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Dissipative quantum dynamics in low-energy collisions of complex nuclei
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Model calculations that include the effects of irreversible, environmental couplings on top of a coupled-channels
dynamical description of the collision of two complex nuclei are presented. The Liouville-von Neumann equation
for the time evolution of the density matrix of a dissipative system is solved numerically providing a consistent
transition from coherent to decoherent (and dissipative) dynamics during the collision. Quantum decoherence
and dissipation are clearly manifested in the model calculations. Energy dissipation, due to the irreversible decay
of giant-dipole vibrational states of the colliding nuclei, is shown to result in a hindrance of quantum tunneling
and fusion.
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I. INTRODUCTION

Collisions of composite nuclei involve a complicated
interplay and exchange of energy and angular momentum
between the relative motion and the intrinsic states of the
nuclei. High precision data for low-energy fusion reactions
provide one of the most sensitive tests of such interplay.
Stationary state coupled-channels descriptions have provided a
natural methodology to study the effects of specific excitation
modes of one or both of the reactants on the reaction
outcomes. The wave function in this Schrödinger coupled-
channels picture is a linear superposition of the states in
the model space with a definite phase relationship. This
coherent linear superposition can result in enhancement of
the quantum tunneling probability and quantum interference.
The coupled-channels approach has been very successful [1] in
explaining several collision observables. However, problems
remain. Foremost is the inability to describe elastic scattering
and fusion measurements simultaneously [2,3] and, related,
the more recent failure to describe in a physically consistent
way the below-barrier quantum tunneling and above-barrier
fusion yields [4].

The coupled-channels treatment of collisions of complex
nuclei as closed quantum systems is an approximation. In
practice, collisions evolve as open quantum systems, with
innumerable bound and continuum intrinsic excitations of
the nuclei. In analogy with problems of a quantum system
in a bath, and following Bohr and Mottelson [5], we view
the nuclear many-body Hamiltonian as a sum of collective,
single-particle, and coupling terms. In a nuclear collision, the
collective part comprises the relative motion of the nuclei
and intrinsic rotational and/or vibrational modes. Only a
fraction of the Hilbert space of this Hamiltonian is used
in any feasible full coupled-channels calculation. This is
because the model space is inevitably restricted to selected,

most collective intrinsic excitations. These collective states
define a reduced quantum system. All other states are weakly
coupled to this reduced system by residual interactions and
constitute an “environment.” The key question that arises
is: do environmental effects influence the reaction dynamics
and observables, such as angular distributions of products or
tunneling rates?

In modeling fusion, the environment is assumed to come
into play only inside the fusion barrier and is accounted
for in coupled-channels calculations through an imaginary
potential or an ingoing wave boundary condition. However,
environmental effects can also be manifested before the nuclei
encounter the fusion barrier, for example, as real or virtual
excitations of giant resonances in the individual nuclei by
the long-range Coulomb excitation mechanism. These can be
important doorway states to the irreversible loss of kinetic
energy (heating of the nuclei), as first suggested in Ref. [6] for
deep-inelastic reactions. Another mechanism is complicated
multinucleon transfer channels [7]. Measurements have shown
that deep-inelastic processes occur even at subbarrier incident
energies [8], in competition with the process of quantum
tunneling, and thus fusion [9]. Energy loss associated with the
deep-inelastic mechanism thus could play a significant role in
the inhibition of tunneling at deep subbarrier energies.

The investigation of the effect, on near- and below-barrier
fusion, here requires a dynamical model that can include both
intrinsic state and environmental couplings in calculations
of the tunneling probability. There are no existing realistic
theoretical approaches for solving this problem. Within a
model context, this article (1) discusses how environment-
induced irreversibility can be incorporated into the successful
coupled-channels framework and (2) makes a first assessment
of its effect on a low-energy nuclear collision. The application
considered is quantum tunneling, relevant to the low-energy
nuclear fusion hindrance phenomenon.
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The article is organized as follows. In Sec. II we give a
brief survey of theoretical approaches to dissipative dynamics
of low-energy nuclear collisions and discuss the suitability
of the Lindblad axiomatic theory for the treatment of energy
dissipation on subbarrier fusion. In Sec. III we present the
coupled-channels density matrix approach. Numerical results
for our model test case are discussed in Sec. IV. Finally, the
summary of the article is given in Sec. V.

II. THEORETICAL BACKGROUND

Neither existing models of fusion nor of deep-inelastic
scattering can address both energy dissipation and quantum
tunneling. The impact of finite lifetimes of excited states
(e.g., giant resonances) on fusion has been studied within a
coupled-channels model [10–12], but this approach does not
lead to energy dissipation. Direct damped collisions between
complex nuclei have also been intensively investigated within
various approaches, including (i) transport theories [13] based
on premaster, master, Fokker-Planck, Langevin, and diffusion
equations and (ii) quantum mechanical collective theories
[14]. An appealing semiclassical coupled-channels approach
combined with a random-matrix model has been suggested by
Ko [15], which unifies the statistical and coherent pictures of
energy dissipation in deep-inelastic collisions. This framework
has been successfully applied [16,17] to study the excitation
of multiphonon giant resonances in heavy-ion collisions at
intermediate energy. In most of these developments the relative
motion of the nuclei is described with classical trajectories,
while the coupling to intrinsic degrees of freedom is treated
either statistically (random-matrix theory) or through phe-
nomenological transport coefficients. However, the quantum
mechanical treatment of the relative motion is essential for
dealing with quantum tunneling.

The quantum dynamical model presented in this work is
based on the time evolution of a reduced density matrix.
It provides a consistent description of the transition from
a pure state to a mixed quantum state during the collision.
The fundamental equation of motion is the Liouville-von
Neumann equation for an open quantum system, in which
a dissipative Liouvillian accounts for irreversibility due to
interactions of the system with an environment. The Lindblad
axiomatic approach [18,19] for open quantum systems has
been successfully applied in nuclear physics, but within
rather schematic models. For instance, to describe the charge
equilibration process in deep-inelastic collisions [20], fission
[21], decay of giant resonances [22], tunneling through a
parabolic barrier [23], and scattering in a two-dimensional
inverse parabolic potential [24]. These are calculations for a
single channel of either one damped oscillator [21–23] or two
coupled damped oscillators [20,24].

In low-energy nuclear collisions, the context of the present
application, Lindblad’s dynamics for the evolution of the
reduced system is justified (i) because the coupling to the
complex environment (through excited doorway states and de-
termined by residual interactions) is weak and (ii) because the
Markov approximation is expected to be valid, the collective
motions of the two nuclei being slower than the rearrangement

of the environmental (nucleonic) degrees of freedom. With
increasing collision energy, to well above the Coulomb barrier,
memory effects related to diabatic dynamics [25–27] may be
important and a non-Markovian Liouvillian may be required.
The weak coupling between two subspaces of the total space of
intrinsic nuclear states distinguishes between the system and
the environment. The Lindblad theory does not require [28] any
limitation on the strength of the system-environment coupling,
although the definition of physically well-defined environment
states would require a careful analysis in the strong-coupling
limit.

An essential effect of the environment on the reaction
dynamics (unlike the effect of absorptive terms) is to pro-
gressively destroy the coherent linear superposition and the
associated phase relationships between different channels,
introducing quantum decoherence in the system.

Here, we identify two such (model) sources of decoherence
and dissipation. First, an environment inside the Coulomb
barrier, which is related to the complexity of compound
nucleus states. Second, one with effectively a long range,
associated with decay out of short-lived (compared to the
reaction time) internal vibrational states, e.g., the giant dipole
resonance (GDR) of the colliding nuclei, will be shown to be
of particular importance. The damping of the GDR, because of
its irreversible coupling to a sea of complicated surrounding
states, which constitute the environment [29], destroys the
coherent dynamical coupling with the relative motion of the
nuclei. Here we show that damping of the GDR results in
decoherence and energy loss in the region where the nuclei
overlap, inhibiting tunneling and thus fusion.

III. COUPLED-CHANNELS DENSITY MATRIX
APPROACH

We exploit the time evolution of a coupled-channels density
matrix, as is employed in quantum molecular dynamics [30].
The density operator ρ̂ in Eq. (1) is represented in an
asymptotic (product) basis of states of the internal Hamiltonian
of the individual nuclei, |i〉, i = 1, . . . , N (lower indices), and
coordinate states describing the separation of the two nuclei,
|r), r = 1, . . . , M (upper indices). That is,

ρ̂ =
∑
ij,rs

|r)|i〉ρrs
ij 〈j |(s|. (1)

Crucially, we also add two auxiliary states to the |i〉 basis that
allow distinct environmental interactions, as described below.
The density operator obeys the time-dependent Liouville-von
Neumann equation

∂ρ̂

∂t
= L̂ρ̂ = [L̂H + L̂D]ρ̂, (2)

where the total Liouvillian consists of a Hamiltonian part
L̂H ρ̂ = −i[Ĥ , ρ̂]/h̄ describing the coherent evolution of
the system with Hamiltonian Ĥ and a dissipative part L̂D

accounting for the interactions with the environment. Here, L̂D

is assumed to be given by Lindblad’s dissipative Liouvillian
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[18,19] associated with a Markovian semigroup evolution, i.e.,

L̂Dρ̂ =
∑

α

(
Ĉαρ̂Ĉ†

α − 1

2

[
Ĉ†

αĈα, ρ̂
]
+

)
, (3)

where [. . .]+ denotes the anticommutator. Here each Ĉα is
a Lindblad operator for a dissipative coupling, physically
motivated according to the specific problem. We assume
that each coupling α ≡ (Ij ) between a given state |j 〉 and
an environmental state |I 〉 has an associated rate �Ij , i.e,
ĈIj = √

�Ij |I 〉〈j | [31], determined by the inverse lifetime of
the excited states and the branching ratio of its deexcitation,
taken to be that when the nuclei are well separated. We
note also that (a) the Lindblad Liouvillian has been derived
using microscopic models [22,32] and (b), in contrast to many
(dissipative) model Liouvillians [19], Eq. (3) preserves both
the positivity and the trace of the density matrix. These are
essential properties in any realistic application.

In the model calculations that follow, the basis comprises
two asymptotic states (coupled-channels) |1〉 and |2〉 with
channel energies ej . Channel |1〉 is the (ground states) entrance
channel and is coupled to an inelastic state |2〉 by a coupling
interaction V12. Two distinct sources of irreversibility are also
considered, modeled by two auxiliary (environment) states |X〉
and |Y 〉. The first environmental coupling describes capture
by the potential pocket inside the fusion barrier. This simulates
the irreversible and dissipative excitations associated with
the evolution from the two separate nuclei to a compound
nuclear system. In a stationary states approach this loss of
flux is approximated by imposing an imaginary potential
−iW (r),W (r) > 0, or an ingoing wave boundary condition
at distances well inside the barrier. Here, these transitions
are described by an auxiliary state |X〉, to which all other
states |j 〉 couple, modeled [33] by a Lindblad operator,
ĈXj = √

γ rr |X〉〈j |. The absorption rate to state |X〉 is given by
γ rr = W (r)/h̄, where W (r) is taken as a Fermi function with
depth 10 MeV and diffuseness 0.1 fm, located at the pocket
radius of the nucleus-nucleus potential, ≈7 fm. This choice
guarantees complete absorption inside the pocket. The fusion
probability is defined as the probability accumulating in this
state |X〉.

The second environment, whose explicit treatment will be
seen to be the most significant at lower energies, is associated
with the irreversible decay out of intrinsic excitations of
the colliding nuclei. Such decays are independent of the
dynamical couplings. Specifically, we associate the ONLY
excited coupled-channel state |2〉 with the GDR excitation.
We then introduce a second auxiliary state |Y 〉, representing
the bath of states in which the GDR is embedded and to which
only the GDR excitation |2〉 is coupled.

Thus, |Y 〉 and/or |X〉 supplement the two intrinsic states |1〉
and |2〉 that compose the two coupled channels. Both of the
auxiliary states refer to complex excitation modes of the nuclei,
associated with nucleonic degrees of freedom and compound
nucleus states, respectively. They provide intuitive and formal
channels [33] for describing irreversible coupling and loss of
probability from the system to these environments, couplings
that enter only through the dissipative dynamics term L̂D in
Eq. (2). |Y 〉 is also assumed to couple to |X〉 at the appropriate

FIG. 1. (Color online) Schematic representations of the dissi-
pative coupled channels model calculations, with channel energies
ej , showing the spatial and energy localization of the auxiliary
(environment) states |X〉 and |Y 〉 (shaded rectangles). The left-hand
panel shows the dynamical calculation scheme in the presence of
environment |X〉 only. The right-hand panel shows the dynamical
calculation scheme in the presence of both environments |X〉 and
|Y 〉. Here, dashed lines indicate regions where the intrinsic channels
|1〉 and |2〉 experience irreversible couplings to the environmental
states |X〉 and/or |Y 〉.

range of separations. Probability accumulating in state |Y 〉
outside of this |X〉 pocket may be identified with deep-inelastic
processes, as is discussed later. These environments and the
couplings present in the model calculations are represented
schematically in Fig. 1. There, dashed lines indicate regions
where the intrinsic coupled-channels states |1〉 and |2〉 experi-
ence irreversible (environment) couplings to states |X〉 and/or
|Y 〉.

Upon inserting Eq. (1) into Eq. (2), the following coupled
equations are obtained for the time evolution of the density
matrix elements,

ρ̇rs
ij = (L̂H ρ̂)rsij + (L̂Dρ̂)rsij . (4)

Explicitly, the Hamiltonian terms are given by

(L̂H ρ̂)rsij = − i

h̄

[
ρrs

ij (ei − ej ) +
M∑
t=1

(T rtρts
ij − ρrt

ij T ts) +

ρrs
ij (Urr − Uss) +

N∑
k=1

(V rr
ik ρrs

kj − ρrs
ik V ss

kj )

]
, (5)

where i, j , and k run only over intrinsic states |1〉, |2〉, . . . .
The dissipative terms are given by

(L̂Dρ̂)rsij = δij

∑
k

�̃rr
ik ρrs

kk − 1

2

[∑
k

(�̃rr
ki + �̃rr

kj )

]
ρrs

ij , (6)

where the indices run over all the included intrinsic state
to auxiliary state couplings and �̃rr

ij = �ij + γ rr . In Eq. (5),
T ,U , and V refer to the relative kinetic energy, the total bare
nucleus-nucleus potential (Coulomb + nuclear), and the cou-
pling interaction between the intrinsic channels, respectively.

While not the technique that is used here, we note that
this Lindblad dynamical model can also be recast and solved
numerically within the Monte Carlo wave function method
(see, e.g., Ref. [34]). In that approach, decoherence and
dissipation originate from the introduction of random quantum
jumps in the time evolution of the wave function of the system.
This unraveling density matrix evolution, through stochastic
wave function methods [34], shows that the two approaches
are equivalent and the former takes into account the role of
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fluctuations in the calculation of the expectation values and
variances of observables.

The present calculational scheme is based on Eqs. (5)
and (6) and proceeds as follows. Initially, at time t = 0, the
nuclei are well separated in their ground states, and their
density matrix describes a pure state with Tr[ρ̂] = Tr[ρ̂2] =
1. An initial wave-packet describes the relative motion of
the nuclei. The coupled equations are solved numerically
using the Faber polynomial expansion of the time evolution
superoperator [35], exp(τ L̂), and the Fourier method of
Ref. [36] for the commutator between the kinetic energy and
density operator. Having solved for the dynamical evolution of
the density matrix, expectation values of an observable Ô are
now obtained from the trace relation 〈 ˆO(t)〉 = Tr[Ôρ̂(t)]. The
purity of the initial state, conserved under Hamiltonian unitary
evolution, will be destroyed (Tr[ρ̂2] < 1) if the environment
causes a loss of quantum coherence. This decoherence can
thus be quantified via this loss of density matrix purity, or
equivalently by an increase of the linear entropy 1 − Tr[ρ̂2].

IV. NUMERICAL RESULTS AND DISCUSSION

So as to make contact with the coherent Schrödinger
picture, the model Hamiltonian we used was chosen to coincide
with that of the coupled-channels fusion model CCFULL [37].
Specifically, our model calculations use physical parameters
relevant to the 16O + 144Sm reaction at collision energies
below its nominal fusion barrier, VB = 61.1 MeV. We assume
zero relative orbital angular momentum between the reactants.
The form of the bare nuclear potential between the two nuclei,
consistent with the stated VB , is a Woods-Saxon potential with
(V0, r0, a0) ≡ (−105.1 MeV, 1.1 fm, 0.75 fm). The Coulomb
potential was that for two point charges. The 16O projectile
was taken to be inert and the 144Sm target was allowed to
be excited to a GDR vibrational state. The dynamical nuclear
coupling of the ground state |1〉 to the vibrational state |2〉,
with excitation energy E1− = 15 MeV, has a macroscopic
deformed Woods-Saxon form with a deformation parameter of
β1 = 0.2.

The time step for the density matrix propagation was
	t = 10−22 s, and the radial grid (r = 0–250 fm) was evenly
spaced with M = 512 points. The relative motion of the two
nuclei in the entrance channel |1〉 was described by a minimal-
uncertainty Gaussian wave packet, with width σ0 = 20 fm,

TABLE I. The calculated density matrix purity Tr[ρ̂2] and
energy loss 	E = Tr[Ĥ(ρ̂0 − ρ̂)] following time evolution (for 700
time steps) when including only the state |X〉 and both states |X〉
and |Y 〉 environmental couplings. The GDR coupling strength used
was β1 = 0.2.

E0 (MeV) State |X〉 States |X〉 and |Y 〉
Tr[ρ̂2] 	E (MeV) Tr[ρ̂2] 	E (MeV)

45 1.0000 0.0004 0.9196 1.8718
50 1.0000 0.0004 0.8977 2.6744
55 0.9996 0.0109 0.8759 3.6100
60 0.6067 14.862 0.5127 18.908

initially centered at r = 150 fm, and was boosted toward
the target with the appropriate average kinetic energy for
the entrance channel energy E0 required. The FWHM energy
spread of the wave packet was ∼3%. The numerical accuracy
of the time evolution was checked using a fully coherent,
time-dependent calculation, excluding coupling to states |X〉
and |Y 〉. It was confirmed that the normalization and purity of
the density matrix, Tr[ρ̂] = Tr[ρ̂2] = 1, and the expectation
value of the system energy Tr[Ĥ ρ̂] were maintained with high
accuracy over the required number of time steps, typically 700
for the full duration of the collision.

The importance of the two, spatially distinct, sources of
environment couplings was studied. Calculations were first
performed in the scheme shown in the left panel of Fig. 1.
Here the intrinsic coupled channels |1〉 and |2〉 also couple
to the capture state |X〉. Calculations were carried out for
E0 = 45, 50, 55, and 60 MeV incident energy. The calculated
state purity Tr[ρ̂2] and the energy dissipation Tr[Ĥ (ρ̂0 − ρ̂)]
post the collision (after 700 time steps) are shown in the
left-hand columns in Table I. For sufficiently subbarrier
energies, E0 � 55 MeV, it is evident that time evolution in
the presence of state |X〉 essentially maintains coherence
and is nondissipative. There is, however, loss of purity and
dissipation at the highest energy. It is interesting, therefore, to
compare the density matrix and the Schrödinger predictions
of CCFULL (that uses an ingoing wave boundary condition).
This is done here only for calculations of the tunneling
probability P (E0), in a relative s wave, shown in Fig. 2(a).
These comparisons, of necessity, require convolution of the
� = 0 partial wave penetrabilities T0(E) from CCFULL with
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FIG. 2. (Color online) (a) The energy de-

pendence of the s-wave tunneling probability
calculated with the density matrix (solid points)
and the coupled-channels CCFULL methods (solid
line). (b) The time evolution of the density matrix
purity Tr[ρ̂2] and the energy loss Tr[Ĥ (ρ̂0 − ρ̂)]
with decoherent |X〉 and |Y 〉 state dynamics,
corresponding to the right-hand E0 = 45 MeV
entry in Table I.
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(b) FIG. 3. The internuclear potential
(thick curve) and the time evolution
of the wave packet for 16O + 144Sm
at E0 = 45 MeV: (a) including only
coupling of the auxiliary state |X〉, (b)
including coupling of the states |X〉
and |Y 〉. The wave packet is plotted
at times t = 0 (dashed curve), 400 ×
10−22 s (dotted curve), and 700 ×
10−22 s (thin solid curve).

the energy distribution f (E,E0) of the chosen initial wave
packet. That is, P (E0) ≡ ∫

dE f (E,E0)T0(E). The P (E0),
shown as a function of E0/VB in Fig. 2(a), are in very
good agreement showing the appropriateness of stationary
state coupled-channels calculations for this observable within
the dynamical scheme of states |1〉, |2〉, and |X〉. It is our
contention that the dissipation associated with state |X〉, while
significant at 60 MeV, is strongly localized inside the barrier
and thus does not impact upon the barrier penetrability. We
will now show that the same is not true for the more spatially
extended dissipation due to the GDR decay environment |Y 〉.

The treatment of the irreversible GDR decay (with a
spreading width of 6 MeV) to the bath of surrounding complex
states (represented by |Y 〉) was included by switching on the
coupling of the intrinsic inelastic state |2〉 to |Y 〉. This is
the dynamical scheme of the right-hand panel in Fig. 1.
Unlike the coupling to |X〉, a major part of the inelastic
excitation of the system gives access to |Y 〉 before the wave
packet encounters the fusion barrier. The onset of decoherence,
the purity of the density matrix, and the associated energy
dissipation are shown in the right-hand entries in Table I and,
as a function of time evolution, in Fig. 2(b), the latter for
E0 = 45 MeV.

Summing over all internal states of the density matrix
gives the total diagonal elements in coordinate space, which
represent the wave packet at a given time. Snapshots of the
wave packet in the interaction region (for E0 = 45 MeV)
are shown in Fig. 3. The curves are shown for times t = 0
(dashed, the initial state), 400 × 10−22 s (dotted, near to the

time of closest approach), and 700 × 10−22 s (thin solid, post
the collision). Figure 3 shows the results from (a) the coupling
to state |X〉 and (b) to both |X〉 and |Y 〉. When the wave
packet tunnels into the pocket (from dashed to dotted lines),
the short-range coupling to |X〉 leads to trapping of flux from
|1〉 and |2〉 inside the potential pocket. This reveals itself as
an unchanging probability for radii r < 7.5 fm as the main
body of the wave packet leaves the interaction region (from
the dotted to the thin solid lines) in Fig. 3(a). The additional
effect of turning on the coupling between states |2〉 and |Y 〉 is
to trap probability under the barrier, as is shown in Fig. 3(b).
This reduces the component of the wave packet that reaches
the potential pocket, inhibiting the quantum tunneling.

The probability trapped under the fusion barrier is associ-
ated with GDR collective vibrational energy being irreversibly
removed from the coherent dynamics into innumerable chan-
nels (heat). This is then no longer available for relative
motion, or tunneling. Such energy loss can be correlated with
deep-inelastic processes, seen experimentally, that compete
with fusion in reactions involving heavy nuclei [8].

Figure 4(a) shows the time evolution of the probability
trapped in the potential pocket, state |X〉, for E0 = 45 MeV.
We comment that, when including the inelastic channel |2〉
but not |Y 〉, the nucleus-nucleus potential renormalization
leads to the expected enhanced penetrability from the inelastic
channel coupling, compared to the purely elastic (|1〉 plus |X〉)
calculation. The decoherent dynamics due only to environment
|X〉 gives the (full curve). By comparison, the calculation that
also includes the GDR doorway-state decay to |Y 〉 leads to a
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FIG. 4. (Color online) (a) Time dependence
of the probability trapped in |X〉 for E0 =
45 MeV. The full curve includes states |1〉, |2〉,
and |X〉. The dotted curve adds the irreversible
decay of |2〉 to |Y 〉. The calculations are for β1 =
0.2. (b) Calculated suppression of the probability
trapped in |X〉 as a function of the assumed
β1 value for E0 = 45 MeV (dashed curve) and
55 MeV (solid curve).
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suppression (dotted curve and arrow) of the population of state
|X〉. Additional irreversible processes other than excitation of
the GDR are also likely to contribute to the deep-inelastic yield,
such as complicated multinucleon transfers [7]. To simulate
these very simply, the assumed state |1〉 to |2〉 coupling
strength was increased. Figure 4(b) shows the dependence
of the calculated tunneling suppression on the assumed β1

strength for E0 = 45 (dashed curve) and 55 MeV (solid curve),
where we note that larger β1 values result in both an increase
in the strength and the range of the coupling form factor to the
inelastic state |2〉.

V. SUMMARY

A quantum dynamical model based on time propagation
of a coupled-channels density matrix has been presented and
is shown to describe the transition from pure state (coherent)
to mixed state (decoherent and dissipative) dynamics during

a nuclear collision. The calculations exhibit both decoherence
and energy dissipation and so go beyond coherent coupled-
channels approaches. Decoherence, originating here from
the irreversible decay of a giant-dipole vibrational state of
the heavy target nucleus to surrounding states, is shown to
result in hindrance of quantum tunneling. Developments of
the model calculations to include (a) nonzero relative orbital
angular momenta between the reactants, (b) additional intrinsic
channels, and (c) a more detailed consideration of other
processes, such as multinucleon or cluster transfer reactions,
are necessary to confront experimental measurements.
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[13] W. U. Schröder and J. R. Huizenga, Treatise on Heavy-Ion

Science, edited by D. A. Bromley (Plenum, New York, 1984),
Vol. 2, p. 140, and references therein.

[14] J. A. Maruhn, W. Greiner, and W. Scheid, Heavy Ion Collisions,
edited by R. Bock (North-Holland, Amsterdam, 1980), Vol. 2,
p. 127, and references therein.

[15] C. M. Ko, Z. Phys. A 286, 405 (1978).
[16] B. V. Carlson, M. S. Hussein, A. F. R. de Toledo Piza, and L. F.

Canto, Phys. Rev. C 60, 014604 (1999).
[17] M. S. Hussein, B. V. Carlson, and L. F. Canto, Nucl. Phys. A731,

163 (2004).

[18] G. Lindblad, Commun. Math. Phys. 48, 119 (1976).
[19] A. Sandulescu and H. Scutaru, Ann. Phys. (NY) 173, 277 (1987).
[20] A. Sandulescu, H. Scutaru, and W. Scheid, J. Phys. A 20, 2121

(1987).
[21] E. Stefanescu, W. Scheid, A. Sandulescu, and W. Greiner, Phys.

Rev. C 53, 3014 (1996).
[22] E. Stefanescu, R. J. Liotta, and A. Sandulescu, Phys. Rev. C 57,

798 (1998).
[23] G. G. Adamian, N. V. Antonenko, and W. Scheid, Nucl. Phys.

A645, 376 (1999).
[24] M. Genkin and W. Scheid, J. Phys. G 34, 441 (2007).
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