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Nuclear halos and drip lines in symmetry-conserving continuum Hartree-Fock-Bogoliubov theory
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We review the properties of nuclear halos and nuclear skins in drip line nuclei in the framework of the spherical
Hartree-Fock-Bogoliubov (HFB) theory with continuum effects and projection on a good particle number with
the Gogny force. We first establish the position of the unprojected HFB drip lines for the two most employed
parametrizations of the Gogny force and show that the use of finite-range interactions leads almost always to
small-sized halos, even in the least bound nuclei, which is in agreement with most mean-field predictions. We
also discuss the size of the neutron skin at the drip line and its relation to neutron asymmetry. The impact of
particle-number projection and its conceptual consequences near the drip line are analyzed in detail. In particular,
we discuss the role of chemical potential in a projected theory and the criteria required to define the drip line.
We show that including particle-number projection can shift the latter, in particular near closed shells. We notice
that, as a result, the size of the halo can be increased due to larger pairing correlations. However, combining the
most realistic pairing interaction, a proper treatment of the continuum, and particle-number projection does not
permit us to reproduce the very large halos observed in very light nuclei.
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I. INTRODUCTION

Neutron-rich nuclei present us with unique opportunities to
test nuclear models. As the asymmetry between the number of
neutrons and protons in atomic nuclei increases, a number of
new phenomena appear such as neutron skins, nuclear halos,
or shell melting [1,2]. With current and ongoing developments
at radioactive ion beam facilities, new territories of the nuclear
chart are open to exploration, and data from very neutron-rich
nuclei are likely to upset existing theories [3].

The so-called nuclear skin in neutron-rich nuclei is caused
to a large extent by the isospin asymmetry. In the mean-field
picture of the atomic nucleus, it should therefore depend
mostly on the isovector component of the effective Hamilto-
nian or Lagrangian. By contrast, the understanding of nuclear
halos in the context of mean-field theories is quite fragmentary,
and it is not clear if one can relate this phenomenon to
a particular term of the effective interaction or density
functional. The extreme difficulties in approaching the drip
lines in heavy nuclei, where mean-field theories are most often
employed, also forbid us from testing the calculations against
experiment. In light nuclei, where experimental data are avail-
able, few-body models that introduce a core surrounded by
one (two-body models) or two particles (three-body models)
are very successful [4,5]. However, mean-field models are
notoriously unreliable in these extremely light systems unless
severe corrections beyond the mean-field are included.

In heavy nuclei, it is commonly thought that nuclear
halos should be interpreted as resulting from the coupling
to the continuum via residual interactions such as pairing
correlations [6]. The spatial delocalization of continuum
states gives a simple motivation for such interpretations.
Nevertheless, mean-field theories show significant variations
in their predictions of halos. Several major difficulties can
explain these discrepancies. First, the neutron drip line is not

known beyond the oxygen element. This lack of experimental
data, which is going to be partially filled in the near
future, implies that models cannot really be benchmarked
against experiment. Second, all self-consistent approaches to
nuclear structure rely on the parametrization of some effective
interaction, Lagrangian, or energy density functional. The
ability to extrapolate such interactions to regions of very large
neutron excess is by no means guaranteed by the theory.
Furthermore, beyond mean-field effects, such as symmetry
restoration mechanisms or configuration mixing might be
playing a different role in these extreme regions as in the
valley of stability.

In a recent article, we proposed [7] a simple and effective
method to treat the continuum in configuration space for
mean-field theories based on finite-range interactions of the
Gogny type. We showed that our procedure provides the
correct asymptotic behavior of the nuclear wave functions
and established the proton and neutron drip lines with the
D1S interaction. We also discussed restoration of the particle-
number symmetry and found that in some cases, particularly
when the neutron number is near a closed shell, the variation
after projection (VAP) method could shift the position of the
drip lines by two neutrons.

In this paper, we apply our method to the specific problems
of nuclear skins and nuclear halos near the neutron drip
line. We will furthermore review several cases that have been
proposed in the past, either in the framework of the Skyrme
Hartree-Fock-Bogoliubov (HFB) theory or the relativistic
mean field and discuss the impacts of both finite-range
interaction and symmetry restoration effects. To the best of
our knowledge, this constitutes the first attempt to address
this problem in an explicitly symmetry-conserving mean-field
approach. In Sec. II, we briefly recall the main features of our
approach as well as the Helm model that has been traditionally
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used to describe nuclear halos. In Sec. III, we discuss the
nuclear skins and halos in the standard framework of the HFB
theory with the Gogny interaction. In Sec. IV, we investigate
the impact of particle-number symmetry restoration on halos.

II. BRIEF DESCRIPTION OF THE METHOD

In the nuclear mean-field approach, the energy of the
nucleus is computed as the expectation value of a two-
body Hamiltonian on a trial wave function [8]. Besides the
relativistic approaches [9], there exists two main families
of two-body effective forces to this date, the zero-range
Skyrme [10] interaction and the finite-range Gogny one [11].
Both are empirical effective forces, and there exist a number
of realistic parametrizations. Skyrme forces lead to a local
energy density which is the basic building block of the
nuclear energy density functional (EDF) theory [12,13]. The
Gogny interaction, because of its finite range, is nonlocal
and computationally more involved; for this reason, the
calculations are most conveniently carried out in configuration
space, i.e., the solutions to the Hartree-Fock (HF) or Hartree-
Fock-Bogoliubov (HFB) problem are expanded on a given
basis.

The harmonic oscillator (HO) basis has always played a
special role in configuration space calculations, as its eigen-
functions are given analytically and are separable. However,
a well-known deficiency of this basis is that it is made
exclusively of bound states, since the underlying potential
has infinite walls. In practice, since calculations are always
performed in a given truncation scheme (for a fixed cutoff
of the basis), the localization of all HO basis states implies
that the physical wave functions of the system will always
acquire a Gaussian asymptotic, including the weakly bound
and positive-energy states. This is clearly unrealistic, as
spherical continuum states should be spherical waves. The
consequences of this deficiency become more serious close to
the drip line, as pairing correlations can couple discrete bound
states to the continuum. It is thus critical to properly describe
the continuous spectrum even at the level of ground-state
calculations [14].

A number of techniques take into account the continuum
in nuclear structure calculations, and it is not the purpose of
this article to discuss in detail the merits of every one of them.
Let us just mention briefly for completeness the coordinate-
space Skyrme HFB theory with either vanishing [14] or
outgoing-wave boundary conditions [15], the coordinate-space
relativistic Hartree-Bogoliubov with finite-element method
[16], and the use of the Gamow basis in the Skyrme HFB
theory [17], in the continuum shell model [18], and in the
Gamow shell model [19]. At the present time, technical
difficulties in including the full continuum with the exact
resonant and nonresonant spectra lead to the consequence
that the most advanced theories are only applied with simple
model interactions that are tailored to capture the main physical
properties of the system. Only in the coordinate-space HFB
approach were realistic Skyrme interactions employed with
density-dependent zero-range forces in the pairing channel
(requiring the introduction of a cutoff in the quasiparticle
spectrum or a regularization procedure [20]). Moreover, as

far as mean-field based theories are concerned, no attempt has
been made to include with the coupling to the continuum the
restoration of broken symmetries or collective motion.

Therefore, to combine the flexibility of configuration space
calculations with the necessary inclusion of the continuum, it
has been proposed in Refs. [7,21] to work in a basis made of the
eigenstates of the Woods-Saxon potential. These eigenstates
are obtained by integrating the Schrödinger equation in a box
of size Rbox with a mesh size h. In practice, Rbox = 20 fm
and h = 0.1 fm are sufficient to obtain a good convergence
of the solutions. Boundary conditions are set on the walls
of the box. As usual, several choices are possible. Outgoing
wave boundary conditions lead to wave functions that are not
square-integrable, and special techniques must be employed
to overcome this difficulty [22–25]. Vanishing boundary con-
ditions guarantee that the basis functions are square-integrable
and can thus be normalized at the price of eliminating all the
continuum states that do not have a node on the walls of the
box. It was shown in Ref. [26] that both techniques essentially
lead to very similar results as far as bound states and bulk
properties of nuclei are concerned. In the following, we use
vanishing box boundary conditions.

In our calculations, we use the finite-range Gogny inter-
action [11]. The same interaction is used in the particle-hole
channel (mean field) and particle-particle channel (pairing),
and both the direct and exchange contributions coming from
all the terms of the interaction are taken into account in the
calculation. The finite range of the force in the pairing channel
allows us to avoid the divergence problem (in momentum
space) and cutoff dependence of zero-range forces. All of our
calculations are performed in spherical symmetry.

To obtain quantitative information on the neutron halo in
neutron-rich nuclei, we make use of the Helm method [27–30].
First, the neutron (proton) form factor is computed as the
Fourier transform of the neutron (proton) density. In spherical
symmetry, this leads to

F (q) = 4π

∫ ∞

0
j0(qr)ρτ (r)r2 dr, (1)

where q is the momentum, j0 is the spherical Bessel function
of order 0, and ρτ (r) is the density (τ standing for neutron
or proton). This form factor built out of the realistic one-
body density, in our case calculated with the Gogny force, is
then compared with the Helm form factor obtained from the
convolution of the Gaussian profile

fG(r) = e−r2/(2σ 2)

(2π )3/2σ 3
, (2)

with a sharp density profile of ρ(r) = ρ0 for r � R0, and
ρ(r) = 0 elsewhere. Since this model is presented in detail in
the references quoted, we simply recall the formulas we are
going to use. The two parameters R0 and σ of the model are
determined in the following way.

The rms radius Rrms is defined as the squared root of the
mean value of the operator r̂2. It is extracted from the nucleonic
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density

Rrms =
√

〈r̂2〉 =

√√√√√√√
∫

d3�r r2ρ(�r)∫
d3�r ρ(�r)

. (3)

For the Helm radius, one straightforwardly obtains

RH
rms =

√
3

5

(
R2

0 + 5σ 2
)
, (4)

where R0 is the diffraction radius

R0 = 4.49341/q1, (5)

and q1 is the first zero of the realistic form factor (1) obtained
in our theoretical approach. The surface thickness σ is defined
as

σ 2 = 2

q2
m

ln
3Nj1(qmR0)

R0qmF (qm)
, (6)

where N is the number of particles, j1 the spherical Bessel
function of order 1, and qm is the first maximum of the realistic
form factor (1).

At this point, we should note that the method does not
provide any information on the eventual decorrelation between
a core and a few valence particles. It only provides a simple
and fast method for assessing the spatial extension of the
nucleus and an excellent starting point for determining the
best halo candidates. However, in few-body nuclear models,
the nuclear halo is often interpreted as one single nucleon or a
pair of nucleons orbiting around a core; see, e.g., Refs. [31,32]
for two-body models and [33–35] for three-body models.
To reconcile these cluster approaches with a mean-field
description of the nucleus, a more detailed analysis of the
density should be carried out. Alternative techniques have been
proposed to cure this deficiency [36].

It is usually convenient to multiply the rms and the Helm
radius by

√
5/3. The quantities

Rgeom = Rrms

√
5

3
, RHelm = RH

rms

√
5

3
, (7)

are related to the underlying shape of the nucleus. A measure
of the nuclear halo is then provided by the quantity

δRhalo = Rgeom − RHelm. (8)

The neutron skin can be defined in various ways depending on
which type of radius is considered. Its general expression is

�R = R(n) − R(p), (9)

where R can be either the geometrical radius, the Helm radius,
or the diffraction radius. It was argued in Ref. [30] that the best
approximation to the neutron skin is obtained when taking
the Helm radius, as the latter is somewhat rid of spurious
contributions coming from the neutron halo.

III. NUCLEAR SKINS AND HALOS WITH FINITE-RANGE
INTERACTIONS

Systematic calculations near the neutron drip line have been
carried out using the spherical HFB code in the Woods-Saxon
basis that was presented in Ref. [7]. The basis was constructed
from the eigenstates of the WS potential with the universal
parametrization of Ref. [37] applied to the Z = 126 and
N = 184 nucleus. The Schrödinger equation was integrated
in a box of Rbox = 20 fm with vanishing boundary conditions.
All eigenstates with � � 15 and n � 18 were retained in the
basis. As shown in Ref. [7], such a choice guarantees a good
convergence of the subsequent HFB calculation.

A. Determination and properties of the neutron drip line

There exist few parametrizations of the Gogny interaction;
in our calculations, we considered the parametrizations D1 of
Ref. [11] and D1S of Ref. [38]. For each of them, the neutron
drip line was calculated based on the requirement that the
one-neutron Sn = B(N,Z) − B(N − 1, Z) separation energy
must be negative for bound nuclei. Since S2n = Sn + Sn−1,
the criterion Sn < 0 is stricter than the condition that the
two-neutron separation energy be negative. In the HFB theory,
the one-neutron separation energy Sn is approximated by
the neutron Fermi energy λn = dE/dN ≈ −Sn . A nearly
equivalent condition to define the one-neutron drip line is
therefore λn > 0. When HFB pairing correlations vanish (case
of closed shells), the value of the chemical potential λ is
meaningless and cannot be used to define the drip line any more
(Hartree-Fock limit). However, in the HF approach and within
the approximation of the validity of Koopman’s theorem [39],
the stability of a nucleus is simply governed by the position
of the last occupied level: if it has positive energy, then the
nucleus is unbound with respect to particle emission.

We display in Table I the one-neutron drip line nuclei
obtained with both interactions. In the presence of pairing
correlations, the criterion λn > 0 has been used. For the
neutron shell closures N = 82 (D1S: elements Z = 36–40;
D1: elements Z = 36 and Z = 38), N = 126 (D1S: elements
Z = 52–64; D1: elements Z = 54–62), and N = 184 (D1S:
elements Z = 80–92; D1: elements Z = 80–90), the neutron
pairing correlations vanish, and we have to rely on Koopman’s
theorem. The columns corresponding to the D1S interaction
were already presented in Ref. [7] and are recalled for
comparison. We would like to comment at this point that
because of some technical problems with our previous codes at
the aforementioned shell closures, in Ref. [7] the drip line was
predicted with two neutrons less for the elements Kr, Te, Xe,
Ba, Hg, and Pb. We also show in Table I the difference in the
number of neutrons between the drip line nuclei with the D1
and D1S interaction: �N = Ndl(D1) − Ndl (D1S). In general,
the D1 parametrization predicts a drip line with more neutrons,
probably because it provides more pairing correlations than the
D1S one. Let us emphasize that all calculations performed
in this work are restricted to spherical symmetry. Several
of the nuclei listed in Table I may be deformed in their
ground state [40]. Symmetry-unrestricted HFB calculations
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TABLE I. Spherical HFB one-neutron drip line nuclei obtained
with the D1S and D1 interactions. The columns marked �N

represent the shift of the drip line (in number of neutrons) when
using the D1 interaction compared with the D1S.

Z N D1S D1 �N Z N D1S D1 �N

6 14 20C 20C 0 50 120 170Sn 168Sn −2
8 18 26O 26O 0 52 126 178Te 178Te 0

10 20 30Ne 30Ne 0 54 126 180Xe 180Xe 0
12 28 40Mg 42Mg +2 56 126 182Ba 182Ba 0
14 32 46Si 46Si 0 58 126 184Ce 184Ce 0
16 34 50S 52S +2 60 126 186Nd 186Nd 0
18 38 56Ar 58Ar +2 62 126 188Sm 188Sm 0
20 44 64Ca 62Ca −2 64 126 190Gd 194Gd +4
22 50 72Ti 72Ti 0 66 132 198Dy 204Dy +6
24 52 76Cr 78Cr +2 68 138 206Er 216Er +10
26 56 82Fe 82Fe 0 70 150 220Yb 230Yb +10
28 58 86Ni 88Ni +2 72 168 240Hf 244Hf +4
30 62 92Zn 98Zn +6 74 178 252W 254W +2
32 72 104Ge 104Ge 0 76 182 258Os 258Os 0
34 80 114Se 114Se 0 78 182 260Pt 260Pt 0
36 82 118Kr 118Kr 0 80 184 264Hg 264Hg 0
38 82 120Sr 120Sr 0 82 184 266Pb 266Pb 0
40 82 122Zr 124Zr +2 84 184 268Po 268Po 0
42 88 130Mo 130Mo 0 86 184 270Rn 270Rn 0
44 92 136Ru 138Ru +2 88 184 272Ra 272Ra 0
46 94 140Pd 148Pd +8 90 184 274Th 274Th 0
48 104 152Cd 158Cd +6 92 184 276U 280U +4

94 188 282Pu 294Pu +12

of neutron-rich nuclei would most likely shift the position of
the drip line in several places.

For each interaction, the quantity δRhalo of Eq. (8) was
then computed at the drip line, i.e., for each element listed
in Table I. The results are shown in Fig. 1. We find a
downward trend of δRhalo as a function of Z superimposed
with oscillations. Both features are well understood. The
decreasing behavior has to do with the well-known fact that
light nuclei have larger halos. The oscillations are related to

FIG. 1. Measure of the neutron halo: δRhalo = Rgeom − RHelm in
fm for spherical Gogny HFB calculations in the WS basis with the
D1S (solid squares) and D1 (open circles) interactions.

the neutron magic numbers: to the five minima (for the D1S,
for example, Zmin = 10, 22, 40, 64, and 92) corresponding to
neutron numbers 20, 50, 82, 126, and 184, see Table I. For
proton numbers that are two (four or six) units larger than a
given Zmin, a few neutrons occupy a new large j shell, thereby
inducing pairing correlations and producing a halo. For Z

values much larger than a given Zmin, the number of neutrons
in the shell becomes large, and the halo disappears.

As noticed in Ref. [30], the size of the halos is correlated
with the corresponding chemical potential of the HFB solu-
tions: larger halos correspond to nuclei with values of λn close
to zero and smaller ones to large λn values. As for the effect
of the parametrization of the Gogny force, we observe that the
largest difference takes place in 42Mg, which is not bound for
the D1S interaction while it is bound for the D1 interaction.
Apart from this particular nucleus, both parametrizations of
the Gogny force give very similar results, even though the
isotopes of the drip line elements are sometimes very different,
for example, 216Er with the D1 interaction and 206Er with the
D1S.

It is instructive to compare our results with the work of
Ref. [30], in which it was pointed out that the size of the
halo, as measured by the quantity δRhalo, significantly depends
on the interaction used. A similar conclusion was reached in
Ref. [36] using a slightly different analysis procedure. In our
case, both parametrizations provide rather similar results in
spite of the fact that the numerical values of the D1S and
D1 parametrizations are quite different. It is also interesting
to note that both parametrizations can lead in some cases
to significantly different drip lines: for the D1 interaction,
for example, the drip line near palladium isotopes (Z = 46)
and erbium (Z = 68) and ytterbium (Z = 70) is located 8
and 10 neutrons farther away, respectively, than for the D1S
interaction. Yet, as mentioned, the size of the halo remains
very similar.

Figure 1 shows which elements can be considered as the
best halo candidates. For each such candidate, the inspection
of the full isotopic sequence from drip line to drip line can
provide information on the swelling of the nuclear skin and the
transition skin to halo. As a first example, we show in Fig. 2 the
case of the isotopic chain for nickel. For the D1S interaction,
this element has one of the largest halos. Furthermore, the same
isotopic line was studied in the framework of the Skyrme-
HFB (SLy4 and SKP interactions) and RHB (NLSH and NL3
Lagrangians) theories [30], which therefore gives us results
from three different sorts of mean fields. In the upper panel
of Fig. 2, both the geometrical and Helm radii are plotted
for the neutron and proton along the Ni isotopic chain. In
the lower panel, the halo parameter δRhalo is plotted for the
neutrons and protons. In nuclei far from the drip line, the
difference between the geometrical and Helm radii is very
small, reflecting the negligible coupling to the continuum near
the valley of stability. At N = 50, we observe the last shell
closure and immediately after the onset of pairing correlations,
which translates into a rapid increase of the halo parameter.
As was pointed out in Ref. [36], a shortcoming of the Helm
method is that in some cases, the quantity δRhalo is nonzero
even in the middle of the valley of stability. This appears clearly
in Fig. 2 for the protons along the entire isotopic chain.
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FIG. 2. Upper panel: Neutron Rgeom(n) and RHelm(n) and proton
Rgeom(p) and RHelm(p) radii for the Ni isotopes calculated with
the D1S Gogny interaction. Lower panel: Neutron and proton halo
parameter δRhalo along this isotopic chain.

Another important remark is that both parametrizations of
the Gogny force tend to give “compact” nuclei, with relatively
small halos in agreement with those obtained in Ref. [30]
with the Skyrme SkP and relativistic mean-field NLSH and
NL3 parametrizations and in contrast to the Skyrme/SLy4
interaction. The case of tin isotopes is even more enlightening.
For this particular element, the position of the drip line is nearly
identical in spherical HFB calculations with Gogny/D1S and
Skyrme/SLy4 interactions, which facilitates the comparison.
In the upper panel of Fig. 3 we plot the neutron and proton
geometrical and Helm radius from the proton to the neutron
drip line. Note that near the neutron drip line, the halo is only
about 0.15 fm, while Skryme/SLy4 results reported in Ref. [30]
indicate a size of about 0.8 fm.

It could also be tempting to apply our method in some of
the experimental cases of nuclear halos. However, as hinted in
the Introduction, we are faced with one major difficulty: most
of the halo candidates are very light nuclei with Z � 6 at the
drip line such as 11Li, 14Be, and 19B. For all the elements with
Z � 8, the experimental drip line is rigorously established, in
the sense that isotopes beyond the drip line are proved to be
particle-unstable [41]. The application of our spherical Gogny-
HFB calculations, whether the D1 or D1S interaction is used,

FIG. 3. Same as Fig. 2, but for the Sn isotopes.

gives the correct drip line isotope for lithium (see next section)
but fails to reproduce the experimental data for elements B, C,
and O. Three main mechanisms, possibly combined, could be
the source of this discrepancy: (i) the interactions used cannot
be extrapolated in these light nuclei, (ii) additional mean-field
symmetries must be broken, e.g., rotational invariance, and
(iii) correlations beyond the HFB level must be included. It is
almost certain that the fit of the interactions can be improved,
but it is today difficult to assess to what extent this would affect
the predictions of nuclear halos in very light nuclei. Similarly,
it is not very clear at the moment as to how halos are formed
in deformed nuclei.

B. Giant halos

Since our description contains the main ingredients for
a proper description of the halo phenomenon—namely, a
good pairing force, the incorporation of the continuum, and
eventually a particle-number projection (in the VAP approach)
indispensable in a weak pairing regime—we can confront our
model with recent spectacular predictions about the existence
of several giant halos in, e.g., light- and medium-mass nuclei.

In neon isotopes, spherical coordinate-space relativistic
Hartree-Bogoliubov (RHB) calculations predicted that giant
halos could develop for a number of neutrons around 30 [42].

064305-5



N. SCHUNCK AND J. L. EGIDO PHYSICAL REVIEW C 78, 064305 (2008)

In our spherical Gogny-HFB calculations, the drip line is
positioned at N = 20 for both D1 and D1S interactions, which
falls a bit short of the last known bound neon isotope at
N = 24 of Ref. [3] and references therein. When deformation
is included in the calculation, the position of the (current)
drip line shifts to N = 24 [40]. The very stretched drip line
reported in Ref. [42] is somewhat surprising, since the pairing
channel was treated by using the D1S finite-range interaction.
Moreover, up to N = 20, RHB results for the rms radii are
very similar to ours; for example, at N = 20 we find a neutron
rms radius of rn = 3.39 fm with the D1S interaction, whereas
the RHB result is rn ≈ 3.42 fm.

The application of the spherical coordinate-space RHB,
with a zero-range density-dependent force in the particle-
particle channel, led to another prediction of giant halos in
zirconium isotopes [43]. Similar to the case of neon isotopes,
such predictions are rooted in the existence of a very stretched
drip line at N = 100 corresponding to the element 140Zr.
Results given in Table I and the upper panel of Fig. 4 show
that the drip line in spherical Gogny-HFB calculations is
at N = 82 for the D1S and N = 84 for the D1 interaction.
Deformed Gogny-HFB calculations with the D1S interaction
also suggest a drip line at N = 82 [40]. These results are

FIG. 4. (Color online) Upper panel: Two-neutron separation
energy for the Zr isotopic chain with the D1 and D1S parametrization.
Lower panel: Neutron single-particle levels in the canonical basis for
Zr isotopes (D1S interaction). The bullets represent the position of
the Fermi level.

FIG. 5. Neutron Rgeom(n) and RHelm(n) radii for the Zr isotopes
calculated with the D1S (solid symbols) and D1 (open symbols)
Gogny interaction.

in agreement, e.g., with Skyrme HFB calculations with the
SLy4 interaction [44], which predict the drip line at N = 84.
Other parametrizations of the Skyrme interaction have slightly
more extended drip lines, at N = 92 for SKP and N = 94
for SKM∗ [45]. For the Gogny interaction, isotopes with
N � 82 (D1S) and N � 84 (D1) are unbound with respect
to two-neutron emission, see upper panel of Fig. 4. Beyond
drip line HFB calculations, although not realistic, can be
pedagogical: in Fig. 5 we show the evolution of the neutron
geometrical and Helm radius beyond the drip line for both
the D1 and D1S interactions. As we increase the number
of neutrons, delocalized orbitals corresponding to discretized
continuum states become occupied and cause a very marked
increase of the neutron radius.

If we restrict ourselves to physical solutions at the HFB
level, we find very small halos: δRhalo ≈ 0.06 fm for the D1S
interaction in 122Zr and δRhalo ≈ 0.11 fm for the D1 interaction
in 124Zr. One may be tempted to attribute this small value to
the collapse of pairing correlations that occurs at N = 82. This
collapse of pairing correlations can be inferred from the lower
panel of Fig. 4, where the gap between the (occupied) h11/2 and
(empty) 2f7/2 orbital is very large. However, particle-number
projection before variation applied to this nucleus provides
the same drip line Zr isotope and leads essentially to the same
value of δRhalo even though pairing correlations do not vanish
any more.

It should be noted that our results agree with previous works
from Refs. [43] (RHB) and [45] (SLY4, SKM∗ and SKP) as
far as the main features of the shell structure of Zr isotopes are
concerned; cf., for example, the neutron single-particle levels
in the canonical basis, Fig. 1 in Ref. [43] and Fig. 4 in the
present work. In particular, the inflection point in the neutron
radius at N = 82 is reproduced by all models. However, all
three realizations of the nuclear mean field differ as to the exact
location of the drip line for the zirconium element, and it is
this uncertainty that causes the widely different predictions of
halo sizes in this particular element.
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FIG. 6. Neutron skins for the Ni and Sn isotopes calculated
with the D1S Gogny interaction and expressed as the difference
of geometrical radii (solid squares), Helm radii (open circles), and
diffraction radii (solid triangles).

C. Neutron skins

One of the main features of neutron-rich nuclei is the
development of neutron skins as the asymmetry between the
number of neutrons and protons increases. The method that
we developed to include the continuum in our calculations
allows us to compute neutron skins up to the drip line. As an
illustration, we display in Fig. 6 the neutron skins calculated
from the geometrical, Helm, and diffraction radii for the two
isotopic chains of nickel and tin.

As expected, all three definitions of the neutron skin give
a smooth increase with neutron number. As noticed in Ref.
[30], however, the skin calculated from the geometrical radius
shows a clear inflection point at N = 50 (Ni isotopes) and
N = 82 (Sn isotopes), which is directly related to the one
marking the appearance of the neutron halo, cf. Fig. 3. By
contrast, the neutron skin calculated from the Helm radius is
a more regular function of the neutron number. Interestingly,
although the size of the halo with our Gogny/D1S interaction is
markedly smaller than with, e.g., Skyrme/SLy4, the values for
the neutron skin are much closer: in 170Sn, �RHelm ≈ 0.57 fm
for D1S and �RHelm ≈ 0.70 fm for Skyrme/SLy4 (a similar
number is also obtained in Skyrme/SKP), cf. Ref. [30].

FIG. 7. Upper panel: Neutron skins along the neutron drip line
calculated with the Gogny interaction and expressed as the difference
of Helm radii with the D1S (solid squares) and D1 (open circles)
interactions. Lower panel: Quantity (N − Z)/A at the drip line for
the D1S (solid squares) and D1 (open circles) interactions.

It is instructive to compute the neutron skin for all the
elements located at the drip line. In the upper panel of Fig. 7,
we plot the neutron skin for the nuclei listed in Table I. We find
an oscillatory behavior relatively similar to the one found for
the quantity δRhalo plotted in Fig. 1. In both cases, halos and
skins, these oscillations can be somewhat related to neutron
magic numbers, but the underlying physics is quite different.

Skins are defined as the difference between the neutron and
proton radii. Therefore, variations in the shape of the skins
measures the relative increase or decrease of neutrons versus
protons. At a neutron shell closure, one can add several protons
without changing the position of the neutron drip line; i.e., as a
function of Z, the proton radius increases and the neutron one
remains constant, which produces a decrease in the neutron
skin. This effect is very clearly seen in Fig. 7: the minima
at Z = 40, Z = 62–64 (D1-D1S), and Z = 90–92 (D1-D1S)
correspond to the last isotone with (magic) neutron number
N = 82, N = 126, and N = 184, respectively. Once beyond
the neutron magic number, the neutron radius increases very
rapidly, and this translates into a quick increase of the neutron
skin for the next few elements. This sharp rise is also visible
in Fig. 7 in the ranges 40 � Z � 50 and 62–64 � Z � 72.
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In fact, the oscillations of the neutron skin can be correlated
very neatly to the quantity (N − Z)/A. While the neutron
excess N − Z increases with the mass number A (an upward
trend not observed in Fig. 7), the ratio (N − Z)/A fluctuates
around some average value of 0.37. In the lower panel of
Fig. 7, we plot (N − Z)/A as a function of Z at the drip
line for the two interactions D1S and D1 considered in this
study. We observe that the maxima and minima of the neutron
skin correspond almost exactly to the maxima and minima of
(N − Z)/A, especially for heavy nuclei. In light nuclei, this
correspondence remains, although it is a little less obvious.
We should like to stress that the quantity (N − Z)/A is a
direct measure of the ratio between the isovector and isoscalar
(integrated) densities. Neutron skins could therefore prove
particularly useful in obtaining experimental constraints on
the corresponding terms of the interaction/functional.

It also follows from this observation that we do not observe
for the neutron skins the clear downward trend as a function
of Z that was observed for the halos, cf. Fig. 1. Neutron skins
are rather a mass-independent observable, which implies that
the skin in a very light nucleus such as, e.g., Si (Z = 14) is
of comparable size as the skin in W (Z = 74). The amplitude
of the oscillations is also much smaller for the skins than for
the halos, reflecting the fact that the (N − Z)/A ratio does
not vary too much along the neutron drip line. Also, the main
maxima for halos and skins do not exactly coincide: for the
D1S interaction, for example, the skins peak at Z = 14, 32, 50,
and 74 and the halos at Z = 16, 28, 44, and 74.

IV. INFLUENCE OF SYMMETRY RESTORATION ON
NUCLEAR HALOS

In this section, we discuss another mechanism that can
affect the position of the drip line, namely, the restoration of
broken symmetries. We focus on the projection on a good
particle number before variation and examine several of its
conceptual as well as practical consequences. The method
we use to include continuum effects into our description
of weakly bound nuclei is indeed particularly suitable to
including extensions beyond the mean field.

A. The RVAP approach

In Ref. [7] we briefly described how we can simulate the
variation after projection (VAP) of the HFB solutions by means
of the restricted-VAP (RVAP) method. Since along the drip
lines some conceptual difficulties may arise, we will discuss
the method a bit more at length here. To illustrate how the
RVAP method works, we will assume a generic two-body
Hamiltonian

Ĥ =
∑
lq

tlqc
†
l cq + 1

4

∑
lql′q ′

v̄lql′q ′c
†
l c

†
qcq ′cl′ , (10)

with v̄lql′q ′ the antisymmetric matrix element

v̄lql′q ′ = vlql′q ′ − vlqq ′l′ , (11)

and (c†i , ci) the single-particle creation and annihilation op-
erators in a given basis. Given the most general Bogoliubov
transformation

β
†
k =

∑
l

Ulkc
†
l + Vlkcl, (12)

the HFB method provides the product wave function

|
〉 =
∏
q

βq |−〉, (13)

which minimizes the expectation value of the Hamiltonian Ĥ .
The matrices U and V that fix the Bogoliubov transformation
of Eq. (12) are determined by minimization of the functional

E′
HFB [|
〉] = 〈
|Ĥ − λNN̂ − λZẐ|
〉

〈
|
〉 , (14)

with λN and λZ the Lagrange parameters that adjust the average
number of neutrons and protons.

It can be shown [8] that the minimization of Eq. (14)
amounts to the diagonalization of the matrix(

h′ �

−�∗ −h′∗

) (
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (15)

with Ek the quasiparticle energies, and h′ = t + � − λN − λZ .
The Hartree-Fock field � and the pairing field � are given by

�ll′ =
∑
qq ′

v̄lql′q ′ρq ′q, (16)

�ll′ = 1

2

∑
qq ′

v̄ll′qq ′κqq ′ , (17)

with ρ the density matrix and κ the pairing tensor defined by

ρll′ = 〈
|c†l′cl|
〉 = (V ∗V T )ll′ ,
(18)

κll′ = 〈
|cl′cl|
〉 = (V ∗UT )ll′ .

The particle-number projected energy is given by

EN [|
〉] = 〈
N |Ĥ |
N 〉
〈
N |
N 〉 = 〈
|Ĥ P̂ N |
〉

〈
|P̂ N |
〉 , (19)

with P̂ N the particle-number projector, and

|
N 〉 = P̂ N |
〉. (20)

To avoid a cumbersome formula, we do not distinguish in
Eq. (20) between protons and neutrons. The simplicity of
projection techniques lies in the fact that while |
N 〉 is
a correlated many-body wave function, the intrinsic wave
function |
〉 remains a product wave function, i.e., the
variational parameters to be determined are the matrices U

and V of Eq. (12).
In the VAP approach, the projected energy EN , see

Eq. (19), is minimized directly. In the projection after variation
(PAV) approach, the HFB energy E′

HFB, see Eq. (14), is
minimized first, and the projection is carried out on the HFB
wave function after convergence. The difference is clear: in
the VAP method, we minimize the energy of the one nucleus
(Z,N ) we are interested in; while in the PAV, the energy is that
of a superposition of nuclei with numbers of particles Z and
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N around the actual values. Though the variational parameters
are the same, the solution of the VAP equations is numerically
much more involved than the PAV one. In a strong pairing
regime, the PAV solution might be a good approximation; but in
the general case, and in particular along the drip lines, the VAP
one is much better. With finite-range forces, the solution of the
VAP equations is rather involved, see Ref. [46]. Considering
the additional difficulties inherent to a proper treatment of the
coupling to the continuum, it is clear that a full VAP solution
is beyond the actual numerical capabilities.

A way out of this problem is the restricted VAP. In the VAP
method, the whole Hilbert space associated with the transfor-
mation in Eq. (12) is scanned in the variational procedure.
In the RVAP approach, however, only a restricted variational
space of highly correlated wave functions is allowed. In
our case, since we are interested in pairing correlations, our
restricted space should contain a whole set of paired wave
functions |
(δ)〉 which parametrically depend on the real
number δ. To generate such wave functions with different
pairing contents that are simultaneously consistent with our
Hamiltonian, we proceed in the following way. Instead of
iterating Eq. (15) together with Eqs. (16) and (17) as in the
usual HFB case, we now iterate(

h′ δ · �

−δ · �∗ −h′∗

)(
Uk

Vk

)
= Ek

(
Uk

Vk

)
, (21)

together with Eqs. (16) and (17) until the convergence is
achieved. The matrices U (δ) and V (δ) obtained in this way
determine the wave functions |
(δ)〉. Performing the same
procedure for different δ values, we generate the restricted
correlated Hilbert space. We then project these wave func-
tions onto the good particle number and obtain a family
of particle-number projected states |
N (δ)〉 = P̂ N |
(δ)〉, for
δ = 1.0, . . . , δmax. The range of values for δ is chosen in such
a way that at least several |
N (δ)〉 wave functions correspond
to highly paired states. We can then take the expectation value
of the Hamiltonian with this set of wave functions, i.e, using
Eq. (19). This gives us a curve EN (δ) where, at each point
δ, the particle number is conserved. The variational principle
guarantees that such a curve has a minimum, which approaches
the VAP result [47].

To illustrate the procedure with a numerical application in
Fig. 8, we display the unprojected energy

EHFB(δ) = 〈
(δ)|Ĥ |
(δ)〉
〈
(δ)|
(δ)〉 (22)

and the projected one

EPNP(δ) = 〈
(δ)|Ĥ P̂ N |
(δ)〉
〈
(δ)|P̂ N |
(δ)〉 (23)

for the drip line nucleus 62Ca with the D1S interaction. When
computing the density-dependent contribution to the projected
energy EPNP(δ), the projected density ρPNP has been used
(prescription 1 in Ref. [46]).

Since the HFB self-consistent minimum is obtained, by
definition, at δ = 1 for EHFB(δ), we expect a parabolic
behavior around this value for increasing or decreasing δ

values. Concerning EPNP(δ), at δ = 1, projecting the HFB

FIG. 8. Intrinsic (solid squares) and projected (open circles)
energy as a function of the parameter δ for the nucleus 62Ca.

solution onto the good particle number lowers the energy;
and for increasing pairing correlations, i.e., values of δ larger
than 1, we first observe a decrease of the projected energy up
to a minimum around δ = 1.12 followed by a rapid increase.
Obviously the solution of the RVAP approach is |
(δ = 1.12)〉.

In a PNP approach, the drip lines are defined in terms
of the projected separation energies, i.e., in terms of
SN

n = BN (N,Z) − BN−1(N − 1, Z) and SN
2n = BN (N,Z) −

BN−2(N − 2, Z). In the HFB approach, Sn ≈ −λn and the
one-neutron drip line can be easily calculated. This approxi-
mation is no longer valid in a projected theory, and SN

n must
be explicitly calculated. Since for the moment we are not
able to project on an odd number of particles, we cannot
calculate the one-neutron drip line and will therefore focus
on the two-neutron drip line. In the next section, we discuss
the meaning of λ and other quantities in the particular context
of a particle-number projected theory.

B. On the RVAP approach and number of particles
of the intrinsic wave function

Let |
〉 be a HFB wave function, i.e., a particle-number
symmetry-violating wave function. We will now show that
the particle-number projected energy is invariant under trans-
formations that change the particle number of the underlying
HFB wave function. We define

|
̃〉 = eα�N̂ |
〉, (24)

with �N̂ = N̂ − N0, N0 = 〈
|N̂ |
〉, and α is a real number,
and we assume that 〈
|
〉 = 1. The wave function |
〉 can be
written as [8]

|
〉 =
∑
β ′,N ′

Cβ ′,N ′ |β ′, N ′〉, (25)

where |β ′, N ′〉 is an eigenstate of N̂ with particle number N ′,
and β ′ stands for all other necessary quantum numbers. The
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transformed wave function reads

|
̃〉 = eα�N̂
∑
β ′,N ′

Cβ ′,N ′ |β ′, N ′〉 (26)

=
∑
β ′,N ′

Cβ ′,N ′eα(N ′−N0)|β ′, N ′〉. (27)

The projected energy is given by

EN = 〈
̃|Ĥ P̂ N |
̃〉
〈
̃|P̂ N |
̃〉 (28)

=
∑

β ′′,β ′ C
∗
β ′′,NCβ ′,N 〈β ′′N |Ĥ |β ′N〉∑

β ′′,β ′ C
∗
β ′′,NCβ ′,N 〈β ′′N |β ′N〉 (29)

= 〈
|Ĥ P̂ N |
〉
〈
|P̂ N |
〉 (30)

in an obvious way.
The wave functions |
̃〉 and |
〉 have different numbers of

particles on the average. This can be easily shown assuming
the parameter α is small enough, in this case,

〈
̃|N̂ |
̃〉
〈
̃|
̃〉 = N0 + 2α〈
|(�N̂ )2|
〉 (31)

up to α2 terms. Since |
〉 is by definition a symmetry-violating
wave function, 〈
|(�N̂ )2|
〉 �= 0, the wave functions |
〉 and
|
̃〉 do have, on the average, different numbers of particles.

We have therefore demonstrated that we can change the
average number of particles of the intrinsic wave function
without changing the value of the projected energy; the
Lagrange parameter λ is therefore superfluous. As a matter
of fact, in a VAP approach, one uses a Lagrange parameter
only to speed up the convergence of the iterative procedure.

It is important to realize that in a projected theory, the only
meaningful quantities are the projected ones. For example, the
intrinsic density ρ(�r) is not invariant under the transformations
of Eq. (24). This is simply the mathematical transcription of
the fact that changing the particle number affects the intrinsic
density. Conversely, the projected density ρN (�r) is consistently
invariant under the aforementioned transformation.

In the demonstration above [Eqs. (24)–(31)], we have
assumed that the coefficients of the Bogoliubov transformation
(12) are known. In the full VAP approach, this is automatically
the case, because the U and V matrices are determined
self-consistently by minimizing the projected energy, which
is invariant under transformations that change the number
of particles. In the RVAP approach, however, to determine
the U (δ) and V (δ) matrices, one solves the standard HFB
equations with a constraint on the number of particles.
The latter equations are obviously not invariant under the
transformations of Eq. (24). This may generate a dependence
of the RVAP solution on the Lagrange parameter λ (or
equivalently on 〈N̂〉). Obviously,

λn(δ) = d〈
(δ)|Ĥ |
(δ)〉
d〈
(δ)|N̂ |
(δ)〉 ≈ −SHFB

n (δ) �= −SPNP
n (δ), (32)

which illustrates that λn cannot be used to define the one-
neutron drip line in a PNP approach. It is interesting to realize

that this dependence on λ could be eventually used to generate
additional correlated wave functions |
(δ, λ)〉 in the RVAP
approach, thereby lowering further the projected energy [48].

As an illustration, we show in the upper panel of Fig. 9 the
projected energy of 258Os as a function of δ for different values
of the number of particles (or λ) of the intrinsic wave function.
As expected, we find that the minimum of the projected energy
does not always correspond to the constraint 〈N〉 = N0, and
for a given constraint on the average particle number, the
position of the minimum depends on δ. In the lower panel,
the corresponding chemical potentials λ(δ) are plotted.

If one restricts oneself to “one-dimensional” RVAP wave
functions of the type |
(δ)〉, it may happen, particularly near
the drip lines, that in the RVAP minimum, the underlying HFB
wave function |
(δ)〉 corresponds to a positive value of λ. As
emphasized before, this is with no consequence, since this λ

parameter does not define the drip line. If one insists, however,
in having a negative Fermi energy, it is always possible to
slightly change the average number of particles of the intrinsic
wave function in such a way that λ becomes negative, with
the eventual cost of a small energy loss. In the illustrative case
of 258Os displayed in Fig. 9, the energy cost is approximately

FIG. 9. Upper panel: Projected energy for intrinsic wave func-
tions with different average numbers of particles N around the actual
particle number N0 = 182 in 258Os. This corresponds to intrinsic
wave functions with different Lagrange multipliers. Lower panel:
Corresponding Fermi level λ.
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15 keV to go from the RVAP minimum (at δ = 1.09) built on
the HFB solution with average number of particles 〈N̂〉 = N0,
to the RVAP minimum (at δ = 1.06) with 〈N̂〉 = N0 − 1.0.
The Fermi energy of the underlying HFB solution goes from
+165 keV to −36 keV. The drip line, defined from the two-
neutron separation energy S2n, remains unchanged.

C. Nuclear halos and drip lines in a symmetry-conserving
approach

In this section, we investigate the effect of the particle-
number projection on the size of the halo along the neutron drip
line. As mentioned in the Introduction, we should distinguish
between halos in very light nuclei and those in the heavier
ones. We are aware that a mean-field based approach may not
contain enough correlations to describe the halo mechanism in
very light nuclei. Nevertheless, we will first discuss the impact
of the RVAP procedure on the archetypical case of halo nucleus
11Li.

In the calculation of the nucleus 11Li, with three protons and
eight neutrons, the odd proton was treated in the equal-filling
approximation (the 1p1/2 state is the blocked state) and only
the projection on the neutron particle number was carried out.
Since the neutron number corresponds to a shell closure, it
is obvious that the HFB solution is not a super-fluid one.
Figure 10 shows the total projected energy and the neutron and
mass r.m.s radius in 11Li as functions of the RVAP variational
parameter δ. All calculations are done in the WS basis with
the D1S interaction. The RVAP minimum always corresponds
to a paired solution. In 11Li, our original spherical HFB
calculations with the D1S or D1 interactions do not produce
any halo. In fact, pairing correlations do not set in at all in this
nucleus in the HFB calculations, even when the size of the box
is increased up to 30 fm (thereby increasing the level density
of continuum states). This is clearly viewed in Fig. 10, since
the projected energy remains constant at EN = −47.48 MeV
for 1.0 � δ � 1.18. In spite of multiplying the pairing field by
the factor δ during the iterations, pairing correlations are still

FIG. 10. Total projected energy (open squares) and neutron (solid
circles) and mass (open triangles) rms radius in 11Li as a function of
the RVAP parameter δ. At each point δ, the HFB solution is projected
on the good particle number. The minimum is attained at δ = 1.36.

FIG. 11. Neutron HFB density ρHFB(r) in 11Li at the HFB
minimum (dotted line) and at the RVAP minimum (solid line).
The dashed line shows the projected density ρPNP(r) at the RVAP
minimum. Calculations are done for the D1S interaction in the WS
basis with Rbox = 20 fm.

identically 0 at convergence. Only for δ > 1.18 do we observe
the onset of significant pairing correlations. The total projected
energy therefore decreases, and continuum states begin to have
a nonzero occupation probability, which contributes to the
increase of the rms neutron radius. At the minimum of the
RVAP curve, both the neutron and mass radius have increased
by about 2%. The effect is marked, but it is clearly not enough
to reproduce the experimental halo in this nucleus [49].

To better grasp the impact of particle-number projection,
we show in Fig. 11 the neutron density in 11Li in three
different cases. The dotted line corresponds to the standard
HFB calculation. The solid line corresponds to the density of
the intrinsic HFB wave function |
(δ)〉 at the RVAP minimum
δ = 1.36. We clearly see the formation of a “bump” which is
a visual trademark of the nuclear halo. However, this solution
is not physical, since it is only used to generate the variational
space used in the RVAP procedure. Only the projected solution
|
N (δ = δmin)〉 at the minimum is physical. The corresponding
projected density (dashed line) is slightly less extended than
the underlying HFB solution.

Figures 10 and 11 suggest that the impact of particle-
number projection may be instrumental in the formation of
sizable halos, since the RVAP mechanism always guarantees a
solution with nonzero pairing correlations. Since the chemical
potential is irrelevant in a projected theory, we should
therefore, in principle, compute this quantity using projected
energies and compare it with the results obtained using
unprojected quantities. As emphasized earlier, the application
of particle-number projection in odd nuclei is not possible
at the moment, hence the one-neutron RVAP drip line is not
accessible.

We therefore carried out systematic RVAP calculations
of the two-neutron separation energies, S2n, near the drip
line using the D1S interaction. The particular choice of
the interaction is secondary in this study, since the focus
is on the particular role of particle-number projection. The
procedure was as follows. For a given drip line element
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TABLE II. Two-neutron drip line nuclei obtained using
the D1S parametrization at the HFB and RVAP levels.

HFB RVAP HFB RVAP

20C 20C 170Sn 172Sn
26O 26O 178Te 178Te
30Ne 30Ne 180Xe 180Xe
40Mg 42Mg 182Ba 182Ba
46Si 46Si 184Ce 184Ce
50S 50S 186Nd 186Nd
58Ar 58Ar 188Sm 188Sm
64Ca 62Ca 192Gd 192Gd
72Ti 72Ti 200Dy 200Dy
78Cr 74Cr 206Er 206Er
84Fe 84Fe 220Yb 220Yb
86Ni 86Ni 242Hf 242Hf
94Zn 94Zn 254W 254W
104Ge 104Ge 258Os 258Os
114Se 114Se 260Pt 262Pt
118Kr 118Kr 264Hg 264Hg
120Sr 120Sr 266Pb 266Pb
122Zr 122Zr 268Po 268Po
130Mo 130Mo 270Rn 270Rn
136Ru 136Ru 272Ra 272Ra
140Pd 140Pd 274Th 274Th
152Cd 152Cd 278U 278U

284Pu 282Pu

(Z,N ) from Table I, the isotopes with N − 4, N − 2, N ,
and N + 2 neutrons were considered. For each isotope, the
RVAP procedure was carried with δ = 1.0, 1.05, . . . , 1.50.
The minimum of the RVAP curve was retained as the physical
solution for every isotope. The two-neutron separation energy
was calculated from the total RVAP-projected energies: S2n =
BPNP(N,Z) − BPNP(N − 2, Z). The criterion S2n < 0 was
used to define the position of the new drip line. Table II shows
the two-neutron drip line nuclei with and without the particle-
number projection. These two drip lines differ by the isotopes
of six elements: 42Mg30,

62Ca42,
74Cr50,

172Sn122,
262Pt184, and

282Pu188. As we can read in the neutron number of these nuclei,
the differences always arise close to the shell closures, where
the pairing correlations are either very weak or vanishing.

For all the elements located at the RVAP drip line, the Helm
radii were computed, for the protons and the neutrons, based
on the projected density ρPNP(r). The quantity δRPNP

halo (n) =
RPNP

geom(n) − RPNP
Helm(n) obtained from these calculations is re-

ported in Fig. 12, together with the original δRhalo(n) of the
two unprojected (S2n and Sn) drip lines.

The impact of particle-number projection is only significant
in those nuclei that are unbound at the HFB level but bound
in the RVAP-HFB. As can be seen from Table II, there are
many nuclei that are particle-unstable (−S1n ≈ λn > 0) but
two-particle-stable (S2n < 0). In such cases, the halo is of
course larger, sometimes significantly larger, such as Cr or
Fe, than the corresponding particle-stable isotope. Moreover,
the value of the halo calculated at the RVAP minimum closely
follows the one calculated at the S2n drip line. The case of Cr is

FIG. 12. Measure of the halo: δRhalo(n) = Rgeom(n) − RHelm(n)
for RVAP-projected (solid squares), S2n-unprojected (open circles),
and Sn-unprojected (solid circles) drip lines. All results are based
on spherical Gogny HFB calculations in the WS basis with the D1S
interaction.

singular, in that the RVAP mechanism changes the two-neutron
drip line by four units, thereby considerably lowering the halo.

However, beyond Z ≈ 30, the differences between all
approaches become relatively negligible. This goes along a
very clear and definite trend toward smaller halos as the
mass of the nucleus increases. Combining this observation
with the fact that our mean-field approach, which includes
the continuum and uses the best possible treatment of pairing
correlations, fails to produce halos in light nuclei, it is tempting
to conclude that halos are a trademark of few-body correlations
only. As was recognized early on, pairing correlations are
a prerequisite to the formation of halos in a mean-field
approach indeed. However, our work seems to further indicate
that additional correlations beyond the symmetry-conserving
mean-field approximation are also mandatory.

Figure 11 may suggest that for RVAP solutions, the
projected density profile is markedly different from the
unprojected density. As mentioned already, only the pro-
jected density bears a physical meaning by construction. The
underlying HFB solution is only used to generate a set of
highly pair-correlated projected wave functions. Nevertheless,
one may compare the behavior of δRhalo when using either
the projected density ρPNP(r) in the RVAP minimum or the
underlying unprojected HFB density ρHFB(r) in this same
minimum to visualize the impact of projection itself. The
difference in δRhalo is practically negligible (less than 0.01
fm) and certainly not on the same scale as differences coming
from the interaction.

We have also applied the RVAP formalism to the calculation
of neutron skins, and we do not find any remarkable difference
from the HFB ones. This confirms the observation that neutron
skins are, from a theoretical point of view, mostly sensitive to
the details of the interaction (isoscalar vs isovector content);
and from an experimental point of view, they are sensitive to
the neutron excess but not directly affected by the vicinity of
the continuum.
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V. CONCLUSIONS

In conclusion, we applied our method to include continuum
effects in spherical self-consistent HFB calculations with
finite-range forces of the Gogny type to the case of nuclear
halos and skins. Our calculations show that both the D1 and
D1S parametrizations of the Gogny force lead to relatively
small mean-field halos, which are of comparable size to
most of the results obtained in Skyrme-HFB or relativistic
Hartree-Bogoliubov theories. In particular, we do not find the
giant halos in neon and zirconium isotopes that were reported
in several publications. As a rule of thumb, we observe that the
size of the halo tends to decrease as the mass of the nucleus
increases, and only light nuclei feature decent-sized halos. By
contrast, neutron skins are found to be very clearly related to
the ratio (N − Z)/A.

We also show that the impact of particle-number projection,
before variation, is relatively important, since it can change the
position of the drip line. However, we find that particle-number
projected continuum-coupled HFB theory, employing the most
realistic form of the pairing interaction, cannot reproduce the
large halos observed experimentally in very light nuclei such
as 11Li. This suggests a series of necessary conditions for

a successful description of nuclear halos in the framework
of mean-field theory: (i) the continuum must be properly
included in the formalism, (ii) the shell structure must be
realistic enough, (iii) pairing correlations must be present, (iv)
symmetry-breaking mean-field calculations, including all rele-
vant deformation degrees of freedom, are probably mandatory,
(v) all such broken symmetries (in particular, particle number)
should then be restored, and (vi) probably configuration
mixing such as the Generator Coordinate Method (GCM)
should also be included.
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(1967).
[29] R. Raphael and M. Rosen, Phys. Rev. C 1, 547 (1970).
[30] S. Mizutori, J. Dobaczewski, G. A. Lalazissis, W.

Nazarewicz, and P.-G. Reinhard, Phys. Rev. C 61, 044326
(2000).

[31] D. V. Fedorov, A. S. Jensen, and K. Riisager, Phys. Rev. C 50,
2372 (1994).

[32] F. Nunes, I. J. Thompson, and R. C. Johnson, Nucl. Phys. A609,
43 (1996).

[33] M. V. Zhukov et al., Phys. Rep. 231, 151 (1993).
[34] F. Nunes, J. A. Christley, I. J. Thompson, R. C. Johnson, and

V. D. Efros, Nucl. Phys. A596, 171 (1996).
[35] J. M. Bang et al., Phys. Rep. 264, 27 (1996).
[36] V. Rotival and T. Duguet, arXiv:nucl-th/0702050; V. Rotival,

K. Bennaceur, and T. Duguet, arXiv:0711.1275.
[37] J. Dudek, Z. Szymanski, and T. Werner, Phys. Rev. C 21,

448 (1980).
[38] J.-F. Berger, M. Girod, and D. Gogny, Comput. Phys. Commun.

63, 365 (1991).
[39] T. A. Koopmans, Physica 1, 104 (1934).

064305-13



N. SCHUNCK AND J. L. EGIDO PHYSICAL REVIEW C 78, 064305 (2008)

[40] http://www-phynu.cea.fr/science en ligne/carte poten-
tiels microscopiques/carte potentiel nucleaire.htm.

[41] M. Thoenessen, Rep. Prog. Phys. 67, 1187 (2003).
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