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Accuracy of BCS-based approximations for pairing in small Fermi systems
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We analyze the accuracy of BCS-based approximations for calculating correlation energies and odd-even
energy differences in two-component fermionic systems with a small number of pairs. The analysis is focused on
comparing BCS and projected BCS treatments with the exact solution of the pairing Hamiltonian, considering
parameter ranges appropriate for nuclear pairing energies. We find that the projected BCS is quite accurate over
the entire range of coupling strengths in spaces of up to about ∼20 doubly degenerate orbitals. It is also quite
accurate for two cases we considered with a more realistic Hamiltonian, representing the nuclei around 117Sn
and 207Pb. However, the projected BCS significantly underestimates the energies for much larger spaces when
the pairing is weak.
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I. INTRODUCTION

A theory of nuclear pairing based on the BCS approxi-
mation was considered for the first time 50 years ago [1].
Since then, BCS-based approximations, or, more generally, the
Hartree-Fock-Bogoliubov equation, have become ubiquitous
for calculating nuclear energies in the framework of density
functional theory or self-consistent mean-field theory. It is thus
important to understand the limitations of these approxima-
tions and use more accurate theory when needed. In particular,
the BCS ansatz of a condensate with indefinite particle number
becomes problematic in finite systems with weak pairing, as
is the case for nuclei at shell closures. Several ways have
been proposed to improve the theory [2], beginning with
number-projected BCS (PBCS) first proposed by Bayman [3]
and Blatt [4]. It is our aim here to evaluate the PBCS by testing
it in situations for which an exact solution is available.

To investigate the accuracy of PBCS approximation we
shall consider a finite number of spin-1/2 fermions, e.g.,
neutrons or protons, distributed in a sequence of single-particle
levels and interacting through a pairing force. We will mainly
consider the reduced BCS Hamiltonian given by

H =
�∑
i

εi(a
†
i ai + a

†
ī
aī) − g

�∑
i,j

a
†
i a

†
ī
aj̄ aj . (1)

Here g is the strength of the pairing force acting in a space of
� twofold degenerate orbitals with the single-particle energies
εi .

The Hamiltonian (1) is exactly solvable [5,6] and it was
used in the 1960s to make a critical analyses of the BCS
approximation in finite Fermi systems. Thus in Ref. [6]
Richardson studied the exact and the BCS solutions of the
Hamiltonian (1) with εi = i and for systems with � = 8–32
at half filling, i.e., with the number of particles N = �. Such
systems plausibly model the pairing in deformed nuclei with
the active nucleons (for pairing calculations) filling the major
shells 8–20, 50–82, and 82–126. The main conclusion of
Ref. [6] was that BCS model strongly underestimate the pairing

correlations even for relatively large values of the pairing
strength. The question we address in this study is how much
one could improve the BCS results relative to the exact model if
we perform PBCS calculations. Some of the issues analyzed in
this article were also discussed recently in relation to metallic
grains studies [7–9]. There has also been a recent study in the
nuclear physics context [10]. These authors found a significant
difference between the exact solution and the PBCS. In
Sec. II we shall argue that the PBCS approximation is
nevertheless quite accurate if it is applied in a limited window
around the Fermi level of the order of one major shell in atomic
nuclei.

Unfortunately, Richardson’s model requires that the inter-
action matrix elements be equal in the pairing Hamiltonian
[11]. It is essential to be able to treat the most general form
of the Hamiltonian (1), with the matrix elements computed as
integrals over an effective two-particle potential, if the theory
is to be a global one describing the entire nuclear mass table.
In that case the Hamiltonian has a more general form

H =
�∑
i

εi(a
†
i ai + a

†
ī
aī) −

�∑
i>j

vij a
†
i a

†
ī
aj̄ aj , (2)

where vij = viīj j̄ are calculated with some two-body inter-
action such as in Eq. (16) below. There is no algebraic
solution for this more general case, but we can obtain useful
results up to and beyond � = 16 using ordinary numerical
matrix methods. Some examples will be treated in Sec. III.
The realistic calculations show that the PBCS approximation
gives accurate results, confirming the conclusions based on
Hamiltonian (1) and Richardson models. The fact that PBCS
can provide a good description for the ground state of realistic
Hamiltonians can be also seen from the large overlaps between
the PBCS and the shell-model wave functions [12].

A good agreement between PBCS and the exact Richard-
son’s solution we also find for the occupation probabilities
of single-particle levels, analyzed in Sec. IV. It is worth
emphasizing that this agreement is obtained with two different
wave functions for the ground state of the systems, i.e., a
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condensate formed by identical Cooper pairs in PBCS model
and a noncondensate structure based on distinct pairs in
the case of exact Richardson’s solution. These differences
manifest clearly in the collectivity of the Cooper pairs,
discussed in Sec. IV. The reason why such differences do not
affect significantly the correlation energies and the occupation
probabilities when the calculations are done in a limited
window around the Fermi level is not yet clear [13].

Finally, we mention that another methodology that is widely
used to go beyond the BCS theory is the Lipkin-Nogami
approximation. We do not consider it here for the following
reasons. First, it has been thoroughly studied in the past
and its strengths and deficiencies are well known. It has a
serious shortcoming in that the approximation is not reliable
near closed-shell nuclei [14]. Because we seek approximation
methods that cover all the extremes that arise in the nuclear
mass table, we find this method unsuitable.

II. SOLUTIONS OF THE BCS HAMILTONIAN

The Hamiltonian (1) certainly describes the basic features
of nuclear pairing correlations, and it is commonly solved
using the BCS or PBCS approximation. Both BCS and PBCS
methods are variational in that the approximation is made
on the wave function, and the energy is calculated as an
expectation value. The usual form of the BCS wave function is
the well-known expression ��

i (ui + via
†
i a

†
ī
)|〉, but for putting

it in the context of the other treatments one can write it as an
exponentiated product of a pair operator,

�† =
∑

i

xia
†
i a

†
ī
. (3)

The BCS ground state can then be expressed as a coherent
superposition of pairs, i.e.,

|BCS〉 ∝ e�† |0〉 ≡
∑

n

(�†)n

n!
|0〉. (4)

The mixing amplitudes of the pair operator, written usually
as xi = vi/ui , are given by the well-known BCS equations.
The PBCS approximation is obtained by restricting the
expansion in Eq. (4) to the term having the required number of
particles. Thus, in PBCS the ground-state wave function can
be expressed

|PBCS〉 ∝ (�†)Npair |0〉, (5)

where Npair is the number of pairs. The PBCS equations, which
determine the mixing amplitudes xi of the pair operator (2),
are derived by minimizing the average of the Hamiltonian in
the state (5). They can be solved by using the residual integrals
technique [15]. Alternatively, if the number of pairs is not too
large, the amplitudes xi can be found by using the technique
of recurrence relations.

As shown in Ref. [5], the pairing Hamiltonian (1) can be
solved exactly. The solution resembles Eq. (5) except that the
operator �† is replaced by Npair different pair operators B†

ν ,

|�〉 =
N∏
ν

B†
ν |0〉. (6)

The pair operators have the form

B†
ν =

∑
i

1

2εi − Eν

a
†
i a

†
ī
. (7)

They depend on energy parameters Eν obtained by solving the
set of nonlinear equations

1

g
−

∑
j

1

2εj − Eν

+
∑
µ �=ν

2

Eµ − Eν

= 0. (8)

The sum of pair parameters Eν gives the total energy of the
system, i.e.,

E =
∑

ν

Eν. (9)

In the limit g = 0 the pair energies Eν of the ground
state solution coincide with the lowest single-particle energies,
i.e., Eν = 2εν, (ν = 1, 2, . . . Npair). When the interaction is
turned on, the pair energies evolve toward lower values and
could become complex two at a time. This fact was used
by Richardson to obtain a set of equations in which the
singularities are removed [6].

For small values of g in finite systems, the BCS condensate
collapses and the BCS approximation gives zero correlation
energy. However, due to the finite distance between the
levels, for small values of the interaction strength the pairing
interaction energy can be calculated perturbatively. This is
opposite to what happens in infinite systems where the
pairing correlations depends exponentially on pairing strength
in the weak coupling limit. The perturbative solution can
be easily derived by enumerating the two-particle two-hole
configurations starting from the lowest energy configuration
or by taking the small-g limit of the Richardson equations (8).

The second-order perturbation result for the interaction
energy, i.e., the energy gained by the system when the
interaction is turned on, is given by

EP
corr = g2

2

Npair∑
i=1

�∑
j=Npair+1

1

εj − εi

. (10)

This expression is valid for even N ; for odd N = Npair + 1
the j sum begins at j = Npair + 2. It can be shown [8] that
the approximation (10) for the interaction energy is valid if
g < gP ≡ g∗(1 − g∗), where g∗ is the convergence radius of
the perturbative expansion given by

1

g∗ =
Npair∑
j=1

1

εj

. (11)

A. Correlation energies and pairing gaps

In this section we shall discuss the correlations energies and
the pairing gaps provided by the Hamiltonian (1) for a single-
particle spectrum formed by � twofold degenerate orbits with
uniformly spaced energies, i.e., εi = i. The analyses is done
for systems formed by N particles distributed in � = N levels
with � = 8–80. For the strength of the interaction we use the
range g = 0.1–0.8, which covers all the interesting coupling
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FIG. 1. (Color online) Correlation energies for the Hamiltonian
(1), calculated in various approximations: (a) � = 8, Npair = 4;
(b) � = 80, Npair = 40.

regimes met in nonspherical atomic nuclei. In all figures
discussed in this section the energies, the pairing gaps and
the interaction strength are given in units of single-particle
levels spacing.

We first discuss the correlation energies calculated exactly
and in various approximations. The correlation energies are
defined by the difference in energies between a single Slater
determinant and the pair-correlated state, i.e.,

Ecorr(g) = EHF − E(g). (12)

The results are shown in Fig. 1. From this figure is obvious
that the BCS seriously underpredicts the correlation energy
while the PBCS does much better. To see the differences
more quantitatively, in the next figures we show for each
approximation how the error depends on g and �. The BCS
errors shown in Fig. 2 are large, making this approximation
completely unreliable. The results for the PBCS approximation
are shown in Fig. 3. The errors are much smaller but become
unacceptably large for the biggest space, � = 80. In spacing
corresponding to a single major shell the error is well under
10%. It is important to emphasize that the example discussed
above does not contradict the fact that pairing models become
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FIG. 2. (Color online) Errors of the BCS approximation for
correlation energies.
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FIG. 3. (Color online) Errors for the correlation energies calcu-
lated in the PBCS approximation.

more accurate if one moves toward the thermodynamical
limit [16]. To reach this limit the particle number is increased
but, at the same time, the calculations are done keeping a
fixed energy window around the Fermi energy. In this way
the increase of particle number has as effect an increase of
level density around the Fermi level that, in turn, is increasing
the pairing correlations and by that the accuracy of pairing
models. This differs from what happens in the system with 40
pairs discussed above and in many BCS and HFB calculations
performed for atomic nuclei, where the energy window around
the Fermi level is increased to include the deep bound nucleons.
As discussed above, by this procedure the accuracy of pairing
calculations becomes worse not better.

The question that arises is why BCS approximation strongly
underestimates the pairing correlations in finite systems.
This question was recently addressed in relation to metallic
grains calculations. Thus, in Ref. [8] it is argued that BCS
works properly only for so-called condensed levels, i.e., the
levels with the energies located in the interval I = |� − µ|,
where � is the gap parameter in the BCS equations and
µ is the Fermi energy. This conclusion is supported by the
observation that the correlation energy calculation in BCS is
close to the exact result obtained if from the exact solution
is kept only the contribution of condensed levels (in the
exact solution the condensed levels have usually complex
pair energies). However, it was found that the contribution of
levels located outside the interval I are underestimated in BCS.
Because in the exact solution the Cooper pairs corresponding
to these levels have the pair energies close to the single-particle
levels, one expects that the contribution of these levels to
pairing correlations could be treated perturbatively. Based
on these observations it was found [7–9] that in metallic
grains the correlation energy could be approximated by a
formula combining the BCS and the perturbative expressions
in the sum EBCS

corr (g) + � + a(g)EP
corr, where the last term is

the perturbative result and a(g) is a function of the order of
unity determined by the fitting protocol. The BCS contribution
is approximated by the first two terms representing the
condensation energy and the pairing gap for infinite system.
The later accounts for the size correction to the bulk result
(first term). To see if such an approximation could work for
the small systems analyzed here, we have simply replaced the
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FIG. 4. (Color online) Errors for the correlation energies approxi-
mated as the sum of the BCS energy and the second-order perturbative
energy, Eq. (13).

first two terms in the above expression by the BCS result (for
finite systems) and we take a(g) = 1,

Ecorr = EBCS
corr + EP

corr. (13)

The corresponding results are shown in Fig. 1 by inverted
triangles and the corresponding errors are given in Fig. 4. It
can be seen that this simple approximation works surprisingly
well for a wide range of the pairing strengths, including the
physical region up to g ∼ 0.8. Of course, it is not applicable
to situations where there is a degeneracy in the single energies
at the Fermi level, because perturbation theory diverges in that
situation.

We next compare the pairing gaps calculated in the BCS
and PBCS approximations with the exact values. The gap is
defined as the second difference of energies between an odd-N
system and its neighbors with even-N ,

�(3)(N ) = 1
2 [2E(N ) − E(N − 1) − E(N + 1)]. (14)

We shall call �(3)(N ) the gap at number N . The results at the
smallest and largest spaces are shown in Fig. 5. One can see
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FIG. 5. (Color online) Pairing gaps [Eq. (14)] calculated in
various approximations: (a) � = 8, Npair = 4; (b) � = 80, Npair =
40.
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FIG. 6. (Color online) Error in pairing gaps calculated with the
PBCS approximation.

that PBCS gives accurate gaps in all coupling regimes, contrary
to the larger systems analyzed in metallic grain studies [7–9].
The errors associated with the PBCS approximation are shown
in more detail in Fig. 6. It is probably acceptable to tolerate
an error up to 10%, but not higher, for the gap. The results for
the gaps confirm that the PBCS is reliable only up to moderate
size spaces.

It is interesting to note that in spite of the large errors
in the correlation energies, in the physical region of the
strength parameter the BCS pairing gaps come much closer
to the exact results. However, contrary to the PBCS results,
the good agreement of the BCS gaps to the exact values in
the region of well-developed pairing correlations is just a
manifestation of the errors cancellation when the subtraction is
performed in Eq. (14). Consequently, fixing the pairing force
by the odd-even mass difference, as usually done in nuclear
structure calculations, does not guarantee a good description
of correlation energies within the BCS approximation.

III. PBCS FOR REALISTIC PAIRING INTERACTIONS

Ultimately, the theory of nuclear binding energies should
be based on realistic interactions dropping the constant-g
approximation. The Richardson solution has been somewhat
generalized to encompass separable pairing interactions [17],
but to be truly realistic the Hamiltonian must allow completely
general interactions in the many-body space of pairwise
occupied orbitals. These Hamiltonians can be solved by
straightforward configuration interaction (CI) methodology, in
which a Hamiltonian matrix is constructed in the Fock space
of the orbitals and diagonalized by standard linear algebra
operations. The size of the space D needed to represent the
most general paired wave function is given by the number of
combinations of Npair orbitals out of total of �,

D =
(

�

Npair

)
. (15)

For example, for � = 16 orbitals and N = 16 particles the
dimension of the space is 12,870. The lowest eigenvector for a
space of this size is easily calculated on serial computers using
the Lanczos algorithm.
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We have carried this out for two examples in which the
pairing is very different. The Hamiltonian makes use of the
orbital energies and wave functions from the global mean-field
calculations of Ref. [18], which are based on the Skyrme SLy4
energy functional. Pairing is strong in the Sn isotope chain, and
we will take 117

67 Sn50 and its neighbors as an example of where
the pairing is well developed. The second example is 207Pb. In
the global systematics of neutron pairing gaps, the one at 207Pb
is the smallest [�(3) = 0.32 MeV], so this provides a good test
of the approximation methods in the weak pairing limit.

We use the published code EV8 [19] to recalculate the
needed orbital properties, starting from the wave functions
provided in the original global survey [18]. The orbitals are
represented internally in the code with a three-dimensional
mesh, so they need not have good angular momentum quantum
numbers. However, for the even-N Sn and Pb isotopes, the
mean-field solution is spherically symmetric and the orbitals
can be given angular momentum assignments. In Ref. [18] the
pairing interaction was taken as a density-dependent contact
interaction in a space truncated to a band of width 10 MeV
about the Fermi energy. Here we use an ordinary δ function to
generate the pairing matrix elements,

vij = v0

∫
d3r|φi(r)|2|φj (r)|2, (16)

where the φ(r) are orbital wave functions. The strength v0 has
been fitted to the global systematics of pairing gaps [20] and
the self-consistent orbitals were generated with that value. The
single-particle energies and the matrix of vij values were then
used as input data for separate codes to solve the Hamiltonian
Eq. (2). We calculate the correlation energies and the pairing
gaps using a range of values for v0 obtained by scaling the
matrix elements obtained from the EV8 code.

For the Sn isotopes with neutron number N around 68,
there are � = 16 orbitals in the 10 MeV window, originating
from the d5/2, g7/2, s1/2, d3/2, and h11/2 shells of the spherical
shell model. This space is small enough to permit the
exact calculations to be performed without special numerical
difficulties. Figure 7 shows the neutron correlation energy in
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FIG. 7. (Color online) Pairing correlation energy in 116Sn. The
pairing interaction is a δ function with a strength scaled from the
nominal value v0 = 465 MeV fm3 by a factor given on the abscissa.
The orbital space is the 16 orbitals around the Fermi energy as
described in the text. The solid line shows the result of exact
diagonalization.
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FIG. 8. (Color online) Neutron pairing gap at 117Sn. The correla-
tions energies for the three nuclei needed for Eq. (14) were calculated
with the same functional and in the same space as in Fig. 7.

116Sn as a function of interaction strength v0. The range for v0

includes the value v0 ∼ 450 MeV fm3 that has been fitted to
the global gap systematics using the BCS approximation [20].
The comparison in Fig. 7 confirms the results obtained with
the Hamiltonian with the constant-g pairing. Namely the BCS
systematically underpredicts the correlation energy, whereas
the PBCS tracks the exact energy very well. PBCS describes
also very well the pairing gaps, as shown in Fig. 8. There is also
a good agreement for the BCS gaps but, as already noticed in
the previous section, this agreement is in fact a manifestation
of errors cancellation.

Next we show the results for Pb. Here the energy truncation
to a 10-MeV window gives a space that is still too large to
easily perform the exact calculation, so we truncated it further
(∼8 MeV window) to leave � = 16 orbitals. Figure 9 shows
the correlation energy in this space and the BCS and PBCS
approximations. One sees that the PBCS keeps an accuracy
much better than 100 keV, whereas the BCS is off by more
than a half of an MeV. The correlation energies in the other
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FIG. 9. (Color online) Pairing correlation energy in 206Pb. For
these calculations, the space was truncated to � = 16 by including
the 11 highest orbitals below the N = 126 magic number and the
5 g9/2 orbitals above N = 126. This corresponds to an energy window
of about 8 MeV.
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FIG. 10. (Color online) Neutron pairing gap at 207Pb. For these
calculations we used the same space as in Fig. 9.

nuclei needed for the 207Pb gap are very small and in BCS
there is no condensate in 207Pb and 208Pb. As a result, the BCS
error for the 206Pb correlation energy is not well canceled in
the formula for the gap energy. Figure 10 shows the calculated
gap in the three treatments. One sees again that the PBCS is
remarkably accurate. The BCS error of 100–200 keV is quite
significant on the scale of the empirical gap energies, which
fluctuate around an average of 1 MeV with an rms deviation
of 300 keV.

IV. OCCUPATION PROBABILITIES AND TWO-BODY
CORRELATIONS

To probe the accuracy of BCS-based models relative to the
exact solution we also analyzed the occupation probabilities
and the two-body correlations induced by the pairing force.
The results discussed in this section correspond to the
Hamiltonian (1) with εi = i.

A. Occupation probabilities

The BCS occupation probabilities are calculated by solving
the standard BCS equations (here we take into account the
renormalization of the single-particle energies by the diagonal
term of the interaction) while the PBCS values are obtained
by using the residual integral method described in Ref. [15].

In the exact solution the occupation probabilities v2
i are

given by [6]

v2
i =

N∑
ν=1

aν

(2i − Eν)2
, (17)

where aν are obtained by solving the set of equations[
Cν − 2

∑
µ

1

(Eµ − Eν)2

]
aν + 2

∑
µ

aµ

(Eµ − Eν)2
= 1

(18)
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FIG. 11. (Color online) Occupation factors κ2
i = v2

i (1 − v2
i ) for

Npair = 8, � = 16, and g = 0.32. The results correspond to the
Hamiltonian (1) with εi = i.

and Cν are given by

Cν =
2N∑
i=1

1

(2i − Eν)2
. (19)

To solve the equations above is convenient to rewrite them in
terms of the real and the imaginary parts of pair energies Eν .
The corresponding expressions can be found in Ref. [6].

For the discussions below we shall use the product
between the occupation and nonoccupation probabilities, i.e.,
κ2

i ≡ v2
i (1 − v2

i ), which provides relevant information on the
diffusivity of the Fermi sea and the entanglement properties of
pairing tensor [see Eq. (21) below].

Figures 11–13 show the values of κ2
i for a system with

N = 8 pairs and for three values of the strength parameter
corresponding to the weak (g = 0.32), intermediate
(g = 0.42), and strong coupling (g = 0.87) regimes. For these
strength values the gaps (exact results) are approximatively
equal to 0.6, 1.0, and 5.0, respectively. As seen from
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FIG. 12. (Color online) The same as described in the caption to
Fig. 11 but for g = 0.42.
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FIG. 13. (Color online) The same as in Fig. 11 but for g = 0.87.

Figs. 11–13, the values of κ2
i for the states outside the

interval I = |� − µ| are rather well described by PBCS and
underestimated by BCS. However, one can notice that for the
states that are the closest to the chemical potential BCS gives
in the weak and intermediate coupling regimes larger values
than PBCS and the exact solution. In the strong coupling
regime shown in Fig. 13, when all levels are inside the interval
I , the BCS and PBCS results become close to the exact values
for all levels included in the calculations. Hence, when the
pairing correlations are well developed, BCS describes rather
well the occupation probabilities even though the errors for
the condensation energies are large.

B. Two-body correlations

The distribution of occupation probabilities around the
Fermi level determines the intensity of two-body correlations,
which could be eventually probed in pair transfer processes.
Two-body correlations are commonly introduced by the two-
body density defined by

ρ2(x1, x2) =
∑

σ3..σN

∫
|�(x1, x2, ..., xN )|2d�r3...d�rN

= 〈0|a+(x1)a+(x2)a(x2)a(x1)|0〉,

where � is the many-body wave function, x denotes the radial
and spin coordinate, i.e., x ≡ �rσ , and a†(x) is the particle
creation operator. To separate the genuine two-body correla-
tions induced by pairing correlations from the correlations of
Hartree-Fock type, the two-body density is usually written in
the following form [21]

ρ2(x1, x2) = ρ(x1)ρ(x2) − |ρ(x1, x2)|2 + |κ(x1, x2)|2, (20)

where ρ(x) is the (local) particle density while ρ(x1, x2) is
the nonlocal (exchange) part of particle density. The last term
defines the genuine two-body correlations, i.e., the correlations
not included in the independent mean-field picture of fermion
motion. In the BCS approximation the last term corresponds

to the pairing tensor in the coordinate representation, i.e.,

κ(x1, x2) = 〈0|a(x2)a(x1)|0〉 =
∑

i

κiϕi(x1)ϕī(x2), (21)

where κi ≡ 〈0|aiaī |0〉 = uivi is the pairing tensor in a single-
particle basis defined by the operators a

†
i and ϕi are the

associated wave functions.
According to its definition, the pairing tensor in the coor-

dinate representation provides information about the spatial
correlations between two nucleons irrespective if they belong
or not to the same Cooper pair. The spatial structure of these
correlations in atomic nuclei have been recently discussed
in Refs. [22,23]. If we need to investigate only the spatial
correlations between the nucleons belonging to the same pair,
instead of pairing tensor one should analyze the pair wave
function. The latter has a different structure in BCS-based
models compared to the exact solution. Thus, in BCS and
PBCS models all pairs are described by the same wave
function

φ(x1, x2) = C
∑

i

xiϕi(x1)ϕī(x2), (22)

where the mixing amplitudes xi and the normalization factor C

depend on the approximation used to describe the condensate.
Thus, in BCS xi = vi/ui and C = ∑

i v
2
i /u

2, where vi, ui are
the occupation amplitudes provided by the BCS equations.
Formally, the same expressions can be used for the PBCS
model but in this case the amplitudes vi, ui are just variational
parameters not occupation amplitudes.

For the exact solution each pair is described by a specific
wave function, i.e.,

φν(x1, x2) =
∑

i

1

2εi − Eν

ϕi(x1)ϕī(x2). (23)

Therefore the correlations among the nucleons belonging to the
same pair can be rather different according to the pair function
they belong to. To characterize the amount of correlations
in the pairing tensor (21) and in the pair wave functions
[Eqs. (22)–(23)] we employ the quantity [24]

K = 1

/ ∑
i

w4
i , (24)

where wi are the mixing amplitudes of the normalized two-
body wave functions [Eqs. (21)–(23)]. The quantity K is
sometimes called the Schmidt number [25] and it gives a
global indication of the degree of entanglement in two-body
systems. Thus, the minimum value of K is 1 and is obtained
when in the expansion (24) only one term is nonzero; this
case corresponds to no entanglement because the two-body
wave function is split in the individual wave functions of the
two-particle system. The maximum possible value of K is
obtained when the weights wi have the same value for all
terms in the expansion.

Figure 14 shows how the K number evolves as a function
of the strength parameter. One can see that the entanglement
properties of Cooper wave functions are rather similar in
BCS and PBCS approximations and very different from the
entanglement of the correlation function (21). As already
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FIG. 14. (Color online) The Schmidt numbers [Eq. (24)] for a
system with Npair = 8 and � = 16.

stressed above, the latter describes the correlations between
two generic fermions, which do not necessarily belong to the
same Cooper pair.

A particular behavior have the Cooper pairs (23) described
by the exact solution. Their entanglement properties depends
on how far are their pair energies Eν (more precisely, their
real part) from the Fermi level. Thus, as seen in Fig. 14, the
eighth pair (i.e., the one corresponding to E8), which is the
closest to Fermi level, is the most entangled. At the other
extreme is the first pair, corresponding to E1, which remains
almost uncorrelated in all coupling regimes. An intermediate
behavior has the fifth pair that remains uncorrelated up to
g ≈ 0.53 and then its entanglement increases rather fast, in
a similar fashion as for the eighth pair. The strength value
for which the K number of the fifth pair starts to increase
corresponds to the value at which the pair energy E5 becomes
complex. As mentioned previously, the pair energies become
complex when the corresponding level (in the limit g = 0)
becomes condensed, i.e., enters in the interval I = |� − µ|.
Hence, in the exact solution at a given value of the strength only
some pairs become entangled, namely the ones corresponding
to the condensed levels. This is very different from what
happens in BCS and PBCS models in which all Cooper
pairs are identical and therefore all of them have the same
entanglement properties. How the entanglement properties of
Cooper pairs wave functions [Eqs. (22) and (23)] could be
related to observable quantities is not yet clear (for a recent
discussion see Ref. [26]).

V. SUMMARY AND CONCLUSIONS

In this article we studied how reliable the approximations
used to solve the pairing Hamiltonian are when the parameters
are chosen in a range appropriate to calculate nuclear ground
states. As is well known, the BCS approximation does not do
well for correlation energies. However, we find that PBCS,
with its variation after number projection, is highly accurate
over most the interesting parameter range for moderate size
orbital spaces. This applies to orbital spaces such as a single

major shell or energies truncations of the order of 5 MeV
around the Fermi level. Much larger spaces, for example,
including all the occupied orbitals, give a degradation in the
performance of the PBCS that we do not yet understand. How-
ever, by renormalizing the pairing interaction, the calculations
in large spaces could be reduced to smaller ones in which
the PBCS gives better results. One way the renormalization
could be done is to demand the same computed gaps when
the number of states available for the active pairs is changed.
For example, as seen in Fig. 3, if in the PBCS calculations
we decrease the number of active pairs from 40 to 8 and,
to keep the same gap, we increase the strength from 0.27 to
0.5, the error in the correlation energy drops from 20% to
below 5%. Hence, to reduce the errors of PBCS calculations
is preferable to restrict the calculations to a small number
of active particles with energies located close to the Fermi
level. In any case, single-major shell truncations are widely
used and there is no reason to not use the PBCS with those
conditions.

Both the BCS and PBCS seem to do well on calculating
pairing gaps with the reduced BCS Hamiltonian Eq. (1).
However, in the case of BCS the improvement arises from a
cancellation of errors. The BCS underpredicts the correlation
energies but, more seriously, is missing the true values for
odd systems. In the realistic case of 207Pb the errors did not
cancel well, and so we regard the BCS as unreliable at the
level of 100 keV or so. The PBCS maintained its accuracy for
the two realistic cases we considered, confirming our overall
assessment of its reliability.

We have also found that PBCS describes accurately the
occupation probabilities of the single-particle levels. However,
contrary to the agreement found for the correlations energies
and the occupation probabilities, the entanglement properties
of pair wave functions are very different in PBCS and in
the exact solution. Thus, while in PBCS the entanglement of
Cooper pairs depends smoothly on the interaction strength,
in the exact wave function, formed by nonidentical pairs,
the entanglement properties of Cooper pairs depend strongly
on the position of their pair energies relative to chemical
potential.

Finally, we mention that a ground state based on non-
identical pairs, specific to the exact solution, could be more
appropriate for the description of loosely bound systems such
as nuclei close to the drip lines. For such nuclei one expects that
the properties of Cooper pairs formed by the valence nucleons
moving in a loosely bound and continuum single-particle state
to be rather different from the pairs formed by the deeper
bound nucleons.
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