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The coordinate-space formulation of the Hartree-Fock-Bogoliubov (HFB) method enables the self-consistent
treatment of mean field and pairing in weakly bound systems whose properties are affected by the particle
continuum space. Of particular interest are neutron-rich, deformed drip-line nuclei, which can exhibit novel
properties associated with neutron skin. To describe such systems theoretically, we developed an accurate
two-dimensional lattice Skyrme-HFB solver HFB-AX based on basis (or B)-splines. Compared to previous
implementations, ours incorporated a number of improvements aimed at boosting the solver’s performance.
These include the explicit imposition of axiality and space inversion, use of the modified Broyden method to
solve self-consistent equations, and a partial parallelization of the code. HFB-AX has been compared with other
HFB codes, both spherical and deformed, and the accuracy of the B-spline expansion was tested by employing
the multiresolution wavelet method. Illustrative calculations are carried out for stable and weakly bound nuclei
at spherical and very deformed shapes, including constrained fission pathways. In addition to providing new
physics insights, HFB-AX can serve as a useful tool to assess the reliability and applicability of coordinate-space
and configuration-space HFB frameworks, both existing and in development.
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I. INTRODUCTION

An important new aspect of theoretical nuclear structure re-
search is the development of a coherent theoretical framework
aimed at the microscopic description of nuclear many-body
systems and capable of extrapolating into unknown regions.
An important component in the theoretical landscape, and
a crucial part of the theory road map [1,2], is the nuclear
density functional theory (DFT) in the formulation of Kohn
and Sham [3]. Since the majority of nuclei in their ground states
are superconductors, pairing correlations have to be taken
into account. The resulting HFB or Bogoliubov-de Gennes
equations can be viewed as the generalized Kohn-Sham
equations of the standard DFT. The main ingredient of the
nuclear DFT [4,5] is the energy density functional that depends
on proton and neutron densities and currents, as well as pairing
densities representing correlated nucleonic pairs [6].

The unique structural factor that determines many proper-
ties of weakly bound nuclei is the closeness of the particle
continuum. While the nuclear densities of bound nuclei
eventually vanish at large distances, the wave functions of
positive-energy states do not decay outside the nuclear volume,
and this can be a source of significant theoretical difficulties.
This problem is naturally overcome in the HFB method with
a realistic pairing interaction in which the coupling of bound
states to the particle continuum is correctly taken into account.

One commonly used way of solving the self-consistent
HFB equations of the nuclear DFT is via iterative schemes
involving direct diagonalization of the HFB Hamiltonian.

Another approach is to minimize the energy functional by
means of the gradient method. Regardless of the scheme,
however, the associated computational effort is largely dictated
by the self-consistent symmetries imposed and/or the number
of quasiparticle states included. The advent of teraflop com-
puters makes large-scale DFT calculations, involving millions
of nuclear states, feasible. However, to take advantage of
multicore/multiprocessor architectures, new-generation HFB
solvers have to be developed.

The HFB problem is often formulated in the configuration
space by expanding the quasiparticle states of HFB in a suitable
single-particle basis, such as the harmonic oscillator (HO)
basis [7]. This method is very efficient and has been applied
successfully in large-scale calculations of nuclear properties
[8]. However, the use of the HO basis is questionable in the
limit of both weak binding and very large deformations, both
requiring the use of unrealistically large configuration spaces
to guarantee convergence. In both situations, the coordinate-
space approach to the HFB problem [9,10] is superior.

A number of coordinate-space techniques have been devel-
oped over the years, and their performance strongly depends on
the size and symmetries of the spatial mesh employed [11–13].
The one-dimensional (1D) HFBRAD finite-difference code has
been developed as a standard tool for HFB calculations in
spherical nuclei [14]. While limited to the radial coordinate
only, HFBRAD allows very precise calculations, as the mesh
step can be taken very low. The recently developed parallel
two-dimensional code, HFB-2D-LATTICE [15–17], is based on
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B-splines; it can treat axially deformed nuclei, including those
with reflection-asymmetric shapes. A coordinate-space HFB
code based on a finite-difference method with a 2D equidistant
mesh has also been published very recently [18]. This code also
describes axial nuclei and breaks mirror symmetry.

Solving the HFB equations in a three-dimensional (3D)
coordinate space is not a simple task; hence, very few such
solvers are available. The EV8 code solves the Hartree-
Fock plus BCS equations for Skyrme-type functionals via
a discretization of the individual wave functions on a 3D
Cartesian mesh and the imaginary time method [19]. Three
symmetry planes are assumed, and only the eigenfunctions
corresponding to the lowest eigenvalues are evaluated. Its HFB
extension, using a two-basis method, has been developed in
Ref. [12]. The rapid growth of the number of positive-energy
HF states representing the discretized continuum with the size
of the mesh prohibits the use of large pairing windows in
this method; hence the applicability of this code is limited
to well-bound nuclei. Another useful technique that can be
used to solve the 3D HFB problem in coordinate space
is the canonical-basis decomposition [20]. In this method,
however, the HFB Hamiltonian becomes state-dependent, and
the momentum-dependent pairing interaction is required to
circumvent the so-called point collapse problem [20]. Finally,
it is worth noting that developments based on novel concepts
are underway, such as a general-purpose 3D HFB solver
based on multi-resolution analysis and wavelet expansion. This
technique has been successfully applied in quantum chemistry
and is currently being adapted to nuclear structure [21,22].

The main objective of this paper is to develop a reliable,
accurate, and fast HFB axial solver based on the B-spline
mapping technique that could be used to perform large-scale
calculations of nuclear properties and to produce reference (or
benchmark) results to test future 3D HFB solvers. One of the
requirements is that the code can be applied to neutron-rich,
weakly bound nuclei (where the accurate description of densi-
ties and fields at large distances is essential) and to symmetric
fission pathways of the heaviest elements (where the shape
elongations and the corresponding spatial dimensions are
large). Such a scheme has already been implemented in
the HFB-2D-LATTICE by the Vanderbilt group [15–17]. An
attractive feature of the HFB-2D-LATTICE is that by taking
high-order B-splines, one guarantees the correct representation
of derivative operators on the spatial lattice [11]. However, the
usefulness of the HFB-2D-LATTICE is strongly limited by its
slow execution time and large memory requirements when
it comes to large-scale calculations. Moreover, a systematic
comparison of the HFB-2D-LATTICE with other well-tested HFB
solvers has been missing.

The new 2D HFB B-spline code HFB-AX developed in this
work contains a number of new features aimed at speeding up
the calculations, improving the accuracy, and optimizing the
overall performance. First, we incorporated space inversion
as a self-consistent symmetry. Since reflection-asymmetric
ground-state deformations are present only in a handful of
nuclei, this is not a serious limitation for studies of ground-state
properties. Furthermore, we improved the iterative algorithm
by means of the modified Broyden method. This resulted
in significant convergence acceleration. We also made other

optimizations to the HFB solver, which are described in the
text. The performance and accuracy of HFB-AX has been
carefully tested against other codes for different nuclear
configurations. In short, we developed a fast coordinate-space
2D HFB solver that can be used to carry out large-scale
calculations on leadership-class computers, while being also
invaluable when providing test cases for the next generation
of nuclear DFT tools.

This paper is organized as follows. Section II outlines the
coordinate-space HFB approach in cylindrical coordinates and
describes the numerical methods used. In Sec. III, numerical
tests are presented, with an emphasis on comparison with
other HFB solvers. The following examples are discussed: (i)
study of the parity doublets in a two-center potential, in which
the results of HFB-AX are compared with the multiresolution
wavelet method and the HO expansion technique; (ii) compar-
ison with the finite-difference 1D solver HFBRAD for spherical
nuclei, both stable and neutron-rich; (iii) study of neutron-rich
deformed 102,110Zr and comparison with the axial 2D solvers
HFBTHO and HFB-2D-LATTICE; and (iv) comparison with the
axial 2D solver HFBTHO for strongly deformed configurations
(i.e., the symmetric fission pathway in 240Pu). Finally, Sec. IV
contains the main conclusions of this paper.

II. THEORETICAL FRAMEWORK AND NUMERICAL
METHOD

A. HFB equation in cylindrical coordinate space

The HFB equations in the coordinate-space representation
can be written as [9,10,23]

∫
dr′ ∑

σ ′

(
h(rσ, r′σ ′) − λ h̃(rσ, r′σ ′)

h̃(rσ, r′σ ′) −h(rσ, r′σ ′) + λ

)

(1)

×
(

ψ (1)(r′σ ′)

ψ (2)(r′σ ′)

)
= E

(
ψ (1)(rσ )
ψ (2)(rσ )

)
,

where (r, σ ) are the particle spatial and spin coordinates,
h(rσ, r′σ ′) and h̃(rσ, r′σ ′) are the particle-hole (p-h) and
particle-particle (p-p) components of the single-quasiparticle
Hamiltonian, respectively, ψ (1)

n (rσ ) and ψ (2)
n (rσ ) are the upper

and lower components of the single-quasiparticle HFB wave
function, and λ is the chemical potential. The spectrum
of quasiparticle energies E is discrete for |E| < −λ and
continuous for |E| > −λ. By imposing that the eigenfunctions
vanish at the edge of the box (box boundary conditions), the
continuum is discretized. In practical calculations, the p-h
channel is often modeled with the Skyrme energy density
functional, while a zero-range δ pairing interaction is often
used in the p-p channel. This choice is motivated by the fact
that zero-range interactions yield the local HFB equations in
coordinate space, which are easy to solve.

In the axially symmetric geometry, the third component
of the single-particle angular momentum, �, is a good
quantum number. The HFB wave function can thus be
written as �n(r,�, q) where r = (φ, ρ, z), q = ± 1

2 denotes
the cylindrical isospin coordinates, and � = ± 1

2 ,± 3
2 ,± 5

2 , . . ..
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The corresponding HFB wave function can be written as [15]

�n(r,�, q) =
(

ψ
(1)
n,�,q(φ, ρ, z)

ψ
(2)
n,�,q(φ, ρ, z)

)

= 1√
2π




ei(�− 1
2 )φψ

(1)
n�q(ρ, z,↑)

ei(�+ 1
2 )φψ

(1)
n�q(ρ, z,↓)

ei(�− 1
2 )φψ

(2)
n�q(ρ, z,↑)

ei(�+ 1
2 )φψ

(2)
n�q(ρ, z,↓)


 . (2)

Following the notation of Ref. [15], we introduce

U
(1,2)
n�q (ρ, z) = ψ

(1,2)
n�q (ρ, z,↑),

(3)
D

(1,2)
n�q (ρ, z) = ψ

(1,2)
n�q (ρ, z,↓),

where wave functions U and D denote the spin-up (σ = 1
2 )

and spin-down (σ = − 1
2 ) spinor components. Axial symmetry

imposes time-reversal symmetry, and we need therefore only
consider positive-� values. In terms of these wave functions,
the particle density ρq(r) and pairing density ρ̃q(r) can be
written as

ρq(r) =
∑

σ

∑
n�

ψ
(2)
n�q(rσ )ψ (2)∗

n�q(rσ )

= 1

π

�max∑
�= 1

2

Emax∑
En>0

[∣∣U (2)
n�q(ρ, z)

∣∣2 + ∣∣D(2)
n�q(ρ, z)

∣∣2]
,

ρ̃q(r) = −
∑

σ

∑
n�

ψ
(2)
n�q(rσ )ψ (1)∗

n�q(rσ ) (4)

= − 1

π

�max∑
�= 1

2

Emax∑
En>0

[
U

(2)
n�q(ρ, z)U (1)∗

n�q(ρ, z)

+D
(2)
n�q(ρ, z)D(1)∗

n�q(ρ, z)
]
.

In the above equations, the sums are limited by the quasiparti-
cle energy cutoff Emax, defining the effective range for a zero-
range pairing force, and the angular momentum projection
cutoff �max. This way of truncating the continuum space is
different from that in the spherical HFBRAD code [14], which
employs a maximum jmax cutoff on the total single-particle
angular momentum. This implies that even with the same
energy cutoff, HFB-AX and HFBRAD have different pairing
spaces. We shall return to this point later in Sec. III.

In the reflection-symmetric version of the code HFB-AX

discussed in this paper, we assumed the space inversion as
a self-consistent symmetry. Consequently, the quasiparticle
wave functions are eigenstates of the parity operator P̂:

P̂ψ
(1,2)
n,�,q(φ, ρ, z) = πψ

(1,2)
n,�,q(φ + π, ρ,−z), (5)

i.e., parity π = ± is a good quantum number. The presence
of conserved parity implies specific boundary conditions at
ρ = 0 and z = 0 (see Table I). We also apply the box boundary
conditions at the outer box boundaries; namely, the wave
functions are put to zero at the edge of a 2D box zmax and ρmax.
These boundary conditions are important for the construction
of derivative operators.

TABLE I. Boundary conditions of HFB wave functions at
ρ = 0 and z = 0 in HFB-AX. The single-particle states are labeled
by �π quantum numbers.

ρ = 0 z = 0

� − 1
2 = even ∂U

∂ρ
|ρ=0 = 0 ∂U

∂z
|z=0 = 0

π = +1 D|ρ=0 = 0 D|z=0 = 0

� − 1
2 = odd ∂D

∂ρ
|ρ=0 = 0 ∂D

∂z
|z=0 = 0

π = +1 U |ρ=0 = 0 U |z=0 = 0

� − 1
2 = even ∂U

∂ρ
|ρ=0 = 0 ∂D

∂z
|z=0 = 0

π = −1 D|ρ=0 = 0 U |z=0 = 0

� − 1
2 = odd ∂D

∂ρ
|ρ=0 = 0 ∂U

∂z
|z=0 = 0

π = −1 U |ρ=0 = 0 D|z=0 = 0

In a given (�, q) block, the HFB Hamiltonian in Eq. (1) can
be expressed through the mean fields h and h̃ with specified
spin projections [15]:


h↑↑ − λ h↑↓ h̃↑↑ h̃↑↓

h↓↑ h↓↓ − λ h̃↓↑ h̃↓↓
h̃↑↑ h̃↑↓ −h↑↑ + λ h↑↓
h̃↓↑ h̃↓↓ h↓↑ −h↓↓ + λ


 . (6)

The local Skyrme p-h Hamiltonian h has the usual form [9,10]

hq(r, σ, σ ′) = −∇ · h̄2

2m∗ ∇ + Uq − iBq · (∇ × σ ), (7)

where m∗ is the effective mass, Uq is the central p-h mean-field
potential including the Coulomb term for protons, and the
spin-orbit potential with

Bq = 1
2Wq(∇ρ(r) + ∇ρq(r)), (8)

where Wq is the spin-orbit coupling strength.
The pairing Hamiltonian h̃ corresponding to the zero-range

density-dependent δ interaction can be written as

h̃q(r, σ, σ ′) = V
q

0 ρ̃q(r)F (r)δσσ ′, (9)

where V
q

0 < 0 is the pairing strength, and the pairing form
factor F (r) depends on the form of pairing Hamiltonian [24]:

F (r) =




1 −volume pairing,

1 − ρ(r)
ρ0

−surface pairing,

1 − ρ(r)
2ρ0

−mixed pairing,

(10)

where ρ0 = 0.16 fm−3. The volume pairing interaction acts
primarily inside the nuclear volume, while the surface pairing
generates pairing fields peaked around or outside the nuclear
surface. As discussed in Ref. [25], different forms of F (r)
can result in notable differences of pairing fields in diffused
drip-line nuclei.

B. B-spline technique in HFB-AX

The lattice representation of wave functions and the HFB
Hamiltonian used in this work closely follows that of the
HFB-2D-LATTICE described in Ref. [17]. In HFB-AX, the wave
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functions are discretized on a 2D grid (rα, zβ) with the M-order
B-splines:

ψ
(1,2)
n�π q(ρα, zβ) =

∑
i,j

BM
i (ρα)BM

j (zβ)Cij (1,2)
n�π q , (11)

where Cij is the matrix of expansion coefficients; α =
1, . . . , Nρ, and β = 1, . . . , Nz. The four components of the
HFB wave functions (2) are thus represented in a matrix form.
The derivative operators are constructed using the Galerkin
method. In the B-spline representation, the HFB Hamiltonian
acts on 2D wave functions like a tensorial operator, i.e.,

h
αβ

γ δψ(ρα, zβ) = ψ ′(ργ , zδ). (12)

The HFB equation is solved by mapping the Hamiltonian
tensor into a matrix, which is then diagonalized.

In the following, we give some details pertaining to
Hamiltonian mapping, because the mapping rule is different
with respect to the 16 individual blocks in Eq. (6). For the
diagonal blocks, it is straightforward to map a tensor into a

matrix (k, k′):

h(↑↑) :

{
k = (β − 1)Nρ + α,

k′ = (δ − 1)Nρ + γ,

h(↓↓) :

{
k = (β − 1)Nρ + α + NρNz,

k′ = (δ − 1)Nρ + γ + NρNz,
(13)

−h(↑↑) :

{
k = (β − 1)Nρ + α + 2 × NρNz,

k′ = (δ − 1)Nρ + γ + 2 × NρNz,

−h(↓↓) :

{
k = (β − 1)Nρ + α + 3 × NρNz,

k′ = (δ − 1)Nρ + γ + 3 × NρNz.

Following the same rule, the bra and ket vectors are mapped
into vectors with indexes k and k′, respectively. It is more
complicated to map the off-diagonal blocks of Eq. (6). For
the four ket vectors, the mapped index k should correspond to
different columns of the Hamiltonian blocks. For example, the
index of the first ket component U (1) should correspond to the
upper index of the first column of Eq. (6):

(
U (1)∗ D(1)∗ U (2)∗ D(2)∗)




hαβ(↑↑) − λ h(↑↓) h̃(↑↑) h̃(↑↓)
hαβ(↓↑) h(↓↓) − λ h̃(↓↑) h̃(↓↓)

h̃αβ(↑↑) h̃(↑↓) −h(↑↑) + λ −h(↑↓)

h̃αβ(↓↑) h̃(↓↓) −h(↓↑) −h(↓↓) + λ


 ×




U (1)(ραzβ)
D(1)

U (2)

D(2)


 . (14)

For the four bra vectors, the mapped index k′ corresponds to
different rows of the Hamiltonian. For example, the index of

the first bra component U (1)∗ corresponds to the lower index
of the first row of Eq. (6):

(|U (1)∗(ργ zδ)| D(1)∗ U (2)∗ D(2)∗)



hγδ(↑↑) − λ hγδ(↑↓) h̃γ δ(↑↓) h̃γ δ(↓↓)

h(↓↑) h(↓↓) − λ h̃(↓↑) h̃(↓↓)

h̃(↑↑) h̃(↑↓) −h(↑↑) + λ −h(↑↓)
h̃(↓↑) h̃(↓↓) −h(↓↑) −h(↓↓) + λ







U (1)

D(1)

U (2)

D(2)


 . (15)

In this way, the HFB Hamiltonian is mapped into a matrix of
the rank 4 × NρNz. The resulting HFB Hamiltonian matrix is
diagonalized using LAPACK routines [26].

The Coulomb potential is obtained by directly integrating
the Poisson equation,

∇2φ(ρ, z) = −4πe2ρp(ρ, z), (16)

where φ is the Coulomb potential and ρp is the proton density.
The Poisson equation, discretized on a B-spline grid, can be
written in a matrix form. The boundary conditions at large
distances are given by the multipole expansion of the Coulomb
potential as in Ref. [17]. The gradient of the Coulomb potential
at z = 0 or ρ = 0 is set to be zero because of the symmetries
imposed. These boundary conditions are incorporated in the
lattice representation of the Laplace operator.

C. Performance improvements in HFB-AX

The size of the HFB Hamiltonian matrix depends on the box
sizes zmax and ρmax, the largest distance between neighboring
mesh points in the grid h (the B-spline grid is not uniform),
and the order of B-splines M . Consequently, for large and
refined grids, the diagonalization time becomes a bottleneck.
For example, for 120Sn with a box of R = zmax = ρmax =
19.2 fm, a maximum grid size of h = 0.6 fm, and M = 13,
the Hamiltonian matrix is about 0.45 GB of storage, and one
diagonalization takes about 30 CPU minutes.

However, since the diagonalization of HFB matrices corre-
sponding to different �π blocks can be done independently in
different processors, this part of HFB-AX can be parallelized
using the standard Message Passing Interface library [27].
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For 120Sn with �max = 33/2 cutoff, about 70 processors are
utilized. The precision of the derivative operators is crucial
for the precision of the HFB eigenstates. By distributing
the diagonalization over many processors, one can perform
calculations with larger boxes, denser grids, and higher
order B-splines. In addition, by taking advantage of the
reflection symmetry, Nz can be reduced; hence the rank of
the Hamiltonian matrix is scaled down by a factor of slightly
less than 2. Consequently, the diagonalization process, which
takes most of the execution time, can be speeded up by a factor
greater than 8.

For the diagonalization, we employ the LAPACK DGEEV

routine [26]. This routine diagonalizes a nonsymmetric matrix
using a QR algorithm [28]. However, due to energy cutoff
induced by the use of zero-range pairing interaction, it is not
necessary to compute all eigenvectors. For this reason, we
modified DGEEV so that it yields eigenvectors only within the
required energy window. In this way, the diagonalization time
for 120Sn is further reduced by one-third.

To optimize the convergence of HFB iterations, we take the
HF-BCS densities to warm-start the self-consistent process.
Furthermore, we have implemented the so-called modified
Broyden mixing [29] to accelerate the convergence rate. The
modified Broyden method is a quasi-Newton algorithm used
to solve large sets of self-consistent nonlinear equations. In
substance, it relies on estimating the difference at the m-th
iteration:

F(m) = V (m)
out − V (m)

in , (17)

where V is an N -dimensional vector containing the unknowns
characteristic of the problem. The self-consistency condition
requires that the solution V ∗ be a fixed point of the iteration:
I(V ∗) = V ∗. For the commonly used linear mixing, the input
at iteration m + 1 is given as

V (m+1)
in = V (m)

in + αF(m), (18)

where α is a constant between 0 and 1. In contrast, to
estimate the next step, the modified Broyden mixing utilizes
information obtained in the previous MB iterations. Recent
implementations of this technique to the HFB problem have
demonstrated that convergence can generally be obtained
within 20–30 iterations [30]. In HFB-AX, the vector V consists
of local densities and their derivatives at lattice mesh points:

V ≡ {ρq, τq,∇ · Jq, ρ̃q ,∇2ρq,∇ρρq,∇zρq}. (19)

The dimension of V is thus 14 × Nρ × Nz.
To demonstrate the performance of the method, we consider

22O in a 2D square box of R = 12 fm, h = 0.6 fm and M =
11. The calculations were carried out at ORNL on a Cray XT3
supercomputer having 2.6 GHz processors. Without reflection
symmetry, one diagonalization takes about 15 min of CPU
time. With reflection symmetry imposed, one diagonalization
needs about 100 s with the modified DGEEV. The calculations
with Broyden mixing with MB = 7 are displayed in Fig. 1.
The actual variation of the binding energy is within 0.1 keV
after 30 iterations. This is to be compared with linear mixing
with α = 0.6, which requires over 80 iterations to reach similar
convergence. Both calculations show precision limitations due
to the numerical noise inherent to the mesh assumed. As in

FIG. 1. (Color online) Comparison between linear mixing
(squares) and modified Broyden method (circles) in HFB-AX for 22O.
The largest element of |F(m)| is shown as a function of the number of
iterations m. See text for details.

the examples discussed in Ref. [30], the Broyden method,
as implemented in HFB-AX, provides impressive performance
gains. The numerical speedup is particularly helpful for heavy
nuclei and for constrained calculations, which usually require
many self-consistent iterations.

III. BENCHMARKING OF HFB-AX AND TYPICAL
APPLICATIONS

This section discusses HFB-AX test cases. First, the absolute
accuracy of the one-body HF solver is tested using the adaptive
multiresolution method and a simple two-center potential.
A comparison with a HO expansion method is carried out
also for the HFB solver with a schematic pairing potential.
Thereafter follows a series of realistic calculations in which
HFB-AX is compared with the spherical coordinate-space code
HFBRAD and the axial code HFBTHO. In all these realistic tests,
the Skyrme functional SLy4 [31] was used in the p-h chan-
nel, augmented by different density-dependent δ functionals
[Eq. (9)] in the p-p channel.

A. Two-center potential: Comparison with HO and wavelet
expansions

The accuracy of the HFB-AX calculations in the p-h channel
has been tested using an adaptive multiwavelet basis. To
this end, we employed the MADNESS framework [21]. The
details regarding our particular realization of the wavelet basis
expansion can be found in Refs. [22,32].

As a test case, we choose an axial two-center inverted-cosh
potential:

V (ρ, z) = V0 [f (ρ, z + ζ ) + f (ρ, z − ζ )] , (20)

where the inverted-cosh form factor is

f (ρ, z) = 1

1 + e−R0/a cosh(
√

ρ2 + z2/a)
, (21)
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FIG. 2. Two-center inverted-cosh potential of Eq. (20) as a
function of z at ρ = 0. The two centers are 15 fm apart (ζ =
7.5 fm) and V0 = −50 MeV, R0 = 2 fm, and a = 1 fm.

and V0, R0, and a are the potential’s depth, radius, and
diffuseness, respectively, and 2ζ is the distance between the
two centers. A cross section of the potential used in our test
calculations is shown in Fig. 2 along the z axis at ρ = 0. The
two centers are well separated; hence, the ability to predict a
small parity splitting between the eigenstate doublets provides
a stringent test for the B-spline Schrödinger equation solver of
HFB-AX.

In addition to the mean-field potential (20), we also
considered the spin-orbit term in the usual Thomas form:

VSO(ρ, z) = −iλ0

(
h̄

2mc

)2

∇V (ρ, z) · (σ × ∇), (22)

where λ0 = 5.0, and the numerical values of fundamen-
tal constants were taken as h̄2/2m = 20.721246 fm2, h̄c =
197.32696 MeV fm, and mc2 = 939.56535 MeV. The corre-
sponding one-body Schrödinger equation reads

[
− h̄2

2m
∇2 + V (ρ, z) + VSO (ρ, z)

]
ϕ(ρ, z, φ)

= Eϕ(ρ, z, φ), (23)

where ϕ(ρ, z, φ) is a two-component spinor wave function.
Physically, the spin-orbit potential is necessary to model a real-
istic nuclear potential. Mathematically, it involves differential
operators and therefore tests the accuracy of the techniques
employed.

Table II displays the lowest eigenvalues of the two-center
potential (20) obtained in three expansion methods. In the HO
expansion calculation, we took Nsh = 20 and 30 shells of the
spherical oscillator with h̄ω0 = 5.125 MeV (as it turned out,
the use of a stretched basis was not particularly advantageous).
The size of the �π = 1

2
+

Hamiltonian block is 121 and 256
for Nsh = 20 and 30, respectively; i.e., the matrix size is more
than doubled in the latter case. In the HFB-AX calculation with
M = 13, we used a square box of R = 25.2 fm and h = 0.6 fm.
(The values of Nsh = 20 in HO and h = 0.6 fm in HFB-AX are
typical for realistic Skyrme-HFB calculations.) In the wavelet
variant [22,32], the absolute accuracy was assumed to be 10−5.

It is seen that the accuracy of B-spline expansion is
excellent, both for the absolute energies and for the parity
splitting. The HO basis with Nsh = 20 performs rather poorly,
especially for parity splitting and for the energies of the
highest (halo) states. That is to be expected, of course, for a
two-center potential expanded in a one-center basis. It is only
at Nsh = 30, not practical in large-scale DFT calculations, that
a good agreement with wavelets and HFB-AX is obtained. In
all variants, there is a perfect degeneracy of p3/2 doublets with
� = 1

2 and � = 3
2 .

The results with the inclusion of the spin-orbit term, which
lifts the degeneracy between � = 1

2 and 3
2 levels, are given

in Table III. It is seen that the general excellent agreement
between B-spline and wavelet variants holds, and that HO
with Nsh = 20 performs rather poorly, especially for the halo
state.

Finally, the single-particle spectrum of a two-center po-
tential is illustrated in Fig. 3 as a function of the intercenter
distance. A transition to a dimer-like spectrum is clearly seen
at distances greater than 6 fm. Our tests nicely illustrate the
ability of the B-spline technique (thus, HFB-AX) to handle a
two-center problem encountered, e.g., in fission or fusion [33].

To provide benchmark results when pairing is included, we
solved the HFB equations with the two-center potential as in
Eq. (23) in the particle-hole channel and the schematic pairing

TABLE II. Ten lowest eigenvalues of the two-center potential (20) obtained using the HO, B-spline, and
wavelet expansions. All energies are in MeV. For more details, see text.

State No. �π HO Nsh = 20 HO Nsh = 30 B-spline h = 0.6 Wavelets

1 1/2+ −22.23916 −22.24008 −22.24011 −22.24011
2 1/2− −22.23816 −22.23995 −22.23998 −22.23998
3 1/2+ −9.21514 −9.22047 −9.22050 −9.22050
4 3/2− −9.20359 −9.21256 −9.21260 −9.21260
5 1/2− −9.20359 −9.21256 −9.21260 −9.21260
6 3/2+ −9.20589 −9.21126 −9.21129 −9.21129
7 1/2+ −9.20589 −9.21126 −9.21129 −9.21129
8 1/2− −9.19743 −9.20590 −9.20595 −9.20595
9 1/2+ −1.70724 −1.72402 −1.72503 −1.72514

10 1/2− −1.49218 −1.52486 −1.52672 −1.52690
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TABLE III. Similar to Table II, except for the two-center double-cosh potential with the spin-orbit term.

State No. �π HO Nsh = 20 HO Nsh = 30 B-spline h = 0.6 Wavelets

1 1/2+ −22.23916 −22.24008 −22.24011 −22.24011
2 1/2− −22.23816 −22.23995 −22.23998 −22.23998
3 1/2+ −9.43145 −9.43659 −9.43663 −9.43662
4 3/2− −9.42314 −9.43199 −9.43203 −9.43202
5 3/2+ −9.42561 −9.43078 −9.43081 −9.43080
6 1/2− −9.41931 −9.42783 −9.42788 −9.42788
7 1/2+ −8.77250 −8.77825 −8.77828 −8.77828
8 1/2− −8.76475 −8.77380 −8.77384 −8.77383
9 1/2+ −1.70727 −1.72405 −1.72506 −1.72516

10 1/2− −1.49222 −1.52490 −1.52675 −1.52693

potential:

h̃(r) = 0.05 × V (ρ, z), (24)

with V (ρ, z) given by Eq. (20). For the chemical potential, we
assumed a fixed value of λ = −5 MeV. Although the HFB
wavelet solver is still under development, it is instructive
to compare B-spline and HO results. The energies Ei and
occupation numbers v2

i of the eight bound states (Ei < −λ) of
the simple HFB Hamiltonian are shown in Table IV. One can
see that the HO expansion method with Nsh = 25 yields HFB
eigenvalues that are reasonably close to those with B-spline.

B. Spherical limit: Comparison with HFBRAD and HFBTHO

The performance of HFB-AX at the spherical limit can
be assessed by comparing it against the accurate 1D radial
coordinate code HFBRAD, based on the direct integration of
the system of coupled radial differential equations [9,14]. The
tests have been carried out for the nucleus 120Sn, which is often
used for comparing HFB solvers [8,17] in the limit of spherical
shape and nonzero neutron pairing.

The precision of HFB calculations in coordinate space
is primarily determined by the size of the mesh used. We

FIG. 3. (Color online) Eigenvalues of a two-center inverted-cosh
potential with the spin-orbit term calculated in HFB-AX as functions
of the distance between two centers 2ζ .

calculated 120Sn with the fixed-box size (R = 19.2 fm) but with
different mesh steps and B-spline orders. In our calculations,
we took the volume δ pairing interaction with the pairing
strength V0 = −187.05 MeV fm3 adjusted to the average
experimental neutron pairing gap �n = 1.245 MeV. For the
pairing configuration space, we adopted the commonly used
equivalent energy cutoff of 60 MeV [8]. As both codes are
written in different geometries, the quasiparticle continuum is
discretized differently in HFBRAD and HFB-AX. In HFBRAD, all
partial waves with j � jmax = 33/2 were considered, while in
HFB-AX we imposed a cutoff on jz: �max = 33/2. For the sake
of comparison, the pairing regularization option in HFBRAD

has been turned off. Also, we adopted the same values of the
fundamental constants as in Ref. [8]: h̄2/2m = 20.73553 MeV
and e2 = 1.439978 MeV fm.

Table V displays various contributions to the binding energy
Etot of 120Sn, i.e., kinetic energy Ekin for protons and neutrons,
Coulomb energy EC , neutron pairing energy En

pair, neutron
pairing gap �n, and Fermi level λn, and the sum

Ẽkin = Ekin + Epair (25)

for neutrons. As discussed in Refs. [34–36], while for zero-
range pairing the individual values of Ekin and Epair are
divergent with respect to the cutoff energy of the pairing
window, their sum [Eq. (25)] is less sensitive to the cutoff

TABLE IV. Eight quasiparticle energies (Ei < −λ) of a
schematic two-center HFB Hamiltonian obtained using the HO
expansion method with Nsh = 25 and the B-spline method using
the same mesh as in Tables II and III. All energies are in MeV. See
text for details.

State No. �π HO B-spline HO B-spline
Ei Ei v2

i v2
i

1 1/2+ 4.58515 4.53410 0.98377 0.96998
2 1/2− 4.58131 4.53438 0.98371 0.96478
3 3/2+ 4.57997 4.53429 0.98369 0.96939
4 3/2− 4.57769 4.53155 0.98363 0.96430
5 1/2− 3.94644 3.90778 0.97854 0.96848
6 1/2+ 3.94287 3.90552 0.97845 0.96845
7 1/2+ 3.52045 3.52222 0.00579 0.00853
8 1/2− 3.31861 3.32172 0.00600 0.00789
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TABLE V. Results of spherical HFB + SLy4 calculations with
volume pairing for 120Sn using HFB-AX with different mesh size h and
B-spline order M . The results of the precision radial code HFBRAD

are shown for comparison. The static proton pairing is zero. All
energies are in MeV; h is in fm.

E h = 0.64 h = 0.6 h = 0.6 h = 0.15
M = 11 M = 11 M = 13 HFBRAD

Etot −1018.304 −1018.271 −1018.356 −1018.362
EC 347.636 347.642 347.577 347.558
E

p

kin 831.520 831.512 831.534 831.520
En

kin 1339.516 1339.553 1339.562 1339.598
En

pair −10.253 −10.253 −10.253 −10.278

Ẽn
kin 1329.263 1329.300 1329.309 1329.320

�n 1.2451 1.2451 1.2451 1.2450
λn −7.9950 −7.9950 −7.9950 −7.9953

energy and to actual treatment of the discretized quasiparticle
continuum. The general agreement between HFB-AX and
HFBRAD is excellent, in particular in the h = 0.6 fm,M = 13
variant, with most quantities agreeing within 10 keV. As
expected, the largest difference is seen for En

kin and En
pair

because of the slightly different treatment of the unbound
spectrum in the two models; however, the sum Ẽkin is well
reproduced by HFB-AX.

The HFB results with mixed pairing obtained in HFB-AX,
HFBRAD, and HFBTHO are shown in Table VI.

The pairing strength in HFB-AX was taken as V0 =
−284.29 MeV fm3, as compared to −284.36 and
−284.10 MeV fm3 in HFBRAD and HFBTHO, respectively [8].
In HFBTHO calculations, 25 shells of the transformed HO
basis were used. Again, the agreement between HFB-AX and
HFBRAD is excellent, and the total binding energies obtained
in the three methods agree within 12 keV. As expected, the
largest differences are seen for Ekin. In particular, HFBTHO

underestimates the neutron (proton) kinetic energy by about
200 (100) keV. This deviation is partly due to different
representations of the kinetic energy operator in the coordinate
space and in the transformed oscillator basis, and partly due to
the different continuum space (see the discussion above).

TABLE VI. Similar to Table V, except for the mixed pairing
interaction. HFB-AX results are compared with those of HFBRAD and
HFBTHO of Ref. [8].

E h = 0.6 h = 0.1 HFBTHO

M = 13 HFBRAD

Etot −1018.795 −1018.791 −1018.777
EC 347.442 347.400 347.370
E

p

kin 830.856 830.848 830.735
En

kin 1340.675 1340.668 1340.458
En

pair −12.491 −12.467 −12.467

Ẽn
kin 1328.184 1328.201 1327.991

�n 1.2448 1.2446 1.2447
λn −8.0186 −8.0181 −8.0168

FIG. 4. (Color online) Proton (top) and neutron pairing (bottom)
densities calculated in HFB-AX for 84,86,88,90Ni. Proton pairing is zero.

C. Weak binding regime: Comparison with HFBRAD

Neutron-rich nuclei are unique laboratories of neutron
pairing. In weakly bound nuclei, pairing fields are affected
by the coupling to the continuum space, and this coupling
can significantly modify pair distributions [10,25,37,38]. In
Sec. III B we demonstrated that HFB-AX performs very well for
a stable spherical nucleus 120Sn. To evaluate the performance
of HFB-AX for spherical neutron-rich nuclei, we discuss in this
section the ground-state properties of even-even 84,86,88,90Ni
isotopes, which are expected to be weakly bound [12,39–41].

In our test calculations, we adopted the surface pairing
with the strength adjusted to 120Sn (V0 = −512.6 MeV fm3).
Results of HFBRAD and HFB-AX calculations are listed in
Table VII. The nucleus 90Ni is a drip-line system, and its
stability is strongly influenced by the particular form of the
pairing interaction. Indeed, it is only bound with surface
pairing. When volume and mixed pairing interactions are
employed, 90Ni is predicted to have a positive neutron chemical
potential (see Ref. [25] for more discussion concerning this
point).

The local particle and pairing densities of drip-line even-
even Ni isotopes are shown in Fig. 4. A gradual increase of
the neutron skin when approaching 90Ni is clearly visible. The
proton density, on the other hand, is only weakly affected by
the outermost neutrons.

The systematic comparison between HFB-AX and HFBRAD

is given in Table VII. For the binding energy, the agreement is
very good, including the border-line system 90Ni. The neutron
pairing energy increases as one approaches the neutron drip
line. This is consistent with the systematic behavior of pairing
densities shown in Fig. 4.

For 84Ni, HFB-AX and HFBRAD yield similar pairing prop-
erties and kinetic energies. However, with increasing neutron
number, the difference between the values of Ẽn

kin obtained in
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TABLE VII. Comparison between HFB-AX and HFBRAD with SLy4 p-h functional and surface pairing for drip-line nuclei 84,86,88,90Ni.
The same box R = 19.2 fm is used in both cases. The angular momentum cutoff was taken at jmax = 33/2 in HFBRAD and �max = 33/2
in HFB-AX. All energies are in MeV.

E 84Ni 86Ni 88Ni 90Ni

HFBRAD HFB-AX HFBRAD HFB-AX HFBRAD HFB-AX HFBRAD HFB-AX

Etot −654.919 −654.899 −656.915 −656.955 −658.215 −658.193 −658.877 −658.856
EC 122.797 122.806 122.215 122.228 121.621 121.640 121.018 121.056
E

p

kin 430.468 430.460 426.311 426.330 422.152 422.206 418.027 418.204
En

kin 1084.511 1084.577 1116.835 1116.782 1148.387 1148.179 1179.697 1178.956
En

pair −30.892 −30.890 −36.733 −37.080 −43.179 −43.727 −49.926 −50.807

Ẽn
kin 1053.619 1053.687 1080.102 1079.702 1105.208 1104.452 1129.771 1128.149

�n 1.485 1.486 1.613 1.617 1.742 1.746 1.862 1.864
λn −1.455 −1.454 −1.062 −1.068 −0.709 −0.718 −0.399 −0.417

the two models gradually grows, reaching over 1.6 MeV in
90Ni. At the same time, the difference between E

p

kin values is
smaller by an order of magnitude. This systematic difference
between HFB-AX and HFBRAD when approaching the neutron
drip line can be traced back to different angular momentum
truncations, i.e., to the pairing configuration space structure.
In HFBRAD, the s.p. angular momentum cutoff is jmax = 33/2,
while in the HFB-AX, the cutoff is done in terms of the s.p. an-
gular momentum projection, i.e., �max = 33/2. Consequently,
in HFB-AX contributions from high-j , low-� continuum states,
absent in HFBRAD, are present. In Sec. III B, we showed that for
the well-bound nucleus 120Sn, this difference in the continuum
phase space is insignificant. However, for nuclei close to the
drip line, where the contribution from unbound states is far
more important, the situation is very different.

To quantify this point, we performed calculations for 90Ni
with jmax = 49/2 in HFBRAD and �max = 49/2 in HFB-AX.
The results are displayed in Table VIII. The variations
in the proton kinetic energy between various variants of
calculations are small, suggesting that the kinetic energy
operator is well represented by both HFBRAD and HFB-AX with
the grids assumed. Also, the binding energy changes little,
∼30 keV, when the j or � cutoff is increased. In the larger
j window, Ẽn

kin in HFBRAD is reduced by about 1 MeV; the
corresponding change in HFB-AX is much smaller, ∼200 keV.
This result indicates that the high-j continuum contributions

TABLE VIII. Similar to Table VII, except for 90Ni with the
angular momentum cutoff jmax = 49/2 in HFBRAD and �max =
49/2 in HFB-AX. All energies are in MeV.

HFBRAD HFB-AX

Etot −658.911 −658.881
EC 121.038 121.060
E

p

kin 418.165 418.233
En

kin 1179.073 1178.843
En

pair −50.326 −50.892

Ẽn
kin 1128.747 1127.951

�n 1.860 1.864
λn −0.410 −0.420

play an important role in the structure of 90Ni. A need for
an appreciable angular momentum cutoff in the description
of weakly bound nuclei, especially for surface-like pairing
interactions, has been pointed out in Ref. [42].

D. Deformed, weakly bound case: Comparison with HFBTHO

One of the objectives of HFB-AX is to precisely solve the
HFB equations for axially deformed nuclei, in particular at
very large deformations and/or at the limit of weak binding.
In this context, the neutron-rich Zr isotopes with A ∼ 110 are
very useful testing grounds, as they are known to have very
large prolate deformations [17]. In this section, we compare
axial HFB-AX and HFBTHO calculations for the nuclei 102,110Zr,
which exhibit deformed neutron skin.

Table IX shows the results of deformed calculations for
102Zr and 110Zr with the same parameters as in spherical
calculations for 120Sn displayed in Table VI. In HFBTHO,
deformed wave functions were expanded in the space of 20
stretched HO shells. The binding energies in HFB-AX are
greater by about 110–140 keV than those of HFBTHO. This is
understandable as HFBTHO with 20 shells also underestimates
the binding energy of 120Sn by about 150 keV [8]. In Table IX

TABLE IX. Results of deformed HFB-AX and HFBTHO

HFB + SLy4 calculations for 102Zr and 110Zr with mixed pairing.
All energies are in MeV. The quadrupole moments are in fm2.

102Zr 110Zr

HFB-AX HFBTHO HFB-AX HFBTHO

Etot −859.649 −859.540 −893.983 −893.840
EC 231.149 231.084 226.758 226.712
E

p

kin 651.309 651.099 632.115 631.882
En

kin 1202.050 1201.990 1368.206 1368.201
En

pair −3.261 −3.535 −3.200 −3.323

Ẽn
kin 1198.789 1198.455 1365.006 1364.878

�n 0.672 0.700 0.636 0.652
λn −5.431 −5.435 −3.552 −3.543
Q

p

20 410.08 411.31 444.02 443.90
Qn

20 638.19 639.41 788.32 786.63
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TABLE X. Comparison between HFB-2D-LATTICE (second col-
umn) and HFB-AX (third column) for 102Zr. Calculation parameters
are the same as in Ref. [15], i.e., V0 = −170 MeV fm3, �max =
11/2, R = 12 fm, and Nρ = Nz = 19. The results of HFB-AX with
the same density functional but the standard box R = 19.2 fm and
larger pairing cutoff �max = 33/2 are displayed in the last column
(HFB-AX′). All energies are in MeV. The mass rms radius Rrms is
in fm.

HFB-2D-LATTICE HFB-AX HFB-AX′

Etot −859.61 −859.19 −859.25
λn −5.46 −5.47 −5.45
λp −12.10 −12.05 −12.06
�n 0.31 0.28 0.43
�p 0.34 0.37 0.40
Rrms 4.58 4.58 4.58
β2 0.431 0.434 0.43

we only show neutron pairing (proton pairing correlations in
110Zr vanish due to a deformed proton subclosure at Z = 40).
It is gratifying to see that the energies and quadrupole moments
of 102Zr and 110Zr are very close in HFB-AX and HFBTHO, in spite
of the fairly different computational strategies implemented in
these two codes.

To compare HFB-AX with the Vanderbilt lattice code
HFB-2D-LATTICE, we calculated the deformed nucleus 102Zr
assuming the same parameters as in Ref. [15], i.e., a fairly small
box radius R = 12 fm, coarse grid, and very low cutoff �max =
11/2. The ground state of 102Zr is reflection-symmetric; thus,
apart from the fact that the box of HFB-2D-LATTICE is twice
as large as that of HFB-AX, the codes are supposed to produce
the same result. As seen in Table X, this is almost the case:
the difference for the binding energy is around 400 keV. We
believe that this could be attributed to a slightly different
structure of the discretized positive-energy continuum in the
two codes. Indeed, the average pairing gaps predicted in the
two codes are ∼30 keV apart. To confirm this, we performed
another calculation for 102Zr in a larger space, i.e., R =
19.2 fm, h = 0.6 fm, and �max = 33/2. While the total energy
is only weakly affected, there is an appreciable increase in the
pairing gaps. This result, together with the discussion of 90Ni
in Sec. III C, underlines the importance of using large boxes
and sizable pairing spaces for the description of neutron-rich
systems.

The results displayed in Table X can also be compared
with the predictions of the 2D finite-difference approach in
Ref. [18] (cf. Table I therein). The latter method yields the
binding energy of 102Zr, which is about 3 MeV above the
HFB-AX and HFB-2D-LATTICE values. As discussed in Ref.
[18], this is probably due to the use of the finite-difference
approximation for the differential operators, which is much
less accurate than the B-spline representation.

Proton and neutron density distributions in 110Zr are
displayed in Fig. 5 (in two dimensions, to better show the
deformed shape) and Fig. 6 (in logarithmic scale, to better
show the asymptotic behavior). The appearance of the neutron
skin beyond the nuclear surface is clearly seen. The density
contours in Fig. 5 can be compared with the result of the

FIG. 5. Contour plots of proton and neutron density distributions
in the (ρ, z) plane for the deformed ground state of 110Zr calculated
in HFB-AX. The densities are in nucleons/fm−3.

HFB-2D-LATTICE shown in Fig. 6 of Ref. [17], and there seems
to be a good agreement between the two sets of calculations.
In particular, the small depression of the density in the nuclear
interior, due to shell effects, is present in both cases. Another
interesting feature is the rather constant value of the density
diffuseness along the nuclear surface.

The asymptotic behavior of the nuclear densities depicted in
Fig. 6 is consistent with general expectations [10], and the ratio
ρn(0, z)/ρn(ρ = z, 0) is roughly constant at large distances.
This indicates that densities are still well deformed in regions
well beyond the nuclear surface.

E. Large deformation limit: Axial symmetric fission path of
240Pu

The advantage of coordinate-space calculations over HO
expansion methods is apparent in the context of problems
involving extreme deformations which require the use of huge
oscillator spaces or even a many-center HO basis. In this
section, we study the axial, reflection-symmetric fission path of
240Pu, which has been investigated in many earlier works [4].
By carrying out precise HFB-AX calculations, one can assess the
error on potential energy surfaces, energies of fission isomers,
and fission barriers obtained in commonly used HFB codes
employing an HO expansion technique.

064306-10



DEFORMED COORDINATE-SPACE HARTREE-FOCK- . . . PHYSICAL REVIEW C 78, 064306 (2008)

FIG. 6. (Color online) Particle (top) and pairing (bottom) ground-
state densities in 110Zr along ρ = 0 and z = 0. The size of the box is
R = 19.2 fm.

The HFB energy for a given value of the mass quadrupole
moment Q20 can be obtained by minimizing the Routhian with
a quadratic constraint [7]:

E′ = E + Cq(〈Q̂20〉 − Q20)2, (26)

where

〈Q̂20〉 = 2π

∫ ∫
ρtot(ρ, z)(2z2 − ρ2)ρdρ dz (27)

is the average value of the mass quadrupole moment, and Cq

is the quadrupole stiffness constant.
The constrained HFB-AX calculations for 240Pu were per-

formed in a box of R = 23.4 fm and h = 0.65 fm, using a
B-spline basis with M = 11. (For a similar mesh size, the
binding energy of 120Sn in HFB-AX agrees with HFBRAD within
50 keV.) The HFBTHO calculations were carried out in a space of
Nsh = 20 spherical or stretched HO shells, which corresponds
to an HO basis size typically used in such calculations. The
mixed pairing interaction is used with the pairing strength
adjusted as in Sec. III B for 120Sn. The results are displayed
in Fig. 7. The spherical HO basis is unreliable for fission
calculations, and the quality of HFBTHO calculations with a
stretched basis deteriorates gradually with deformation. That
is, the energy error on the first barrier and fission isomer is
∼100 and ∼400 keV, respectively, and it reaches ∼500 keV
inside the second barrier. These are significant corrections that
can impact predicted half-lives for spontaneous fission.

FIG. 7. (Color online) Top: axial, reflection-symmetric fission
path of 240Pu calculated with HFB-AX and HFBTHO (in a spherical and
stretched HO basis) as a function of the mass quadrupole moment
Q20 at the self-consistent solution. Bottom: the difference between
HFBTHO and HFB-AX results (normalized to zero at the ground-state
configuration). The minima and maxima of energy are marked:
ground state, g.s.; first barrier, b(1); fission isomer, f.i.; second
barrier, b(2).

IV. CONCLUSIONS

We developed the 2D coordinate-space HFB code HFB-AX

using the technique of basis splines. The high accuracy of
HFB-AX has been demonstrated by comparing its performance
with other HFB solvers, both spherical and deformed. The
absolute accuracy of the B-splines technique used in HFB-AX

has been estimated by comparing with a solver employing
the multiresolution wavelet expansion. The ability of HFB-AX

to reproduce the salient features of weakly bound nuclei,
such as the extended tails of neutron densities in nuclei
close to the neutron drip line, has been assessed by using
the highly accurate 1D code HFBRAD. Finally, symmetric
fission pathways in the heaviest nuclei and deformed halo
systems were calculated to compare with the predictions of
the deformed configuration-space code HFBTHO.

A significant numerical speedup of the code makes it
particularly useful for nuclear structure calculations of exotic
configurations, such as nuclear halos and extremely elongated
fissioning nuclei, including the superheavy elements. Among
the first applications envisioned for HFB-AX are the systematic
study of the deformed drip-line nuclei. In this respect, the
ability of the code to accommodate very large angular
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momentum cutoffs is crucial in the context of nuclei with
large neutron excess, for which the high-j continuum has a
significant impact on pairing correlations [42].

Other possible applications involve systematic studies of
superdeformed configurations and fission isomers. In partic-
ular, HFB-AX can provide systematic energy corrections at
large deformations, which are essential for the HFB models
of nuclear fission based on the HO expansion. The differences
seen in Fig. 7 are expected to appreciably impact the predicted
spontaneous fission half-lives.

In this work, reflection-asymmetric and triaxial deforma-
tions, which are known to be important in realistic fission
calculations, have not been investigated. We are currently
developing a symmetry-free coordinate-space 3D HFB solver
based on the multiresolution wavelet expansion method. The

HFB-AX code reported in this paper will provide crucial bench-
mark tests for this general-purpose, symmetry-unrestricted
HFB framework.
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