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New developments have been brought to our energy-, spin-, and parity-dependent nuclear level densities based
on the microscopic combinatorial model. As in our previous study, a detailed calculation of the intrinsic state
density and of the rotational enhancement factor is included, but this time the vibrational contributions explicitly
take the phonon excitations into account. The present model predicts the experimental s- and p-wave neutron
resonance spacings with a degree of accuracy comparable to that of the best global models available. It is also
shown that the model gives a reliable extrapolation at low energies where experimental data on the cumulative
number of levels can be extracted. The predictions are also in good agreement with the experimental data extracted
from the analysis of particle-γ coincidence in the (3He, αγ ) and (3He, 3He′

γ ) reactions. Total as well as partial
level densities for more than 8500 nuclei are made available in a table format for practical applications. For
the nuclei for which experimental s-wave spacings and enough low-lying states exist, renormalization factors are
provided to reproduce simultaneously both observables. The same combinatorial method is used to estimate the
nuclear level densities at the fission saddle points of actinides and at the shape isomer deformation. Finally, the
new nuclear level densities are applied to the calculation of radiative neutron capture cross sections.
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I. INTRODUCTION

Nuclear level densities (NLD) have been a matter of interest
and study for years, going back at least to 1936 with Bethe’s
pioneering work [1]. Since then, more or less sophisticated
methods have been developed to reproduce the available
experimental data. The so-called partition function method
is by far the most widely used technique to calculate level
densities, particularly in view of its ability to provide simple
analytical formulas. Such a model corresponds to the zeroth-
order approximation of a Fermi gas model and leads to very
simple analytical, though nonpredictive, expressions for the
NLD. In an attempt to reproduce the experimental data, various
phenomenological modifications to the original analytical
formulation of Bethe have been suggested, in particular to
allow for shell, pairing, and collective effects [2–5]. However,
drastic approximations are usually made in deriving such
analytical NLD formulas and their shortcomings in matching
experimental data are overcome by empirical parameter ad-
justments. The lack of experimental information, in particular
at high excitation energies, still constitutes the main problem
faced by the NLD models and the parameter-fitting procedures
they require, even though the number of analyses of slow
neutron resonances and of cumulative numbers of low-energy
levels has grown steadily. The most reliable experimental data
on NLD concerns the s-wave neutron resonance spacings D0

at the neutron separation energy Sn. For a nucleus (Z,A + 1)
resulting from the capture of a low-energy neutron by a target
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(Z,A) with spin J0 and parity P0,D0 is given by

D0 = 1

ρ(Sn, J0 + 1/2, P0) + ρ(Sn, J0 − 1/2, P0)
for J0 > 0,

(1)
= 1

ρ(Sn, 1/2, P0)
for J0 = 0.

Owing to the low excitation energy Sn at which the level
spacing is estimated, D is very sensitive to shell, pairing, and
deformation effects. Therefore, systematics based on simple
analytical formulas adjusted around this energy, and for stable
nuclei only, can lead to large uncertainties, especially when
extrapolating to high energies (U >∼ 10 MeV) or for spins
differing from J0 ± 1/2 and/or to nuclei far from the valley of
β-stability.

For specific applications such as nuclear astrophysics or
accelerator-driven systems, a large amount of data needs to
be extrapolated far away from the experimentally known
region. In this case, two major features of the nuclear theory
must be contemplated, namely its reliability and accuracy. A
microscopic description by a physically sound model based
on first principles ensures a reliable extrapolation away from
the experimentally known region. For these reasons, when no
experimental data exist to constrain analytical Fermi-gas-type
formulas, it is imperative to use preferentially microscopic
or semimicroscopic global predictions based on sound and
reliable nuclear models, which, in turn, can compete with
more phenomenological highly parametrized models in the
reproduction of experimental data. Global microscopic models
of NLD have been developed in the past decades [6–12], but
they are almost never used for practical applications because
of their lack of accuracy in reproducing experimental data
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(especially when considered globally on a large data set) or
because they do not offer the same flexibility as that of the
highly parametrized analytical expressions.

A global microscopic NLD prescription within the sta-
tistical approach based on the Hartree-Fock-BCS (HFBCS)
ground-state properties [13] has proven the capacity of mi-
croscopic models to compete with phenomenological models
in the reproduction of experimental data and consequently to
be adopted for practical applications. However, this statistical
approach presents the drawback of describing neither the parity
dependence of the NLD nor the discrete (i.e., nonstatistical)
nature of the excited spectrum at low energies. For this
reason, we recently improved the combinatorial approach
and demonstrated that such an approach can clearly compete
with the statistical approach in the global reproduction of
experimental data [14]. One of the advantages of this approach
is to provide not only the energy, spin, and parity dependence
of the NLD but also the partial particle-hole (ph) level density,
which cannot be extracted in any satisfactory way from the
statistical approaches. At low energies, the combinatorial
predictions also provide the nonstatistical limit, where by
definition the statistical approach cannot be applied. Our
method consists in using the single-particle level scheme ob-
tained from the axially symmetric Hartree-Fock-Bogoliubov
(HFB) model to construct incoherent ph state densities as a
function of the excitation energy, the spin projection (on the
intrinsic symmetry axis of the nucleus), and the parity. Once
these incoherent ph state densities are determined, collective
rotational effects are included by building up rotational bands
consistently. In Ref. [14], the choice was made to describe
the vibrational effects by multiplying the total level densities
by a phenomenological enhancement factor described in
Refs. [4,5]. The resulting NLD were found to reproduce very
well the available experimental data (i.e., both the cumulative
number of low-energy levels and the s- and p-wave resonances
mean spacings at the neutron binding energy). However, it
is clear that the phenomenological treatment of vibrational
effects needs to be replaced by a sounder treatment. Feedback
from fission cross section calculations also suggested the lack
of vibrational states at low energies [15].

To improve the reliability of the microscopic prediction of
NLD, the vibrational enhancement factor is now included in
the combinatorial approach explicitly by allowing for phonon
excitations. The formalism is described in Sec. II. The nuclear
structure properties obtained within the recent deformed
HFB-14 model is briefly described in the same section. The
same formalism is also applied to the calculation of NLD at
the fission saddle points. In Sec. III, the resulting NLD are
compared with experimental data. A possible renormalization
of the NLD on such data is proposed. Some applications to
reaction cross section calculations are illustrated in Sec. IV.
Conclusions are drawn in Sec. V.

II. THE COMBINATORIAL MODEL OF NLD

The microscopic method used to compute NLD is the com-
binatorial method as described in detail in Refs. [10,11,14].
It consists in using the HFB single-particle level scheme

to construct incoherent ph state densities ρph(U,M,π ) as a
function of the excitation energy U , the spin projection M on
the intrinsic symmetry axis of the nucleus, and the parity π .
Once these incoherent ph state densities are determined, we
account for collective effects to deduce the total level density.
In Ref. [14], we made the choice of multiplying the level
densities by the phenomenological vibrational enhancement
factor after accounting for rotational motion if necessary
(i.e., for deformed nuclei). The resulting NLD were found
to reproduce rather well the available experimental data (i.e.,
both the low-energy levels and the s- and p-wave resonance
spacings). This phenomenological treatment is now replaced
by a sounder treatment.

A. The vibrational enhancement

To treat the phonon excitations explicitly, the vibrational
enhancement can be properly described by using a boson
partition function [11]. To do so, the phonons’ state densities
are constructed and folded with the incoherent ph densities.
In practice, this means that supplementary low-energy phonon
states that were not considered in our previous approach [14]
are now included. The construction of the vibrational states
follows the method described in Ref. [11], which consists in
expanding the generalized boson partition function,

Zvib =
∏
λ

∏
µ

∑
Nph

[
xyελµ tµpλ

]Nph
, (2)

where x, y, and t enable us to keep track of the number of
bosons, their excitation energies, and their spin projections,
respectively. In this equation, ελµ is the energy of a phonon
with multipolarity λ and spin projection µ, and pλ = (−1)λ

or (−1)(λ+1) for isoscalar and isovector phonons, respectively.
For spherical nuclei, the phonons’ energies are (2λ + 1)-fold
degenerate for a phonon of multipolarity λ, and µ takes on all
the integer values between −λ and λ. For deformed nuclei,
the energies are, in principle, no longer degenerate and some
µ values are ruled out for quadrupole modes as a result of
symmetries imposed on nuclear shapes and collective wave
functions [16]. In practice, this means that only the projections
µ = 0(β vibrations) and ±2(γ vibrations) survive for the
quadrupole phonons; hence, for λ = 2, the product over µ in
Eq. (2) is restricted to µ = −2, 0, and 2. For other multipole
modes, all possible µ values are kept since the symmetries
imposed on nuclear shapes and collective wave functions are
already accounted for.

For the number of coupled phonons, we consider a
maximum number of three phonons. Indeed, two-phonon
states are well established [17–27], and possible three-phonon
states have also been called for [28]. There is however no
physical justification for this adopted number. In addition to the
quadrupole and octupole vibrational modes, we also include
hexadecapole (λ = 4) modes, since, as initially suggested in
Ref. [29], such modes may affect the NLD because of their
possibly relatively low excitation energies [30–34], especially
in the rare-earth and actinide mass regions. As in our previous
study [14], we use a modified shell-dependent systematic of
experimental levels interpreted to be quadrupole and octupole
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FIG. 1. (Color online) Total (light solid line)
and spin-dependent (dashed and dotted lines) vi-
brational enhancement factor Kvib compared to
the phenomenological formula (solid black line)
adopted in Ref. [14].

vibrational levels to derive an analytical expression for the
phonon energies. For quadrupole and octupole modes the
analytical expression is the same as in Ref. [14], that is,
respectively,

ω2[MeV] = 65A−5/6/(1 + 0.05Eshell) (3)

and

ω3[MeV] = 100A−5/6/(1 + 0.05Eshell). (4)

The hexadecapole mode can be expressed relative to the
quadrupole mode [4], leading to a similar expression, namely

ω4[MeV] = 160A−5/6/(1 + 0.05Eshell). (5)

In these expressions, the shell correction energy Eshell is de-
termined as explained in Ref. [14]. For practical calculations,
experimental data are used whenever available.

As already mentioned, once the vibrational and incoherent
ph state densities are computed, they are folded to deduce

the total state and level densities [14]. To account for the
damping of vibrational effects at increasing energies, we
restrict the folding to the ph configurations having a total
exciton number (i.e., the sum of the number of proton and
neutron particles and proton and neutron holes) Nph � 4.
This restriction stems from the fact that a vibrational state
results from a coherent excitation of particles and holes
and that this coherence vanishes with increasing numbers
of particles and holes involved in the description. Therefore,
if one deals with a ph configuration having a large exciton
number, one should not simultaneously account for vibra-
tional states that are clearly already included as incoherent
excitations.

The resulting vibrational enhancement factor Kvib (corre-
sponding to the ratio of the NLD including phonon excitations
to those neglecting them) is illustrated for a sample of nuclei in
Figs. 1 and 2. The microscopic character of our new treatment
is seen to give rise to an oscillating energy dependence, in
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FIG. 2. (Color online) Vibrational enhancement factor Kvib for
positive (light curve) and negative (black curve) parities.

contrast to the smooth behavior of the temperature-dependent
expression [4,5]. The enhancement factor Kvib is clearly spin-
and parity-dependent. In addition, the present approach allows
for a description of the existence of vibrational states at very
low energy within the so-called pairing gap where no ph
excitations are possible yet. This pure boson state density
cannot be described when simply including a multiplying
enhancement factor to the intrinsic NLD and can play an
important role in fission cross section calculations.

The prescription adopted here also leads to a damping of
Kvib at lower energies in comparison with the phenomenologi-
cal approach [14]. Finally, for nuclei having many low-energy
vibrational levels (e.g., 238U), the new enhancement factor
departs from unity at much lower energy than with the
analytical approximation.

In addition to the state densities, the partial level densities
can also play an important role in the reaction model, mostly
in the description of the pre-equilibrium reaction mechanism
within the so-called exciton model (see Refs. [35–37] for

FIG. 3. Total NLD, relative to the GS value, at the inner barrier
(solid line), outer barrier (dotted line), or shape isomer (dashed line)
as a function of the excitation energy for 241Pu.

FIG. 4. Plots of the a parameter, relative to the GS value, at the
inner barrier (solid line), outer barrier (dotted line), or shape isomer
(dashed line) as a function of the excitation energy for 241Pu.

extensive reviews). Such partial level densities can trivially be
obtained from our combinatorial approach. Whereas total level
densities correspond to the sum of all the partial densities hav-
ing the same number of particles and holes, state densities with
different numbers of particles and holes need to be estimated
for applications in pre-equilibrium models. For this reason, all
these different ph configurations and the corresponding partial
state densities have been computed within the same HFB
plus combinatorial method. A detailed analysis, including a
comparison with phenomenological models and applications
to cross section calculations, is however left for a forthcoming
paper.

B. The HFB ingredients for the NLD model

To estimate the NLD, basic nuclear structure properties
need to estimated. These concern the single-particle level
scheme εk

i including the pairing strength 	k
i of each level

and the quadrupole deformation parameter β2. All these

FIG. 5. (Color online) Ratio of HFB plus combinatorial (Dth)
to the experimental (Dexp) s-wave (squares) and p-wave (circles)
neutron resonance spacings compiled in Ref. [40].
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FIG. 6. (Color online) Comparison of the cumulative number of observed levels (thin staircase) with the HFB plus combinatorial
predictions (thick line) as a function of the excitation energy U for a sample of 15 nuclei. For 208Pb, both curves have been shifted by
2.5 MeV, so that the energy range corresponds consequently to [2.5–8.5] MeV instead of [0–6] MeV.

quantities have been derived consistently from the recent HFB
calculation [38] based on the BSk14 effective interaction.
Like the BSk13 force we used in our previous calculation,
BSk14 is characterized by a pairing interaction that has been
tuned, not only on nuclear binding energy but also in such
a way that the spectral gaps 〈uv	〉 reproduce at best the
experimental odd-even mass differences. This condition is
of primary importance for a reliable prediction of NLD, as
discussed in Ref. [14]. The rms deviation of the HFB-14 mass

model with respect to the 2149 measured masses [39] of nuclei
with Z,N � 8 is 0.729 MeV.

When the excitation energy increases, deformed nuclei tend
to become spherical. This shape transition was described in
Refs. [13,14] by introducing a phenomenological damping
function between the spherical and deformed expressions of
the level densities. Such a damping function includes two
terms, the first one describing the energy-dependent damping
as such and the second one smoothing the NLD between
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FIG. 7. Cumulative number of levels for 127Te illustrating the
impact of the damping function [Eq. (6)]. The gray line shows the
experimental levels. The solid thick line results from the mixing of the
spherical (dashed line) and deformed (solid thin line) contributions.

deformed and spherical nuclei in the case of slightly deformed
nuclei. There is little theoretical or experimental information
on the energy at which the shape modification takes place. For
this reason, in the present approach this part of the damping
function is omitted and only a transitional deformation part
for slightly deformed nuclei is retained. The damping function
adopted here is given by

fdamp(U ) = 1

1 + e(Edef−E∗
def )/e

, (6)

where the deformation energy Edef = Esph − Eeq (coherently
estimated from the HFB-14 mass table [38]) is the difference
between the energy in the spherical configuration and at
the equilibrium deformation, and E∗

def = 4.5 MeV defines
the transitional deformation energy between spherical and

deformed shapes (with e = 1.5 MeV defining the slope of such
a transition). Including the weighting function [Eq. (6)] has the
advantage of providing a smooth transition from deformed
to spherical shapes and consequently reducing part of the
uncertainties affecting nuclear structure predictions.

C. NLD at the fission saddle points

Most of the fission calculations make use of the Hill-
Wheeler model to estimate the transmission coefficient
through the barrier and consequently requires the estimate
of the energy-, spin-, and parity-dependent NLD at the fission
saddle points and possibly in the isomeric well if absorption in
the well and reflection against the second barrier are included
in the formalism. The combinatorial approach just described
can be applied to the calculation of the NLD at the fission
saddle points and isomeric well.

In particular, it should be emphasized that the BSk14
Skyrme force adopted here has also been applied successfully
to the calculation of the fission barrier heights. The rms
deviation for all 77 primary barriers listed in the RIPL-2
compilation [40] is 1.31 MeV, and it is only 0.67 MeV for
the 52 primary barriers of nuclei lower than 9 MeV, the
ones of greater astrophysical interest. A similar accuracy
is obtained (0.65 MeV) for the 45 secondary experimental
barriers necessary for a reliable calculation of fission proba-
bilities. Based on the BSk14 force, the full three-dimensional
fission paths have been estimated [38,41] and all the nuclear
properties (in particular the single-particle level scheme and
pairing properties) have been determined at the saddle points
and shape isomer deformations. Based on such inputs, the
corresponding NLD have been estimated, coherently within
the same framework as the one just detailed for the ground
state. The only additional complexity comes from the type of
symmetry characterizing the saddle point and isomer shapes
[42,43].

FIG. 8. α and δ values plotted as a
function of the atomic mass. See text
for more details.
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FIG. 9. (Color online) Comparison between the total NLD determined by the Oslo group (gray areas) [49,51] and the HFB combinatorial
predictions (solid lines). The full triangles correspond to the model-dependent normalization point derived from the D0 value at U = Sn

[Eq. (1)] by the Oslo group. See text for more details.

The HFB-14 model includes the left-right asymmetry
degree of freedom and predicts the outer barrier of actinides
to be systematically left-right asymmetric. In this specific
case, parity is known not to be a good quantum number.
For this reason, the intrinsic NLD calculation is performed
without taking an explicit account of parity. The equipartition
of both parities is then assumed. Triaxial degree of freedom
is not included in the HFB-14 model, although the inner
barriers of actinides is known to be in general triaxial (and
left-right symmetric) [44,45]. In this case, the fission level
density still needs to be multiplied by the enhancement factor
Ksym = √

π/2σ⊥ [42,43], where σ⊥ is the spin cutoff factor
perpendicular to the symmetry axis. This factor is however not
included in the present calculation since HFB-14 inner barriers
are always axially symmetric. It should be remembered that
no microscopic calculations including triaxiality and left-right
asymmetry have ever been performed.

As an illustration, we compare in Fig. 3 the total NLD at the
ground state (GS) with the one at the inner and outer barriers
as well as the shape isomer of 241Pu. The inner barrier and
isomer deformations are taken as axially symmetric, whereas
the outer barrier deformation is left-right asymmetric. The
deformation and barrier height predicted by the HFB-14 model
are, respectively, β2 = 0.51, Bf = 6.5 MeV for the inner
barrier and β2 = 1.3, Bf = 5.8 MeV for the outer barrier

and for the isomer β2 = 0.9 and Em = 1.8 MeV. The NLD
is seen to be the largest for the inner barrier, although it is
located at a smaller deformation. Above some 40 MeV, shell
effects have disappeared, leaving an almost U -independent
ratio representative of the pairing shift.

Since the NLD at the fission saddle point is often expressed
in terms of the level density parameter af relative to the GS
value, we estimated the corresponding af /aGS ratio assuming
the a parameter can be determined from the approximate
Fermi-gas relation

ρ(U ) =
√

π

12a1/4U 5/4
exp(2

√
aU ), (7)

where ρ(U ) corresponds to the total NLD obtained in the
present work, either at the GS or at the fission saddle point
or isomeric deformation. Note that in Eq. (7) it is assumed
that both the shell and pairing effects but also the rotational
enhancement factor are implicitly included in the a parameter.
We illustrate in Fig. 4 the corresponding ratios in the specific
case of 241Pu. Some complex structures including all shell,
pairing, and deformation effects are observed below 20 MeV.

The final NLD at the ground state and fission saddle points
have been tested in the calculation of neutron-induced fission
cross section [15,46]. It is shown that a very satisfactory
agreement with experimental cross sections can be achieved.
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FIG. 10. (Color online) Same as Fig. 9 but for other isotopes.

III. COMPARISON WITH EXPERIMENTAL DATA

The new NLD are now compared with experimental
data. In spite of considerable experimental efforts made to
derive NLD, the lack of reliable data—especially over a
wide energy range—constitutes the main problem that the
NLD theories have to face. Nevertheless, numerous analyses
of slow neutron resonances and of cumulative numbers of
low-energy levels have greatly helped to provide experimental
information on NLD. Other sources of information have also
been suggested, such as analyses of spectra of evaporated
particles and coherence widths of cross section fluctuations.
However, most of these experimental data are affected by
systematic errors resulting from experimental uncertainties
as well as the use of approximate theories to analyze
them.

The most extensive and reliable source of experimental
information on NLD remains the s-and p-wave neutron
resonance spacings [5,40] and the observed low-energy excited
levels [40]. Note, however, that different compilations of
resonance spacings show non-negligible differences, espe-
cially for spherical nuclei, for which only a few neutron
resonances are observed. We show in Fig. 5 the result
of our HFB plus combinatorial approach with respect to
experimental s- and p-wave spacings compiled in the RIPL-2
database [40].

The quality of a global NLD formula can be described by
the rms deviation factor defined as

frms = exp

[
1

Ne

Ne∑
i=1

ln2 Di
th

Di
exp

]1/2

, (8)

where Dth(Dexp) is the theoretical (experimental) resonance
spacing and Ne is the number of nuclei in the compilation.
Globally, the D values are predicted within a factor of 2 (with
the exact rms factor amounting to frms = 2.3 for both the
s- and p-wave data). This result is to be compared to the
frms = 1.80 deviation of the global back-shifted Fermi gas
(BSFG) formula [2] and the frms = 2.14 value obtained with
our previous combinatorial result. Our new approach therefore
gives rather comparable predictions with respect to the other
existing global models.

The HFB plus combinatorial model also gives satisfactory
extrapolations to low energies. As an example, we compare
in Fig. 6 the predicted cumulative number of levels N (U )
with the experimental data [40] for the same 15 nuclei as the
one presented in Ref. [14], including light as well as heavy,
spherical, and deformed species. Globally, the present model
provides results similar to those illustrated in Ref. [14]. The
case of 127Te is worth discussing, since the description is now
much better than it used to be. This stems from the new
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FIG. 11. (Color online) (Left) Cumula-
tive number of levels predicted by our NLD
for 90Y with and without normalization (see
Table I for the corresponding α and δ pa-
rameters). The experimental curve is shown
for comparison. (Right) : 89Y(n, γ )90Y cross
section obtained using the raw and normal-
ized NLD and compared with experimental
data [58].

damping function given by Eq. (6) (see Sec. II B). As can
be observed in Fig. 7, whereas in Ref. [14], 127Te was rather
considered as a deformed nucleus at low energy (full thin line),
it is now described by a mixing between the spherical (dashed
line) and deformed configurations. The mixing given by
Eq. (6) yields the full thick curve, which is in better agreement
with experimental data. However, we still find situations
where the spherical/deformed character of the nucleus is not
satisfactory.

For many nuclear physics applications a renormalization
procedure of the NLD on experimental data is required, in
particular for nuclear data evaluation or for an accurate and
reliable estimate of reaction cross sections. Though the HFB
plus combinatorial NLD are provided in a table format, it is
possible to renormalize them on both the experimental level
scheme at low energy and the neutron resonance spacings at
U = Sn in a way similar to what is usually done with analytical
formulas. More specifically, the renormalized level density can
be corrected through the expression

ρ(U, J, P )renorm = eα
√

(U−δ) × ρ(U − δ, J, P ), (9)

where the energy shift δ is essentially extracted from the
analysis of the cumulative number of levels and α from the
experimental s-wave neutron spacing. With such a renormal-
ization, the experimental low-lying states and the Dexp values
can be reproduced reasonably well, as discussed in detail in
Ref. [2]. Equation (9) has been used to fit the 289 nuclides
for which both an experimental s-wave spacing (D0) and a
discrete level sequence exist. The corresponding δ and α values
for these nuclei are given in Table I and shown graphically in
Fig. 8. Interestingly, the α and δ parameters show no systematic
trend or A dependence and more particularly no correlation
with shell closures. For an additional 846 nuclides, only the
experimental discrete level scheme with at least 10 levels is
known. For those nuclei, only the δ shift is used to reproduce
at best the low-lying levels.

Finally, we have compared our NLD calculations with the
experimental data extracted by the Oslo group from the analy-

sis of particle-γ coincidence in the (3He, αγ ) and (3He, 3He′γ )
reactions [47–55]. The total NLD ρtot(U ) = ∑

J,π ρ(U, J, π )
are compared with our microscopic results in Figs. 9 and
10 for several isotopes. It should be stressed that such an
experimental determination is however model-dependent. To
extract the absolute value of the total level density from the
measured data, the so-called experimental NLD needs to be
normalized by the total level density at the neutron binding
energy, which in turn is derived from the neutron resonance
spacing. In practice, to deduce the total level density from
the D0 value, both the spin and parity distributions at U = Sn

are required. If the equipartition of the parity distribution is
relatively well established at these energies, discrepancies can
stand from the adopted spin distribution. In particular, it is clear
that a nonstatistical approach such as the combinatorial method
might provide different spin distributions than the simple shell-
and pairing-independent Gaussian spin distribution assumed
within the BSFG model [56] (and adopted by the Oslo group).

〈
〈

〉
〉

FIG. 12. (Color online) Ratio of TALYS Maxwellian-averaged
(n, γ ) rates 〈σv〉th with experimental values [59] at T = 3 × 108 K
obtained by using the raw NLD (circles) and those normalized
(squares) according to the method described in Sec. III.
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TABLE I. Values of the δ and α parameters [see Eq. (9)] for the 289 nuclei for which both an experimental D0

value and a discrete level sequence are known.

Nucleus α δ Nucleus α δ Nucleus α δ

24Na −0.28 −0.34 71Zn 0.33 0.65 108Pd −0.09 0.80
25Mg −0.52 −0.06 70Ga −0.48 −1.30 109Pd −0.17 −0.94
26Mg −0.07 1.87 72Ga −0.58 −1.34 111Pd 0.45 −0.33
27Mg −0.28 0.28 71Ge 0.17 −0.89 108Ag 0.26 −0.37
28Al −0.15 −0.32 73Ge −0.38 0.18 110Ag 0.17 0.12
29Si 1.19 4.14 74Ge −0.32 1.38 107Cd 0.25 −0.37
30Si −0.56 0.66 75Ge −0.06 −0.03 109Cd 0.26 0.05
32P −0.34 −0.35 77Ge 0.00 −0.12 111Cd −0.06 0.44
33S −0.24 0.59 76As −0.32 −0.74 112Cd 0.34 0.74
34S −0.51 −0.39 75Se 0.16 −1.27 113Cd 0.13 0.02
35S −0.29 −1.55 77Se 0.04 0.26 114Cd 0.62 0.66
36Cl −0.39 −0.19 78Se 0.31 0.71 115Cd 0.35 −0.16
38Cl 0.19 1.10 79Se −0.11 −1.31 117Cd −0.24 −0.73
41Ar 0.68 1.23 81Se 0.77 0.23 114In −0.16 −0.52
40K −0.38 −0.66 83Se 0.70 0.08 116In 0.19 −0.09
42K −0.81 −2.86 80Br −0.53 −2.03 113Sn 0.60 0.28
41Ca 0.45 0.65 82Br −0.09 −0.75 115Sn 0.45 0.54
43Ca 1.25 1.35 79Kr 0.08 −0.38 117Sn 0.44 0.38
44Ca 0.19 2.46 81Kr 0.06 −1.00 118Sn 0.43 0.77
45Ca 0.65 1.05 84Kr −0.29 1.35 119Sn 0.54 0.10
46Sc −0.14 −0.03 85Kr 0.84 0.78 120Sn 0.26 0.45
47Ti −0.58 −1.63 86Rb −0.18 −0.10 121Sn −0.10 −0.19
48Ti −0.22 0.11 88Rb −0.15 0.00 125Sn −0.63 0.00
49Ti 0.22 0.38 85Sr 0.26 −0.60 122Sb −0.22 −0.90
50Ti −0.46 0.31 87Sr 0.13 −0.12 124Sb −0.46 −1.26
51Ti 0.05 0.00 88Sr 0.36 1.19 123Te −0.12 0.58
51V −0.18 0.76 89Sr 0.58 1.35 124Te 0.62 0.86
52V −0.13 −0.23 90Y 0.14 0.59 125Te 0.12 −0.46
51Cr 0.04 0.57 91Zr −0.06 0.29 126Te 0.59 0.68
53Cr −0.41 −0.66 92Zr −0.20 0.63 127Te 0.08 0.14
54Cr −0.52 −1.43 93Zr 0.07 0.86 129Te 0.34 −0.03
55Cr −0.02 0.19 94Zr 0.25 1.43 131Te 0.81 0.51
56Mn −0.33 −1.27 95Zr 0.33 0.82 128I −0.31 −0.77
55Fe −0.13 0.81 94Nb −0.16 0.04 130I −0.09 −1.02
57Fe −0.13 −0.42 93Mo −0.11 0.24 129Xe −0.37 −0.41
58Fe −0.15 0.37 95Mo −0.15 0.40 130Xe 0.26 1.05
59Fe −0.39 −0.54 96Mo −0.37 0.91 131Xe 0.44 −0.02
60Co −0.38 −0.60 97Mo −0.11 −0.34 132Xe −0.03 0.34
59Ni −0.20 0.18 98Mo −0.25 0.31 133Xe 0.37 0.13
60Ni −0.96 −0.78 99Mo 0.02 −0.56 135Xe 0.64 0.99
61Ni −0.15 −0.43 101Mo −0.42 −1.07 137Xe 0.25 0.00
62Ni −0.84 −1.91 100Tc −0.16 −0.58 134Cs −0.35 −1.30
63Ni 0.10 0.06 100Ru 0.09 0.40 131Ba 0.13 0.13
65Ni 0.60 0.76 102Ru −0.03 0.75 133Ba 0.32 0.01
64Cu −0.68 −0.86 103Ru −0.55 −0.77 135Ba 0.23 −0.06
66Cu −0.34 −0.31 105Ru −0.37 −0.28 136Ba −0.01 0.70
65Zn −0.23 −0.36 104Rh 0.22 −0.43 137Ba 0.37 0.73
67Zn −0.12 −0.16 105Pd −0.17 −0.65 138Ba 0.48 1.18
68Zn −0.24 0.19 106Pd 0.22 0.93 139Ba 0.27 0.45
69Zn 0.22 −0.38 107Pd −0.09 −0.37 139La 0.17 −0.19
140La −0.17 −0.20 167Er 0.00 −0.03 198Au −0.55 −0.42
137Ce 0.70 0.32 168Er 0.07 0.45 199Hg −0.23 −0.09
141Ce 0.30 0.77 169Er 0.15 0.14 200Hg −0.12 0.68
142Ce 0.30 0.49 171Er 0.15 0.11 201Hg −0.62 0.00
143Ce 0.08 0.19 170Tm 0.10 0.08 202Hg −0.45 0.40
142Pr −0.01 −0.12 171Tm 0.07 0.25 204Tl −0.50 0.34
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TABLE I. (Continued.)

Nucleus α δ Nucleus α δ Nucleus α δ

143Nd 0.26 0.43 169Yb 0.38 0.16 206Tl −0.31 0.44
144Nd −0.18 0.57 170Yb 0.14 0.26 205Pb 0.26 0.05
145Nd 0.21 0.24 171Yb 0.01 0.24 207Pb 0.94 1.84
146Nd −0.19 0.52 172Yb 0.69 0.65 208Pb 0.38 0.11
147Nd 0.18 −0.10 173Yb 0.11 0.01 209Pb 0.02 0.48
148Nd 0.62 0.85 174Yb 0.66 0.61 210Bi −0.24 0.54
149Nd 0.08 −0.53 175Yb 0.34 0.10 227Ra 0.67 −0.08
151Nd 0.65 0.02 177Yb 0.17 0.15 229Th 0.55 −0.27
148Pm −0.02 −0.22 176Lu −0.13 0.11 230Th 0.38 0.46
145Sm −0.15 0.25 177Lu 0.12 0.35 231Th 0.47 −0.05
148Sm −0.09 0.64 175Hf −0.85 −0.26 233Th 0.65 0.07
149Sm 0.14 −0.27 177Hf 0.13 0.03 233Pa −0.12 −0.13
150Sm 0.23 0.67 178Hf 0.78 0.46 233U 0.41 0.07
151Sm −0.03 0.00 179Hf 0.30 0.26 234U 0.57 0.55
152Sm 0.41 0.31 180Hf 0.17 0.46 235U 0.12 −0.01
153Sm −0.09 −0.34 181Hf 0.49 0.39 236U 0.55 0.50
155Sm 0.17 0.10 181Ta 0.30 1.01 237U 0.30 0.18
152Eu 0.29 −0.52 182Ta −0.21 0.13 238U 1.13 0.56
153Eu −0.28 −0.03 183Ta −0.14 0.49 239U 0.36 0.51
154Eu 0.24 −0.24 181W 0.07 0.19 237Np −0.23 −0.10
155Eu −0.09 0.14 183W −0.09 0.25 238Np 0.45 0.04
156Eu −0.22 −0.06 184W 0.59 0.86 239Np 0.13 −0.08
153Gd 0.08 −0.48 185W 0.37 0.32 239Pu 0.43 0.17
155Gd −0.15 −0.05 187W 0.55 0.43 240Pu 0.88 0.54
156Gd −0.15 0.55 186Re 0.37 −0.01 241Pu 0.17 0.18
157Gd −0.30 0.15 188Re 0.27 0.00 242Pu 1.32 0.69
158Gd −0.14 0.29 187Os 0.42 0.08 243Pu 1.13 0.22
159Gd −0.12 0.13 188Os −0.32 0.78 245Pu 1.14 0.53
161Gd −0.07 0.36 189Os −1.06 −0.06 242Am 1.59 1.86
160Tb −0.64 0.05 190Os −0.58 0.70 243Am 0.58 0.16
157Dy 0.47 −0.01 191Os −0.86 −0.38 244Am 0.88 0.16
159Dy −0.02 −0.14 193Os −0.09 0.36 243Cm 0.28 0.61
161Dy −0.38 0.25 192Ir −0.52 −0.45 244Cm 0.44 0.61
162Dy 0.20 0.36 193Ir −0.44 −0.14 245Cm 0.71 0.18
163Dy −0.16 −0.42 194Ir −0.37 −0.29 246Cm 0.76 0.60
164Dy 0.02 0.12 193Pt −0.19 −0.24 247Cm −0.09 0.05
165Dy 0.23 −0.09 195Pt −1.06 −0.60 248Cm 0.70 0.70
166Ho −0.16 0.05 196Pt −0.16 0.54 249Cm 0.03 0.29
163Er −0.11 0.11 197Pt −1.02 −0.43 250Bk 0.15 −0.08
165Er −0.26 −0.18 199Pt −0.62 0.14 250Cf 0.63 0.65

For a meaningful comparison between our predictions and
the Oslo data, it is therefore important to normalize our level
densities to the level density value at U = Sn considered by
the Oslo group. This is done by renormalizing our predictions
by Eq. (9) for each isotope, with an α parameter given by

ρHFB(Sn) × exp(α
√

Sn) = ρOslo(Sn). (10)

As can be observed, with such a normalization, the
combinatorial NLD agree extremely well with the so-called
experimental NLD below Sn.

In Table II, the total level densities at U = Sn estimated
by the Oslo group are compared with the value we derived
from our NLD model on the basis of the same s-wave
spacing (whenever available) as the one used by the Oslo

group. Note that the Oslo group determined the density on
the basis of a BSFG model, by assuming in particular a
parity equipartition for all spin distributions but also a shell-
and pairing-independent spin cutoff factor. None of these
approximations are made in our approach. When no D0 value
is available the total NLD corresponds to our prediction that
can be compared to the value deduced from systematics by
the Oslo group. Note again that the total level density at Sn

is fundamental to determining absolute level densities from
the Oslo method. As seen in Table II, differences between
the Oslo and HFB level densities can reach a factor up to
3.7 for 172Yb or down to 0.5 for 51V. In most cases, our
NLD model predicts larger values. Although the BSFG model
provides a relatively uncertain prescription to derive the total
level density from the D0 value, the values determined by
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TABLE II. Experimental D0 and corresponding total density ρOslo at U = Sn used by the Oslo group for
the 18 nuclei shown in Figs. 9 and 10. When no reference to the D0 value is found in the papers of the Oslo
group, the value tabulated in the RIPL-2 database [40] is adopted. The density ρHFB corresponds to the total level
density deduced from the same D0 value using the present HFB plus combinatorial model renormalized by the
α and δ parameters [see Eq. (9); the cumulative number of low-lying state is also reproduced in this procedure].

Nucleus Sn (MeV) D0 (eV) ρOslo (MeV−1) ρHFB (MeV−1) ρHFB/ρOslo

50V 9.330 – 5.40 × 103 8.59 × 103 1.59
51V 11.050 2300a 8.4 × 103 4.07 × 103 0.48
57Fe 7.646 25400b 8.53 × 102 1.74 × 103 2.04
93Mo 8.067 2700a 1.27 × 104 2.21 × 104 1.74
94Mo 9.678 – 6.20 × 104 1.57 × 105 2.53
95Mo 7.367 1320a 2.50 × 104 5.03 × 104 2.01
96Mo 9.154 105a 7.18 × 104 1.35 × 105 1.88
97Mo 6.821 1050a 3.20 × 104 5.44 × 104 1.75
98Mo 8.642 75a 9.99 × 104 1.53 × 105 1.54
148Sm 8.140 5.7a 1.59 × 106 1.82 × 106 1.15
149Sm 5.870 100a 4.90 × 105 7.96 × 105 1.63
160Dy 8.576 – 9.70 × 106 1.27 × 107 1.31
161Dy 6.454 27a 2.14 × 106 4.98 × 106 2.33
162Dy 8.197 2.4a 4.96 × 106 1.00 × 107 2.02
166Er 8.474 – 8.67 × 106 6.30 × 106 0.73
167Er 6.436 38b 1.68 × 106 2.90 × 106 1.73
171Yb 6.615 33b 2.72 × 106 3.65 × 106 1.34
172Yb 8.020 5.8b 5.81 × 106 2.15 × 107 3.70

aData taken from the papers of the Oslo group [47–55].
bData taken from the RIPL-2 compilation [40].

the Oslo group cannot be ruled out. This shows that globally
the experimental uncertainties on the Oslo method are more
likely underestimated and should be revisited in the light of
additional NLD models, like ours, that differ from the BSFG
approach.

IV. APPLICATION TO REACTION CROSS SECTION
CALCULATIONS

In the present section, the HFB plus combinatorial NLD
are used to calculate reaction cross sections within the Hauser-
Feshbach formalism. The code TALYS is used for this purpose
[57]. As an illustration, we show in Fig. 11, the specific
case of the 89Y(n, γ )90Y cross section. The NLD predicted
for 90Y is shown in Fig. 11 (left panel) before and after
the renormalization procedure. When the renormalization is
applied (in this case to all the nuclei involved in the nuclear
reaction processes), the cross section is seen to be better
described.

To evaluate the overall quality of the NLD, we compare
in Fig. 12 the Maxwellian-averaged (n, γ ) rates 〈σv〉 at T =
3 × 108 K with experimental data for some 219 nuclei heavier
than 40Ca included in the compilation of Bao et al. [59]. The
radiative capture rates at such a temperature essentially reflect
the cross section around a 25-keV incident neutron energy.
At such energies, the radiative capture cross section is known
to be very sensitive to the NLD below the neutron threshold.
It appears that the calculations agree with experimental data

roughly within a factor of 2. Note that additional uncertainties
stemming in particular from γ -ray strength functions also
affect the predictions. A strong correlation between the
deviations seen in the rates of Fig. 12 and the NLD of
Fig. 5 can be observed.

If we now use the NLD renormalized on experimental data
(see Sec. III) to estimate the reaction rates, the deviations
with respect to experimental rates are clearly less dispersed
than with the raw NLD (Fig. 12). The corresponding rms
deviation [based on a relation identical to Eq. (8)] for the
219 nuclei is frms = 1.92 using the raw NLD and 1.60 with
the rernormalized NLD.

V. CONCLUSIONS

The combinatorial method introduced in Ref. [14] has been
updated to improve the description of the collective vibrational
levels. This has been performed by using the boson partition
function [11]. The resulting NLD are qualitatively similar to
those we obtained assuming a phenomenological vibrational
enhancement factor [14], both for the cumulative number of
discrete levels and the mean s- and p-wave resonance spacings.
Our total level densities also agree fairly with the values
extracted from the analysis of particle-γ coincidence in the
(3He, αγ ) and (3He, 3He′γ ) reactions, at least if normalized
on the same density at the neutron binding energy. The
combinatorial model has also been applied to estimate the NLD
on top of the fission barriers and in the isomeric well. Finally,
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within the same framework, particle-hole NLD required for
pre-equilibrium reaction models have been determined.

The final NLD (without renormalization on experimental
data) are available to the scientific community at the Web
site http://www-astro.ulb.ac.be. The tables include the spin-
and parity-dependent NLD for more than 8500 nuclei ranging
from Z = 8 to Z = 110 for a large energy and spin grid
(U = 0 to 200 MeV and the lowest 30 spins). No simple
analytical fit to the tabulated NLD is given to avoid losing the
specific microscopic characteristics of the model. It should be
stressed that the combinatorial NLD cannot be approximated
by a simple BSFG-type formula, except at very high energies
(above roughly 100 MeV), where the shell, pairing, and
deformation effects disappear.

The NLD have also been implemented in the TALYS

reaction code (publicly available at http://www.talys.eu),
where the normalization parameters given in Sec. III
(Table I) are also included. As we have shown, when
experimental cross sections are available our normaliza-
tion procedure globally improves the agreement with the
data.

Still, some improvements may be required. In particular,
the spherical/deformed character for transitional nuclei is not
yet under control. In addition, at increasing energies, the
shape of the nucleus changes, so that building the excitation
configurations on top of the ground-state single-particle
properties may not be adequate. Such effects will be studied
in the near future.
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