
PHYSICAL REVIEW C 78, 064611 (2008)

Deformation-dependent Tamura-Udagawa-Lenske multistep direct model

H. Wienke*

Belgonucleaire, B-2480 Dessel, Belgium

R. Capote
Nuclear Data Section, International Atomic Energy Agency, Wagramerstrasse 5, Vienna A-1400, Austria

M. Herman
National Nuclear Data Center, Brookhaven National Laboratory, Upton, New York 11973, USA

M. Sin
Nuclear Physics Department, University of Bucharest, P.O. Box MG-11, Bucharest-Magurele, Romania

(Received 6 September 2008; revised manuscript received 11 November 2008; published 22 December 2008)

The multistep direct TUL model has been extended in order to account for nuclear deformation. The
new formalism was tested in calculations of neutron emission spectra from the 232Th(n, xn) reaction. These
calculations include vibration-rotational coupled channels for the inelastic scattering to low-lying collective
levels, “deformed” multistep direct (MSD) for inelastic scattering to the continuum, multistep compound, and
Hauser-Feshbach with advanced treatment of the fission channel. Prompt fission neutrons were also calculated.
The comparison with experimental data shows clear improvement over the “spherical” MSD calculations and
JEFF-3.1 and JENDL-3.3 evaluations. Similar calculational results have been obtained of neutron emission
spectra from the stable deformed nuclei 181Ta and 184W.
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I. INTRODUCTION

An approach to direct inelastic scattering to the continuum,
i.e., the dense part of the excitation spectrum of the nucleus,
is provided by the quantum-statistical multistep direct theory
of preequilibrium direct processes, originally formulated by
Tamura, Udagawa, and Lenske (TUL) [1] and extended with
respect to statistical and dynamic treatment of nuclear structure
by Lenske et al. [2]. The statistical assumptions involved
lead to a description of the preequilibrium direct process
as a sum of n-step DWBA cross sections with average
state-independent form factors and a coherent treatment of
the propagation of the intermediate channels, each n-step term
being folded with a product of n nuclear spectroscopic strength
functions. These spectroscopic strength functions specify the
nuclear response on the external one-body interaction. It is
assumed that the closed channel space, i.e., the multistep
compound contributions (MSC) have been projected out and
can be treated separately within the multistep compound
mechanism [3]. In the TUL model as developed by Lenske
et al. [2] the spectroscopic strength functions are derived
assuming the scattering nucleus to be spherical. This approach,
as implemented in the EMPIRE-2.19 code [4,5], predicts
well double-differential neutron emission spectra from the
quasispherical 93Nb nucleus induced by 14.1 MeV neutrons
(see, e.g., EMPIRE-2.19 manual [4], p. 158). However,
similar inelastic emission spectra from the deformed nucleus
232Th induced by Einc � 6.1 MeV neutrons, are severely
underpredicted in the region of direct inelastic scattering to
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the continuum. To address this deficiency the above TUL
approach has been extended to account for nuclear deformation
and incorporated into the EMPIRE-3.0 [6] code which has
been applied in calculations of double-differential neutron
emission spectra from the 232Th(n, xn) reaction and, in
addition, from the 181Ta(n, xn) and 184W(n, xn) reactions.
The extended formalism is outlined in Sec. II. Section III
gives details of calculations. Computed results are compared
with experimental data [7–9,29–31] and existing evaluations in
Sec. IV. Finally, Sec. V contains the conclusions.

II. TUL FORMALISM

In the TUL model, as developed by Lenske et al. [2],
the averaged n-step cross section for inelastic scattering is
obtained as

d2σ (n)

dEd�
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where χ (±) are distorted waves, Fλ averaged form factors with
multipolarity λ,Gopt the Green function for the optical model
potential, and Sλ(E) is the particle-hole transition strength
function for an excitation energy E, from the ground state or
a reference state, and transferred angular momentum λ. The
one-step cross section is
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with ( dσ
d�

)λ an average DWBA cross section. The two-step
cross section is expressed as

d2σ (2)

dEd�
=

∑
λ1λ2

∫
dE1Sλ1 (E1)Sλ2 (E − E1)

× |〈χ (−)(E)|Fλ2G
opt(E − E1)Fλ1 |χ (+)(0)〉|2.

(3)

Here the total response of the intrinsic system at an energy
loss E is contained in the first and second step transition
strength functions. The folding accounts for the partitions of
the total energy E into first- and second-step parts such that E

is conserved.

A. Spherical nuclei

The transition strength function for the external one-body
operator Uλ = v(r)Yλ is calculated as

Sλ(E) = −Im
1

π
〈�0|U †

λG
intr
λ (E + i	/2)Uλ|�0〉

= Im
1

π
χλ(E + i	/2) (4)

with χλ the response function for the operator Uλ, 	 the spread-
ing width [4], |�0〉 the nuclear ground state or a reference state
and Gintr

λ (E) the intrinsic nuclear Green function or propagator
with multipolarity λ. The latter contains the information about
the nuclear structure. Configuration mixing of 1p-1h excita-
tions, and correlations in the reference state, due to the residual
1p-1h interaction, are treated within the framework of the
random phase approximation (RPA) which corresponds to
summing the complete series of 1p-1h interaction diagrams.
By taking into account also pairing correlations the excitations
are given in terms of two-quasiparticle (2qp) rather than
1p-1h configurations. In 2qp RPA (QRPA) the intrinsic Green
function is then given in terms of the uncorrelated 2qp Green
function by a Bethe-Salpeter (B-S) equation [10]:

Gintr
λ (E) = G

QRPA
λ (E) = G

2qp

λ (E) + V G
2qp

λ (E)GQRPA
λ (E)

(5)

with V the 1p-1h residual interaction. For spherical nuclei the
uncorrelated 2qp Green function is given as [11]

G
2qp
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[
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where the spin-spherical tensors c
†
jβ

and cjα
operating to the

right, are particle and hole creation operators for the spherical
sp states nβlβjβ and nαlαjα , respectively. v2

α and v2
β the

BCS occupation probabilities, u2
α = 1 − v2

α , and Eα,Eβ the
quasiparticle energies.

Assuming a separable residual particle-hole interaction
of the form V sep(1, 2) = ∑

λ κλUλ(1)Uλ(2), with κλ being a
coupling constant, and using Eqs. (4) and (5), the QRPA

correlated response function for the operator Uλ may be written
as

χ
QRPA
λ (E) = χ

2qp

λ (E) + κλχ
2qp

λ (E)χQRPA
λ (E) (7)

with χ
2qp

λ (E) = 〈�0|U †
λG

2qp

λ (E)Uλ|�0〉 the uncorrelated 2qp
response function.

B. Extension to deformed nuclei

In case of a deformed Hamiltonian the sp (and qp) wave
functions are not eigenfunctions of the angular momentum
squared L2. If, however, symmetry exists with respect to the
deformation axis both parity π and angular momentum projec-
tion K onto this axis are still conserved. When the deformed
sp wave function is expanded into spherical components the
wave function in the nominator of Eq. (6): [c†jβ

⊗cjα
]λ|�0〉 is

substituted by ∑
jαjβL

s
jβ

kβ
s
jα

kα

[
c
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]λ

K
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where s
jα

kα
is the fractional occupation number for the spherical

jα component of the deformed sp wave function with azimuthal
quantum number kα and K = kα − kβ (see also [12]). From
expression (8) it is clear that the “deformed” Green function
is not diagonal with respect to angular momentum and the
uncorrelated 2qp multipole response function for the external
one-body field Uλ,K = vλ,K (r)YK

λ is then

χ
2qp

λλ′,K (E) = 〈�0|U †
λ,KG

2qp

λλ′K (E)Uλ′,K |�0〉. (9)

The QRPA correlated response function is obtained in the
schematic RPA from the B-S equation for each K [13]:

χ
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The multipole spectroscopic strength function:
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χ
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is however still diagonal with respect to angular momen-
tum λ [13] and from Eq. (10) it follows that χ

QRPA
λ,K is

calculated as

χ
QRPA
λ,K (E) = χ

2qp

λλ,K (E) +
∑
λ′

κλλ′,Kχ
2qp

λλ′,K (E)χQRPA
λ′λ,K (E).

(12)

Equation (12) differs from Eq. (7) as it includes also
couplings between different transfer spins in the second term
of the right-hand side. As Eq. (12) is valid for each separate
particle-hole excitation with definite parity, only angular
momenta with the same parity are coupled to each other.
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III. EMPIRE CALCULATIONS

The updated TUL formalism has been implemented in
the EMPIRE-3.0 code [6] and applied in calculations of
double-differential neutron emission spectra from n+232Th.
Results of such calculations in which deformed sp states
were obtained from a spherical Nilsson Hamiltonian plus a
quadrupole deformation, have been presented in a previous
paper [14]. In this paper we present and discuss results of
similar calculations in which inelastic neutron scattering to
the quasicontinuum (Eexc � 1.19 MeV) has been treated using
more realistic deformed Woods-Saxon sp levels and wave
functions as generated by the WSBETA code [15] (see also
[16]).

In WSBETA the sp states are obtained by diagonalizing
the (spherical or deformed) Woods-Saxon Hamiltonian in an
axially symmetric harmonic oscillator basis. The resulting
deformed wave functions are then presented as linear combina-
tions of axially symmetric harmonic oscillator eigenfunctions
in cylindrical coordinates. As the MSD module TRISTAN of
the EMPIRE code assumes H.O. eigenfunctions in spherical
coordinates the WSBETA results were converted into spherical
symmetry representation according to the relations of Talman
[17] (see also [18]).

The “optimal” parametrization of the Woods-Saxon po-
tentials for neutrons and protons, intrinsic in the WSBETA
code, was used. In this parametrization the systematics of the
experimental data on both spherical and deformed odd-mass
nuclei have been taken into account simultaneously (see for
more details [15] and references therein). The deformations
β2 = 0.213, β4 = 0.066, and β6 = 0.013 are taken from the
dispersive CC neutron optical model potential for 232Th of
Soukhovitskii et al. [19]. The calculated Fermi energies (BCS
values) are −5.76 MeV and −6.65 MeV for neutrons and
protons, respectively, rather close to the experimental values
of −5.6 and −6.4 MeV

While the aforementioned diagonalization procedure in an
harmonic oscillator basis is a reliable method to obtain bound
states, positive-energy solutions, at the other hand, depend
strongly upon the dimension N of the basis, in that sense
that increasing N in general results in lowering of the energy
eigenvalues. Below the barriers consisting of the centrifugal
and spin-orbit terms and the Coulomb barrier for protons,
however, the (positive-) energy eigenvalues remain constant
for a range of N values, approximating the sp resonance
energies, and therefore may be considered as relatively stable
[15]. The diagonalization method in WSBETA does not allow
for calculating resonance widths.

The MSD treatment, involving one- and two-step calcu-
lations, has been applied for incident neutron energies above
4.5 MeV, where its contribution is sizable. The spherical part of
the afore mentioned optical model potential of Soukhovitskii
et al. was used, as quoted in the RIPL library (RIPL 608) [21],
in the calculation of the initial and final distorted waves and
the propagation of the intermediate channel. The off-diagonal
couplings in the “deformed” Bethe-Salpeter equation (12)
were included in the MSD calculation. The convergence turned
out to be rather fast. For the quadrupole response, for example,
only angular momentum λ = 0, 2, and 4 need to be included
(see also [13]). The off-diagonal terms appeared to contribute

only a few percent to the MSD cross sections. The inelastic-
scattering cross sections to excited levels in the discrete region
(Eexc < 1.19 MeV) and the neutron transmission coefficients
for the neutron channel were obtained with the coupled-
channel code ECIS03 [20] incorporated in EMPIRE-3.0. The
same CC optical model potential of Soukhovitskii et al. was
used. 19 levels, five from the ground-state rotational band and
the few lowest from the Kπ = 0+(730.5 keV) β-vibration,
Kπ = 2+(785.5 keV) γ -vibration, and Kπ = 0+(1078.7 keV)
anomalous quadrupole vibrational bands as well as the Kπ =
0−(714.25 keV) octupole vibrational band [22], were coupled
simultaneously within the vibration-rotational model [20,23].
It was found that inclusion of additional members of the
above bands in the coupling does not change the results
of calculations noticeably in comparison with the original
coupling scheme [19]. The dynamical deformations of the
phonons involved were taken from literature or obtained by
adjustment to the data. Preequilibrium compound neutron
emission was calculated in the Heidelberg multistep compound
(MSC) approach [3]. The total preequilibrium neutron emis-
sion spectra was obtained as a incoherent sum of both MSD
and MSC contributions. Equilibrium compound decay was
treated within the Hauser-Feshbach statistical model [24] with
fission decay probabilities obtained in the optical model for
fission [25]. The total neutron emission spectra also include
prompt fission neutrons [26].

As fission complicates the analysis, in addition (n, xn)
spectra from the nonfissile deformed nuclei 181Ta, at Einc =
14.1 MeV, and 184W, at Einc = 11.5 MeV, have been calcu-
lated. The CC optical neutron potentials RIPL 1488 [27] and
RIPL 423 [28] from the RIPL-2 database were used, respec-
tively. The static deformations included in these potentials
were employed in generating the deformed Woods-Saxon sp
levels with the WSBETA code, which determine the response
functions for the deformed MSD calculation. As for the
discrete level region, only the ground state rotational band
members were included in the CC calculation.

IV. RESULTS AND DISCUSSION

The calculated cross sections versus incident neutron en-
ergy of the competing 232Th(n, 2n) and 232Th(n, f ) processes
nicely agree with the experimental data (not shown in this
paper but see [14]). The left-hand plots in Fig. 1 present the
EMPIRE-3.0 calculations of the double-differential neutron
emission spectra from the 232Th(n, xn) reaction, with above
deformed Woods-Saxon sp states versus the ones obtained
from the spherical Nilsson potential (default in the released
2.19 version of EMPIRE), together with the experimental
data for selected forward emission angles at incident neutron
energies 11.9 [7], 14.1 [8], and 18 MeV [9], respectively. The
EMPIRE-3.0 calculations accounting for nuclear deformation
in MSD, well reproduce the data in the direct quasicontinuum
region (∼ 5 � Eexc � 1.19 MeV) while the “spherical” calcu-
lations underpredict the same data by a factor ∼ 3– ∼ 6. The
right-hand plots show the corresponding double-differential
neutron emission spectra from the JENDL-3.2 and JEFF-3.1
evaluations and the recent IAEA evaluation [26] adopted for
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FIG. 1. (Color online) 232Th(n, xn), Einc = 11.9, 14.1 and 18 MeV results with deformed Woods-Saxon MSD (solid) and spherical Nilsson
MSD (dotted) (left), ENDF-B-7.0 (dotted), JEFF-3.1 (dashed) and JENDL-3.3 (solid) data (right).

the ENDF/B-VII.0 library [32]. The “deformed” EMPIRE
results show overall better agreement with the measurements
than the corresponding JENDL-3.2 and JEFF-3.1 evaluations
and similar agreement as the IAEA evaluation. It should be
stressed that, except for adjustment of dynamic deformations
used in the coupled-channel calculations and the fission
input taken over from the previous exercise [25,26], the
present results were obtained without any additional parameter
fitting, i.e., there was no adjustment of the MSD part of the
calculations, the part that forms the essence of this paper.
In the IAEA evaluation for 232Th the missing strength in
the continuum region of the neutron spectrum was filled

up with DWBA to a large number of fictitious collective
levels embedded in the continuum. Similar approach has also
been used in other ENDF/B-VII evaluations for important
actinides, such as 235,238U and 239Pu [32,33]. Subsequent
validation proved that the thus obtained improvements of
inelastic scattering data largely improved data performance in
integral benchmarking [34]. Obviously our “deformed” MSD
approach allows to achieve similar result on a physically sound
basis.

The use of the sp eigenenergies and wave functions, derived,
in our present work, from realistic deformed Woods-Saxon
potentials, results in a slight but noticeable improvement of
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FIG. 2. (Color online) Results of EMPIRE calculations with
deformed Woods-Saxon MSD (solid) and spherical Nilsson (dotted)
for 181Ta(n, xn) (above) and 184W(n, xn) (below).

the descriptions of the emission spectra, particularly at higher
incident neutron energies (14.1 and 18 Mev), compared to the
ones presented in Ref. [14], which were obtained using sp
states derived from the simple deformed Nilsson potential.

Recently Dupuis et al. [12] have reported results of MSD
calculations of neutron-emission spectra from 238U, at incident
neutron energies 11.8, 14.2, and 18 MeV. The inelastic
scattering to the continuum was obtained using microscopic
DWBA to deformed Hartree-Fock-BCS states. Their results
show some missing strength in the high-energy region of the
spectra, in contrast with our MSD results. It should be noted
that they did not use a residual p-h interaction which accounts
for collectivity. In the TUL approach, however, configuration
mixing due to p-h correlations is treated with the (Q)RPA

method. Furthermore, Dupuis et al. only consider the one-step
(DWBA) process, while in our MSD calculations also two-step
processes are included which describe two-phonon excitations.

The neutron emission spectra from (n, xn) reactions at the
nonfissile deformed nuclei 181Ta and 184W, calculated with
deformed and spherical response functions, are presented in
Figs. 2(a) and 2(b), respectively, together with the Einc =
14.1 MeV 181Ta(n, xn) data of Matsuyama et al. [29] and
Salnikov et al. [30], and the Einc = 11.5 MeV 184W(n, xn)
data of Marcinkowski et al. [31]. Also here the results
obtained with the deformed response functions show a clearly
better agreement with the data than those obtained with the
spherical ones in the energy range where MSD is important.
However, the differences between both calculational results
are somewhat smaller than those between the 232Th(n, xn)
ones.

V. CONCLUSIONS

The multistep direct TUL model, as developed by Lenske
et al. [2] has been extended in order to account for nuclear
deformation of the target nucleus. The new formalism has been
implemented in the EMPIRE-3.0 code. Deformed response
functions have been derived from realistic Woods-Saxon sp
states obtained with the WSBETA code [15].

Calculations of double-differential neutron emission spec-
tra from the 232Th(n, xn),181 Ta(n, xn) and 184W(n, xn) re-
actions, based upon this formalism, show a substantially
improved agreement with experimental data in the MSD
dominated range and, as for 232Th(n, xn), also in comparison
with corresponding JENDL-3.2 and JEFF-3.1 evaluations
and in similar agreement with measurements as the latest
IAEA evaluation. This improvement is attained by advancing
physical contents of the model rather than by forcing parameter
values or patching the model.
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