calculated with the
parametrizations in the present DBHF approach and JLM model [8],
respectively. The vertical dashed curves shows the validity domain of
the JLM model.

B. Double-folding potential of nucleus-nucleus elastic scattering

The NN effective interaction can be connected with the
nucleon OMP in the nuclear medium by Veff = Ueff/ρ in
the Thomas-Fermi approximation [20]. The OMP of the
nucleus-nucleus scattering is then obtained by doubly folding
the NN effective interaction in the nuclear medium with
nucleon density distributions of both projectile and target
nuclei:

VDFM(R) =
∫

ρ1(r1)ρ2(r2)Veff(s, ρ, ε)dr1dr2, (9)

where ρ1 and ρ2 are nucleon densities in the projectile and
target nuclei, respectively, s = R + r1 − r2 is the relative
vector between the interacting nucleon pair, R is the separation
distance between two centers of colliding nuclei, and r1 and r2

are the coordinates of the nucleon in the center-of-mass frame
of the projectile and target, respectively.

By taking account of the finite-range correlation an im-
proved local density approximation (ILDA) with Gaussian
form is introduced, which should yield good agreement
between the theoretical and the empirical values of the volume
integrals and rms radii of phenomenological OMP [8]. The
finite-range form factor of the effective interaction is taken as

V ILDA
eff (s, ρ, ε) = gR(s)ReVeff + igI (s) ImVeff, (10)

where

g(s) = (t
√

π )−3 exp(−s2/t2), (11)

FIG. 2. Same as Fig. 1 for the imaginary part of the nucleon
OMPs in nuclear matter.
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and t is the range of the Gaussian form. In our calculations we
choose tR = 1.1 fm for the real potential and tI = 1.8 fm
for the imaginary one. One notices that the NN effective
interaction V ILDA

eff depends on the scattering density ρ through
Eqs. (7) and (8). It is not clear how to choose the density
of the two interacting nucleons, which are populated in the
projectile and target nuclei, respectively. Two approximations
were usually adopted in the literature [5,9]: the so-called frozen
density approximation (FDA), ρ(s) = ρ1(r1 + s/2) + ρ2(r2 −
s/2), and the geometric average of the individual density [9],

ρ(s) =
√

ρ1(r1 + s/2)ρ2(r2 − s/2). (12)

In both cases the density is evaluated at the midposition of
the interacting nucleons. There is no physical justification for
determining which approach is more appropriate, although it
has been studied from several aspects [21,22]. It is observed
that the elastic scattering of α particles and some tightly bound
light nuclei has shown the pattern of rainbow scattering at
medium energies. The observed rainbow patterns were shown
to be linked directly to the density overlap of the two nuclei
penetrating each other in the elastic channel [21]. The nucleus-
nucleus interaction potentials studied in the time-dependent
Hartree-Fock theory favor the FDA [22]. Actually the overlap
density in heavy nucleus scattering is rather complicated, being
also dependent on the properties of the projectile and target.
We shall study this important issue later on. At the moment
we adopt the geometric average of the individual density but
simply take another type of prescription [9] in this paper,

ρ =
√

ρ1(r1)ρ2(r2), (13)

where the local density is evaluated at each position of two
interacting nucleons. This choice also enables us to greatly
reduce the computational time for numerical integrations.

III. RESULTS

Now we apply this scheme to systematically analyze α

scattering off 12C, 16O, 28Si, and 40Ca nuclei. The OMP of
the nucleus-nucleus scattering is calculated with the DFM. In
this model, the density distribution of 4He is simply calculated
with the harmonic oscillator wave function,

ρα = 4

π3/2b3
α

exp

(
− r2

b2
α

)
, (14)

where bα = 1.1932 fm. This has an rms radius of 1.461 fm,
which is close to the experimental value of 1.47 ± 0.02 fm.
The density distributions of the targets, except for light nuclei
12C and 16O, are taken from Negele’s empirical formulas [23],

ρ(r) = ρ0

1 + exp[(r − r0)/a]
, (15)

where ρ0 = 3A/ 4 π r3
0 (1 + π2 a2 / r2

0 ), r0 = (0.978 +
0.0206A1/3)A1/3 fm, and a = 0.54 fm, and A is the atomic
number of the target. For the density distribution of 12C, one
takes r0 = 2.1545 fm and a = 0.425 fm [3]. The density is

normalized to the atomic number of 12C, then ρ0 is determined
as 0.207 fm−3. A Gaussian-type distribution is chosen for
16O [24]:

ρ(r) = ρ0[1 + αr2/a2] exp(−r2/a2),
(16)

ρ0 = A

/ [
4πa3√π

(
1

4
+ 3

8
α

)]
,

where α = 2.0 fm and a = 1.76 fm.
In recent years many accurate experimental data of α

scattering by various stable nuclei at a wide range of incident
energies below 240 MeV have become available. To reproduce
the experimental data, we introduce renormalization factors
NR and NI in the real and imaginary parts of the double-
folding potentials, respectively. Accordingly, the OMP of the
nucleus-nucleus elastic scattering can be redefined as

Vopt = NRRe VDFM + iNI Im VDFM. (17)

The values of NR and NI are adjusted in each case to attain an
optimum fit to the experimental data of the elastic scattering
cross sections. In this paper, we apply the χ2 analysis,

χ2 =
N∑

i=1

(
σ cal

i − σ
exp
i

σ
exp
i

)2

, (18)

where σ cal
i and σ

exp
i are calculated and experimental cross

sections, respectively. We compile an automatic potential
search code to find the renormalization factors when χ2

reaches a minimum.
First we analyze the reactions of 4He elastic scattering off

12C and 16O, which are “refractive” targets and have attracted
much attention. The cross sections, plotted in units of the
Rutherford cross section, for 4He scattering off 12C at ELab =
104, 120, 145, 166, and 172.5 MeV are shown in Fig. 3. Corre-
spondingly, the values of the renormalization factors, volume
integrals, and rms radii of the real and imaginary parts of the
RMOP are listed in Table III. One can see that the cross sections
calculated with the nucleon effective interaction in Eqs. (7) and
(8) based on the DBHF reproduce the experimental data quite
well. At the same time, the renormalization factors are found
to be almost constant (NR ≈ 0.63–0.67 and NI ≈ 1.5–1.8),
showing a weak dependence on the energy in this energy
region. More accurately, elastic scattering cross sections of
4He off 12C at ELab = 172.5 MeV are plotted on a linear
scale in Fig. 4. The scattering cross sections of 4He + 16O at
ELab = 48.7, 54.1, 69.5, 80.7, 104 MeV are shown in Figs. 5
and 6. Obviously, the available experimental data exhibit quite
a strong refractive structure. It is shown in Figs. 5 and 6 that
our OMP could well describe the feature of elastic scattering
angular distributions at various incident energies. It is inspiring
that the characteristic oscillatory patterns at ELab = 48.7, 54.1,
and 69.5 MeV, which cover a wide angular range, are fairly
well reproduced, especially at the middle and backward angles.
They have typical rainbow features, which are sensitive to the
OMP over a wide radial domain. The renormalization factors
NR ≈ 0.7–0.75 and NI ≈ 1.7–1.8 are required to reproduce
the experimental data.
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FIG. 3. 4He elastic scattering off 12C at the incident energies
ELab = 104, 120, 145, 166, and 172.5 MeV. Solid curves show the
results calculated with the OMP in this work. The renormalization
factors NR and NI are listed in the figure. Points denote the
experimental data taken from Refs. [25–27].

To further study the OMP, we also examine the reactions
of 4He elastic scattering off 28Si at ELab = 104, 166, and
240 MeV and 40Ca at ELab = 40.05, 47, 53.9, 80, 104, and

TABLE III. Values of normalization factors NR and NI of the
folding optical potentials for α scattering off 12C, 16O, 28Si, and 40Ca
at various energies. Their volume integrals and rms radii are also
listed.

Target ELab NR NI JR JI

√
〈r2〉R

√
〈r2〉I

(MeV) (MeV fm3) (fm) (fm)

12C 104 0.66 1.80 289 102 3.212 3.752
120 0.63 1.59 272 98 3.219 3.761
145 0.64 1.56 269 108 3.221 3.756
166 0.67 1.50 276 113 3.223 3.748

172.5 0.65 1.45 266 111 3.225 3.739
16O 48.7 0.76 1.60 363 67 3.407 3.982

54.1 0.75 1.68 356 74 3.407 3.988
69.5 0.75 1.95 351 96 3.408 3.982
80.7 0.73 1.83 338 97 3.407 3.979
104 0.68 1.83 308 111 3.409 3.980

28Si 104 0.58 1.74 260 106 3.873 4.437
166 0.66 1.50 279 121 3.906 4.415
240 0.64 1.25 250 126 3.916 4.383

40Ca 40.05 0.71 1.45 329 54 4.157 4.673
47 0.73 1.68 336 67 4.157 4.677

53.9 0.72 1.90 329 80 4.158 4.679
80 0.63 1.81 281 92 4.163 4.665
104 0.63 1.68 274 99 4.164 4.669

141.7 0.62 1.50 260 106 4.170 4.648

FIG. 4. 4He elastic scattering off 12C at the incident energy ELab =
172.5 MeV. The notation is the same as in Fig. 3.

141.7 MeV. The calculated results are shown in Figs. 7 and 8
together with the available experimental data. Good agreement
with the experimental data is also observed. For 4He scattering
off 40Ca, the experimental nuclear rainbow phenomena are
well reproduced over a wide range of scattering angle. The
values of NR and NI for each target listed in Table III are
found to be almost constant with respect to different incident
energies. These results reconfirm the applicability of the NN

effective interaction obtained based on the DBHF. The volume
integral per nucleon pair and rms radii of the OMP for all the
elastic scattering reactions are also listed in Table III.

FIG. 5. Same as Fig. 3, except for 4He elastic scattering off 16O
at the incident energies ELab = 48.7, 54.1, 69.5, 80.7, and 104 MeV.
The experimental data are taken from Refs. [5,25,28].
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FIG. 6. 4He elastic scattering off 16O at the incident energy
ELab = 54.1 MeV. The notation is the same as in Fig. 3.

IV. SUMMARY

In this paper we parametrize the nucleon effective inter-
action in the nuclear medium based on the DBHF approach.
The microscopic OMPs for α-nucleus elastic scattering are
obtained by the DFM. To test its applicability, the elastic data
of 4He scattering on 12C, 16O, 28Si, and 40Ca targets at various
incident energies ELab ranging from 40.05 to 240 MeV have
been analyzed. All the experimental cross sections up to the
backward angles are well reproduced by the double-folding
potentials. We found that the renormalization factors of the
real and imaginary parts of the OMP could be regarded as
constants for the same projectile and target and weakly depend
on the incident energies. These results may suggest that the
double-folding potential with the nucleon effective interaction

FIG. 7. 4He elastic scattering off 28Si at the incident energies
ELab = 104, 166, and 240 MeV. The notation is the same as in
Fig. 3. The experimental data are taken from Refs. [25,27,29].

FIG. 8. 4He elastic scattering off 40Ca at the incident energies
ELab = 40.05, 47, 53.9, 80, 104, and 141.7 MeV. The notation is the
same as in Fig. 3. The experimental data are taken from Refs. [25,30].

based on the DBHF approach has the predicting power of
the complex optical potential for nucleus-nucleus scattering.
For the same projectile and target, the renormalization factors
obtained from one reaction could serve in other reactions. In
this paper, we only test α-nucleus elastic scattering, so a further
test of our model will be required. In the present investigation
we adopt the geometric averaged density as the scattering
density, which may underestimate the density effects. There-
fore the renormalization factors for the real part are relatively
small (NR ∼ 0.7). The overlap density may also depend on the
structures of the two colliding nuclei. The density effects could
be further investigated with the nuclear effective interactions
applicable in a large density range obtained in this work. The
imaginary part of the nucleon effective interaction derived
from the lowest order contribution of the Dirac G matrix does
not involve all the complex dynamic processes in heavy-ion
scattering. Therefore, it is also desirable to include these
dynamic processes in the imaginary part of the OMP.
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