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Bohr Hamiltonian, mass coefficients, and the structure of well deformed axially symmetric nuclei
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It is shown that in the Bohr Hamiltonian the use of three different mass coefficients for the two vibrational
and the rotational modes is very important for the correct description of the properties of the well deformed
axially symmetric nuclei. Four parameters per nucleus are needed to describe the relative values of energies and
B(E2)’s.
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I. INTRODUCTION

During the last few years the Bohr Hamiltonian [1] was
frequently used for the description of the properties of
the collective quadrupole states in even-even nuclei [2–4].
Different phenomenological potentials were used to simplify
the solution of the Bohr Hamiltonian or even to obtain a
solution in an analytical form [3,5–10]. We mention further
that the Bohr Hamiltonian has been intensively used for the
nuclear structure investigation in previous works, e.g., by
Davydov [11,12], Greiner [13], Faessler [14], and Kumar
and Baranger [15,16]. The last authors have used, however,
a microscopical approach to calculate such ingredients of the
Bohr Hamiltonian as the potential energy and the components
of the mass tensor.

Among the important properties of the collective
quadrupole states of the even-even well deformed nuclei we
concentrate on in this paper are the reduced E2 transition
probabilities between the β- and γ -vibrational and the ground
state bands. The mass coefficients play an important role for the
correct description of these data. As a rule, especially during
the last few years, the Bohr Hamiltonian uses one common
mass coefficient for rotational and β- and γ -vibrational modes.
However, in our previous publications [17–19] it was shown,
based on the data for the Grodzins-type relations for the
2+

g.s., 2+
β , and 2+

γ states, that the mass coefficients for the
vibrational modes are a factor 4, or even more, larger than
the mass coefficient for the rotational motion. It means that the
use in the Bohr Hamiltonian of the same mass coefficient for all
collective modes will have as a consequence an overestimation
by a factor 4 or more of the reduced E2 transition probabilities
between the states of the β- and γ -vibrational and ground state
bands (see, however, Ref. [19]).

In order to clarify why in the case of the well de-
formed nuclei the mass coefficients for β-vibrational (Bβ),
γ -vibrational (Bγ ), and rotational (Brot) modes are different,
let us analyze the expressions for the mass coefficients obtained
in the framework of the cranking model approach which is
based on the mean field concept. The expressions for the
mass coefficients for β- and γ -vibrational and rotational
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motion derived in the framework of the cranking approach
differ in two respects. At first, the cranking expressions
for the different mass coefficients are given by the sums
over the particle-hole states (or two-quasiparticle states if
pairing is taken into account) of the Nilsson potential having
K = 1 for the rotational mass coefficient, K = 2 for the γ -
vibrational mass coefficient, and K = 0 for the β-vibrational
mass coefficient. Correspondingly, different two-quasiparticle
energies and the matrix elements of the different single particle
operators disturbing the nuclear mean field are presented in the
expressions for the mass coefficients. In the expression for Brot

the matrix elements of the component of the single particle
angular momentum operator corresponding to the rotational
axis ĵx are presented. In the expression for Bγ the component
of the single particle quadrupole momentum operator with
K = 2, i.e., 1√

2
r2(Y22 + Y2−2), and in the expression for Bβ

the component of the single particle quadrupole momentum
operator with K = 0, i.e., r2Y20 are presented.

The second difference is the presence in the energy
denominators of the cranking formulas for Bβ and Bγ of
the nonzero vibrational frequencies which are of the order of
1 MeV in the case of the well deformed nuclei, i.e., quite close
to the two-quasiparticle energies (2� ≈ 1.5 MeV). However,
this frequency is absent in the expression for Brot because the
potential energy does not depend on the rotational angle.

First of all, applying the Bohr Hamiltonian with three dif-
ferent mass coefficients to a description of the well deformed
nuclei, we have in mind a correct description of the interband
E2 transitions between the states of the β- and γ -bands on
one side and the states of the ground state band on the other
side. As was shown in our previous publications, this aim
can be achieved only if three different mass coefficients are
used. However, it is necessary to consider how an introduction
of the nonequal Bβ,Bγ , and Brot will influence a description
of the other properties of the well deformed nuclei, such as
the angular momentum dependence of the energies of the
states belonging to the same rotational band and the intraband
E2 transitions. These properties have been well described
using a traditional Bohr Hamiltonian with one common mass
coefficient for all excitation modes. For the correct description
of these properties it is important to take into account the
centrifugal stretching effect which increases the value of the
equilibrium deformation with angular momentum. This is done
in the Davydov-Chaban model [12], in the rotation-vibration
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coupling approach of Greiner and Faessler [14], and in the
variable moment of inertia model [20]. Of course the important
role played by the Coriolis antipairing effect is not excluded.
To take this effect into account, it is necessary to include
into the Hamiltonian the pairing degrees of freedom [21].
However, it can be done effectively by introducing an angular
momentum dependence of the rotational mass coefficient. We
have calculated these characteristics using the well known
Davydov-Chaban procedure to solve approximately the Bohr
Hamiltonian with three different mass coefficients.

Thus, the main aim of the present paper is to demonstrate
that the correct description of the interband E2 transitions in
the well deformed axially symmetric nuclei in the framework
of the Bohr Hamiltonian is possible only in the case when
three different mass coefficients for β-, γ -, and rotational
motion are used. In addition we have considered the angular
momentum dependence of the energies of the states belonging
to the ground, β-, and γ -bands and the intraband E2 transitions
and have shown that the quality of our description of these
characteristics is quite satisfactory. Reference [9] is similar
in intent to the present paper. It uses, however, a different
potential, namely the Davidson potential, which allows an
analytical treatment of the centrifugal stretching effect and
one common mass parameter only.

II. THE HAMILTONIAN AND THE PARAMETERS USED
IN THE CALCULATIONS

In the case of the well deformed axially symmetric nuclei
where K is a good quantum number, the Bohr Hamiltonian
with three different mass coefficients [18] can be written in
the following form:

H = Hrot + Hγ + Hβ, (1)

where

Hrot = h̄2

6Brotβ2

( �̂L2 − L̂2
3

)
, (2)

Hγ = − h̄2

2Bγ β2

1

γ

∂

∂γ
γ

∂

∂γ
+ h̄2

2Bγ

L̂2
3

4β2γ 2

+1

2
Cγ 〈L,K ‖ β2 ‖ L,K〉γ 2, (3)

Hβ = −h̄2

2

(
1

Bβ

∂2

∂β2
+ 2

Bγ

1

β

∂

∂β
+ 2

Bβ

1

β

∂

∂β

)

+1

2
Cβ(β − β0)2, (4)

where β0 is the value of the equilibrium deformation for the
states with L = 0. We have assumed above that the stiffness
coefficient of the γ -vibrations is proportional to the average
value of β2 in the states under consideration having angular
momentum L and its projection on the symmetry axis K . It is,
of course, an approximation. In the general case the potential
energy depends on the two invariants: β2 and β3 cos 3γ . In

the case of small γ , the last invariant can be approximated by
β3(1 − 9/2γ 2), i.e., γ 2 should be multiplied in the potential
energy by β3 or a more complicated function of β. However, in
the case of the well deformed axially symmetric nuclei, which
are the subject of our investigation, the wave functions of the
collective states are located around the equilibrium value of
β with a relatively small amplitude of the oscillations around
this value. This equilibrium value can depend weakly on the
angular momentum L because of the centrifugal stretching.
For this reason we use a constant multiplier in the expression
for the potential.

The terms of Hβ linear, ∂/∂β can be removed from the
Hamiltonian by a standard transformation of the wave function
�:

� = β−(1+Bβ/Bγ )� ′. (5)

From the Hamiltonian presented above we see that the
effective angular momentum dependent potential for β motion
is given by the expression where we put instead of the operator
L2

3 its eigenvalue K2

Ueff(β) = h̄2

6Brotβ2
( �̂L2 − K2) + 1

2
Cβ(β − β0)2. (6)

Acting as in the Davydov-Chaban and VMI models, we
find the angular momentum dependent value of β, namely,
β0(L,K), which minimizes the value of Ueff(β) and then
expands Ueff(β) in degrees of (β − β0(L,K)) taking into
account only quadratic terms in (β − β0(L,K)). Estimating
the values of the different terms which appear due to the
centrifugal stretching and also as the result of the iterations
of the equation for β0(L,K), we keep only the most important
terms. For instance, the correction to the stiffness coefficient
for β vibrations Cβ which is of the order of 10−3 for L = 2 is
neglected below. As a result the angular momentum dependent
value of the equilibrium deformation is given by the expression

β0(L,K) = β0


1 + h̄2(L(L + 1) − K2)

3Brotβ
2
0 · h̄

√
Cβ

Bβ

h̄√
BβCββ2

0


 ,

(7)

where we did not reduce the parameter Bβ and did not combine
Cβ’s and β0’s in one multiplier in order to demonstrate clearly
that the centrifugal correction of the value of the equilibrium
deformation is proportional to the ratio of the rotational energy
to the energy of the β-vibrational state and to the square of
the amplitude of the zero point β-fluctuations. The effect
of the angular momentum dependence of the equilibrium
value of β is not large. For instance in the case of 156Gd
for which E(4+

g.s.)/E(2+
g.s.) = 3.24 β0(L = 2,K = 0) =

1.004β0, β0(L = 8,K = 0) = 1.05β0 and β0(L = 12,

K = 0) = 1.11β0. However, taking this effect into account,
we significantly improve the agreement of the calculated
energies of the rotational states and the intraband reduced E2
transition probabilities with the experimental data.

Finally the Hamiltonian used for the calculations of the
excitation energies and the reduced E2 transition probabilities
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TABLE I. The values of four parameters used in the calculations.

Nucleus h̄
√

Cβ

Bβ
/ h̄2

Brotβ
2
0

h̄
√

Cγ

Bγ
/ h̄2

Brotβ
2
0

a ≡ h̄√
BβCββ2

0
g ≡ h̄√

Bγ Cγ β2
0

a(Bβ = Bγ = Brot) g(Bβ = Bγ = Brot)

154Sm 13.40 17.23 0.0187 0.0184 0.0746 0.0580
156Gd 11.79 12.63 0.0183 0.0250 0.0848 0.0792
172Yb 13.20 18.23 0.0068 0.0063 0.0757 0.0549
182W 11.36 11.88 0.0133 0.0248 0.0880 0.0849

takes the form

H = h̄2(L(L + 1) − K2)

6Brotβ
2
0 (L,K)

− h̄2

2Bβ

∂2

∂(β − β0(L,K))2

+ 1

2
Cβ(β − β0(L,K))2 − h̄2

2Bγ β2
0 (L,K)

(
1

γ

∂

∂γ
γ

∂

∂γ

)

+ 1

2
Cγ β0(L,K)2γ 2, (8)

where we have substituted β2
0 (L,K) instead of 〈L,K ‖

β2 ‖ L,K〉. Below, all B(E2)’s are calculated in units of
B(E2; 2+

g.s. → 0+
g.s.) and the energies are calculated in units

of E(2+
g.s.).

As the input data necessary to fix the four unknown

nondimensional parameters h̄

√
Cβ

Bβ
/ h̄2

Brotβ
2
0
, h̄

√
Cγ

Bγ
/ h̄2

Brotβ
2
0
, a ≡

h̄√
BβCββ2

0

, and g ≡ h̄√
BβCββ2

0

, we use the experimentally known

values of E(0+
β )/E(2+

g.s.), E(2+
γ )/E(2+

g.s.), B(E2; 2+
β →

0+
g.s.)/B(E2; 2+

g.s. → 0+
g.s.), and B(E2; 2+

γ → 0+
g.s.)/B(E2;

2+
g.s. → 0+

g.s.) taking into account the known experimental
errors. The nondimensional parameters mentioned above
are determined solving a system of four nonlinear algebraic
equations. The values of these parameters which we have
used in the calculations are given in Table I.

If we assume that Bβ = Bγ = Brot, then, since the number
of the unknown parameters will be decreased by two, there will
be no data needed on the reduced E2 transition probabilities
to determine a and g. In this case these parameters are fixed
by the energies of the 2+

g.s., 2+
γ , and 0+

β states. The values of
a and g obtained under the assumption that all three mass
coefficients coincide are also given in Table I where they are
denoted as a(Bβ = Bγ = Brot) and g(Bβ = Bγ = Brot).

III. THE RESULTS OF CALCULATIONS AND
COMPARISON TO EXPERIMENT

In this section we present the results of calculations of
the reduced E2 transition probabilities and the energies of the
collective states. The wave functions of the states of the ground
state, β-, and γ -bands which are used for the calculations
of the E2 reduced transition probabilities are given by the
expressions:

�LM(g.s.)

=
√

2L + 1

8π2
DL

M0

(
h̄

2
√

Bγ Cγ β2
0 (L, 0)

)−1/2

× exp

(
−

√
Bγ Cγ β2

0 (L, 0)

2h̄
γ 2

)(
πh̄√
BβCβ

)−1/4

× exp

(
−

√
BβCβ

2h̄
(β − β0(L, 0))2

)
, (9)

�LM(β)

=
√

2L + 1

8π2
DL

M0

(
h̄

2
√

Bγ Cγ β2
0 (L, 0)

)−1/2

× exp

(
−

√
Bγ Cγ β2

0 (L, 0)

2h̄
γ 2

)(
πh̄√
BβCβ

)−1/4

×
(

2
√

BβCβ

h̄

)1/2

(β − β0(L, 0))

× exp

(
−

√
BβCβ

2h̄
(β − β0(L, 0))2

)
, (10)

�LM(γ )

=
√

2L + 1

16π2

(
DL

M2 + DL
M−2

) (
h̄2

2Bγ Cγ β4
0 (L, 2)

)−1/2

· γ

× exp

(
−

√
Bγ Cγ β2

0 (L, 2)

2h̄
γ 2

)(
πh̄√
BβCβ

)−1/4

× exp

(
−

√
BβCβ

2h̄
(β − β0(L, 2))2

)
. (11)

TABLE II. The experimental values of the Grodzins type
products Pg.s. = E(2+

g.s.)B(E2; 0+
g.s. → 2+

g.s.) × Z−2A2/3, Pγ =
E(2+

γ )B(E2; 0+
g.s. → 2+

γ ) × Z−2A2/3, and Pβ = E(2+
β )B(E2;

0+
g.s. → 2+

β ) × Z−2A2/3 are given in the units KeV · e2b2 and
the values of the ratios Bγ /Brot and Bβ/Brot calculated using the
relations [18] Bγ /Brot = Pg.s./Pγ and Bβ/Brot = Pg.s./Pβ . The
experimental data are taken from [22].

Nucleus Pg.s. Pγ Pβ Bγ /Brot Bβ/Brot

154Sm 2.63 0.83 0.20 3.17 6.4
156Gd 2.94 0.96 0.13 3.06 11.7
172Yb 2.99 0.34 0.05 8.79 31.1
182W 2.47 0.75 0.20 3.29 6.05
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TABLE III. The calculated and experimental values of the B(E2) for the transitions between the β- and the ground bands in
154Sm and 156Gd. The B(E2)’s are given in units of B(E2; 2+

g.s. → 0+
g.s.). The results obtained using different values of Bβ, Bγ , and

Brot are marked as Calc/Bβ 
= Bγ 
= Brot. The results obtained assuming that Bβ = Bγ = Brot are marked as Calc/Bβ = Bγ = Brot.
The experimental data are taken from [22].

B(E2;I+
β →I+

g.s.)

B(E2;2+
g.s.→0+

g.s.)
× 103 154Sm 156Gd

Calc Calc Exp Calc Calc Exp

Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot

2+
β → 0+

g.s. 6.7 27.1 5.4(13) 6.3 29.2 3.4(3)

4+
β → 2+

g.s. 5.6 21.6 4.7 20.5

6+
β → 4+

g.s. 2.9 9.7 1.9 6.3

2+
β → 2+

g.s. 13.3 54.0 13.0 61.7 18(2)

4+
β → 4+

g.s. 12.1 49.1 11.8 56.0

6+
β → 6+

g.s. 11.9 48.1 11.6 54.9

0+
β → 2+

g.s. 61.7 251.2 62.5 298.0

2+
β → 4+

g.s. 43.8 180.1 25(6) 46.0 222.3 22(2)

4+
β → 6+

g.s. 51.3 215.0 55.3 274.9

6+
β → 8+

g.s. 62.8 271.1 68.9 358.2

The calculations are performed for four well deformed nuclei
154Sm, 156Gd, 172Yb, and 182W with the values of the R4/2 ratio
larger than 3.24.

First of all we present the results obtained for the interband
reduced E2 transition probabilities since just these quantities
are the most sensitive to the assumptions done concerning the
relations between the mass coefficients. All formulas needed
to calculate B(E2)’s are given in the Appendix. The results
of calculations of the B(E2; I ′

β → Ig.s.)/B(E2; 2+
g.s. → 0+

g.s.)

and B(E2; I ′
γ → Ig.s.)/B(E2; 2+

g.s. → 0+
g.s.) are presented in

Tables III–VI.
As it is seen from the Tables III–VI the results obtained

under the assumption that Bβ = Bγ = Brot are, in average,
ten times larger than the experimental values of B(E2; I ′

β →
Ig.s.)/B(E2; 2+

g.s. → 0+
g.s.) and three times larger than the ex-

perimental values of B(E2; I ′
γ → Ig.s.)/B(E2; 2+

g.s. → 0+
g.s.).

This is in correspondence with the results obtained in our
previous publications [18,19] for the Grodzins type products

TABLE IV. The calculated and experimental values of the B(E2) for the transitions between the β- and the ground bands in
172Yb and 182W. The B(E2)’s are given in units of B(E2; 2+

g.s. → 0+
g.s.). The results obtained using different values of Bβ, Bγ , and

Brot are marked as Calc/Bβ 
= Bγ 
= Brot. The results obtained assuming that Bβ = Bγ = Brot are marked as Calc/Bβ = Bγ = Brot.
The experimental data are taken from [22].

B(E2;I+
β →I+

g.s.)

B(E2;2+
g.s.→0+

g.s.)
× 103 172Yb 182W

Calc Calc Exp Calc Calc Exp
Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot

2+
β → 0+

g.s. 2.4 27.3 1.1(1) 4.5 29.9 6.6(10)

4+
β → 2+

g.s. 2.0 21.6 3.2 20.0

6+
β → 4+

g.s. 1.0 9.3 1.2 5.3

2+
β → 2+

g.s. 4.9 54.8 9.5 64.1 4.6(6)

4+
β → 4+

g.s. 4.4 49.8 8.6 58.2

6+
β → 6+

g.s. 4.3 48.8 8.4 57.1

0+
β → 2+

g.s. 22.5 256.2 46.0 313.3

2+
β → 4+

g.s. 16.0 184.5 12(1) 34.1 236.5 13(1)

4+
β → 6+

g.s. 18.8 221.2 41.3 295.6

6+
β → 8+

g.s. 22.8 279.7 51.6 389.4
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TABLE V. The calculated and experimental values of the B(E2) for the transitions between the γ - and the ground bands in 154Sm
and 156Gd. The B(E2)’s are given in units of B(E2; 2+

g.s. → 0+
g.s.). The results obtained using different values of Bβ, Bγ , and Brot

are marked as Calc/Bβ 
= Bγ 
= Brot. The results obtained assuming that Bβ = Bγ = Brot are marked as Calc/Bβ = Bγ = Brot. The
experimental data are taken from [22].

B(E2;I+
γ →I+

g.s.)

B(E2;2+
g.s.→0+

g.s.)
× 103 154Sm 156Gd

Calc Calc Exp Calc Calc Exp
Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot

2+
γ → 0+

g.s. 18.4 59.0 18.4(29) 25.0 80.9 25.0(8)

2+
γ → 2+

g.s. 26.2 83.3 35.5 113.7 38.7(13)

2+
γ → 4+

g.s. 1.3 4.0 3.9(6) 1.8 5.4 4.1(2)

3+
γ → 2+

g.s. 32.8 105.3 44.6 144.4 39.0(75)

3+
γ → 4+

g.s. 13.0 40.9 17.7 55.4 27.2(53)

4+
γ → 2+

g.s. 11.0 35.5 14.9 48.9 9.6(27)

4+
γ → 4+

g.s. 32.1 102.2 43.6 139.6 53(16)

4+
γ → 6+

g.s. 2.7 8.3 3.7 11.1

5+
γ → 4+

g.s. 29.3 94.4 39.8 129.7 43(43)

5+
γ → 6+

g.s. 16.5 51.5 22.4 69.6 59(59)

TABLE VI. The calculated and experimental values of the B(E2) for the transitions between the γ - and the ground bands in
172Yb and 182W. The B(E2)’s are given in units of B(E2; 2+

g.s. → 0+
g.s.). The results obtained using different values of Bβ, Bγ , and Brot

are marked as Calc/Bβ 
= Bγ 
= Brot. The results obtained assuming that Bβ = Bγ = Brot are marked as Calc/Bβ = Bγ = Brot. The
experimental data are taken from [22].

B(E2;I+
γ →I+

g.s.)

B(E2;2+
g.s.→0+

g.s.)
× 103 172Yb 182W

Calc Calc Exp Calc Calc Exp
Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot Bβ 
= Bγ 
= Brot Bβ = Bγ = Brot

2+
γ → 0+

g.s. 6.3 55.8 6.3(5) 24.8 86.3 24.8(6)

2+
γ → 2+

g.s. 9.0 78.8 35.3 121.2 49.2(13)

2+
γ → 4+

g.s. 0.4 3.8 0.60(5) 1.8 5.7 0.2

3+
γ → 2+

g.s. 11.2 99.7 44.2 154.1

3+
γ → 4+

g.s. 4.5 36.6 17.6 58.9

4+
γ → 2+

g.s. 3.8 33.6 33(24) 14.8 52.2 17.2(17)

4+
γ → 4+

g.s. 11.0 96.7 43.3 148.8 75.9(73)

4+
γ → 6+

g.s. 0.9 7.8 3.7 11.7

5+
γ → 4+

g.s. 10.0 89.4 39.5 138.4

5+
γ → 6+

g.s. 5.7 48.7 22.3 73.9

TABLE VII. The calculated and experimental values of the B(E2; (I + 2)+g.s. → I+
g.s.) given in units of B(E2; 2+

g.s. → 0+
g.s.). The experimental

data are taken from [22].

B(E2;(I+2)+g.s.→I+
g.s.)

B(E2;2+
g.s.→0+

g.s.)
154Sm 156Gd 172Yb 182W Rigid rotor

Calc Exp Calc Exp Calc Exp Calc Exp

4+
g.s. → 2+

g.s. 1.44 1.40(5) 1.44 1.41(5) 1.43 1.42(10) 1.44 1.43(8) 1.43

6+
g.s. → 4+

g.s. 1.61 1.67(7) 1.61 1.58(6) 1.59 1.51(14) 1.60 1.46(16) 1.57

8+
g.s. → 6+

g.s. 1.72 1.83(11) 1.73 1.71(10) 1.67 1.89(19) 1.71 1.53(14) 1.65

10+
g.s. → 8+

g.s. 1.82 1.81(11) 1.83 1.68(9) 1.74 1.77(11) 1.80 1.48(14) 1.69

12+
g.s. → 10+

g.s. 1.91 1.93 1.60(16) 1.79 1.88 1.72
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TABLE VIII. The calculated and experimental values of RI/2 ≡ E(I+)/E(2+) for the states of the ground state band. The experimental
data are taken from [22].

Nucleus E(2+
g.s.), KeV R4/2 R6/2 R8/2 R10/2 R12/2

Exp
Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp

154Sm 82 3.28 3.26 6.76 6.63 11.28 11.01 16.65 16.26 22.68 22.27
156Gd 89 3.29 3.24 6.75 6.57 11.22 10.84 16.51 15.91 22.38 21.63
172Yb 79 3.32 3.29 6.91 6.84 11.73 11.54 17.69 17.34 24.71 24.14
182W 100 3.30 3.29 6.81 6.80 11.41 11.44 16.94 17.12 23.21 23.72
Rigid rotor 3.33 7 12 18.33 26

for the β- and γ -bands which are inversely proportional
to the corresponding mass coefficients. We see from these
results that the correct description of the interband reduced
E2 transition probabilities is impossible in the case of the
well deformed nuclei if only one common mass coefficient for
β-, γ -vibrational, and rotational modes is used in the Bohr
Hamiltonian. This conclusion is supported by the results of
calculations published in [9].

For completeness we have calculated the intraband E2
transition probabilities and the energies of the collective states
although these quantities are not sensitive to the assumption
concerning the relation between the mass coefficients. In
Table VII the results of calculations of the intraband reduced
transition probabilities for the ground state band are presented.
Comparing the calculated results with the experimental data,
the experimental errors should be taken into account. We
see that an agreement with the experimental data is quite
satisfactory.

The excitation energies of the states belonging to the
ground, β-, and γ -bands are given in Tables VIII–X. They
are calculated using the formulas

E(Lg.s.) = h̄2L(L + 1)

6Brotβ
2
0 (L, 0)

, (12)

E(Lβ) = h̄

√
Cβ

Bβ

+ h̄2L(L + 1)

6Brotβ
2
0 (L, 0)

, (13)

E(Lγ ) = h̄

√
Cγ

Bγ

+ h̄2(L(L + 1) − 4)

6Brotβ
2
0 (L, 2)

. (14)

We see that the results obtained for the energies of the states
belonging to the ground, β-, and γ -bands are in a quite
satisfactory agreement with data. The deviations from the
predictions of the rigid rotor model are due to the centrifugal
stretching effect which is taken into account in this paper by
using the Davydov-Chaban procedure which was suggested 50
years ago, and, as we see, works quite satisfactorily with the
new data which appear since that time. The assumption that
Bβ,Bγ , and Brot have different values is important only for
the calculations of the interband E2 transition probabilities.
The the intraband E2 reduced transition probabilities can be
described under the assumption that Bβ = Bγ = Brot.

The values of the parameter “a” have been varied slightly
around the values which follows from the experimental data
on the interband transitions in order to get a better description
of the centrifugal stretching effect.

IV. SUMMARY

We have considered a Bohr-type Hamiltonian and a
quadrupole operator expressed in terms of Bohr’s β- and γ -
variables and applied them for the description of the collective
quadrupole motion in four even-even well-deformed axially
symmetric nuclei. This Hamiltonian has three different mass
coefficients for the three excitation modes: β- and γ -vibrations
and rotation. It is shown that without this assumption it is
impossible to describe correctly the absolute values of the
E2 reduced transition probabilities between the states of the
vibrational bands and the states of the ground state band. It
is very important to have a considerably extended set of high
precision data for several E2 transitions of this type for the
proper verification of the theoretical approach used.

TABLE IX. The calculated and experimental values of R
β

I/2 ≡ E(I+
β )/E(2+) for the states of the β-band. The experimental data are taken

from [22].

Nucleus R
β

0/2 R
β

2/2 R
β

4/2 R
β

6/2 R
β

8/2 R
β

10/2 R
β

12/2

Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp Calc Exp

154Sm 13.40 13.40 14.40 14.37 16.68 16.32 20.16 19.23 24.68 30.05 36.08
156Gd 11.79 11.79 12.79 12.69 15.08 14.68 18.54 17.30 23.01 20.76 28.30 24.94 34.17 30.43
172Yb 13.20 13.20 14.20 14.15 16.52 16.34 20.11 19.53 24.93 23.54 30.89 28.10 37.91 33.11
182W 11.36 11.36 12.36 12.57 14.66 15.10 18.17 22.77 28.30 34.57
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TABLE X. The calculated and experimental values of E(I+
γ )/E(2+). The experimental data are taken from [22].

154Sm 156Gd 172Yb 182W

I γ Calc Exp Calc Exp Calc Exp Calc Exp

2 17.56 17.56 12.97 12.97 18.63 18.63 12.21 12.21
3 16.56 18.77 13.96 14.02 19.63 19.68 13.21 13.31
4 19.87 20.30 15.27 15.22 20.95 21.06 14.52 14.43
5 21.48 22.01 16.88 16.93 22.60 22.60 16.14 16.24
6 23.38 23.73 18.76 18.47 24.56 18.05 17.70
7 25.53 26.27 20.90 20.79 26.83 20.24
8 27.93 23.27 22.60 29.39 22.68 21.80
9 30.55 25.85 25.28 32.24 25.35

10 33.36 28.60 27.44 35.37 28.24
11 36.33 31.50 30.19 38.76 31.31
12 39.44 34.52 32.84 42.40 34.55
13 42.65 37.63 35.67 46.28 37.92
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APPENDIX

In this appendix we present the formulas used for the
calculations of the B(E2)’s:

x(L,K)

≡ β0(L,K)

β0
, a ≡ h̄√

BβCββ2
0

, (A1)

B(E2; L′+
g.s. → L+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)

= 5
(
CL0

L′020

)2
(

x(L′, 0) + x(L, 0)

x(2, 0) + 1

)2

·
(

x(L′, 0)x(L, 0)(x(2, 0)2 + 1)

x(2, 0)(x(L′, 0)2 + x(L, 0)2)

)2

× exp

(
−1

a
((x(L′, 0) − x(L, 0))2 − (x(2, 0) − 1)2)

)
,

(A2)

B(E2; L′+
β → L+

g.s.)

B(E2; 2+
g.s. → 0+

g.s.)

= 5
(
CL0

L′020

)2 a

2

(
2

x(2, 0) + 1

)2

×
(

x(L′, 0)x(L, 0)(x(2, 0)2 + 1)

x(2, 0)(x(L′, 0)2 + x(L, 0)2)

)2

× (
1 − 0.5(x(L′, 0)2 − x(L, 0)2)/a

)2

× exp

(
−1

a
((x(L′, 0) − x(L, 0))2 − (x(2, 0) − 1)2)

)
,

(A3)

B(E2; L′+
γ → L+

g.s.)

B(E2; 2+
γ → 0+

g.s.)

= 5
(
CL0

L′020

)2

×
(

x(L′, 2)2x(L, 0)(x(2, 2)2 + 1)(x(L′, 2) + x(L, 0))

x(2, 2)2(x(L′, 2)2 + x(L, 0)2)(x(2, 2) + 1)

)2

× exp

(
−1

a
((x(L′, 2) − x(L, 0))2 − (x(2, 2) − 1)2)

)
.

(A4)
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