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A self-consistent quasiparticle random-phase approximation (QRPA) model that employs the canonical
Hartree-Fock-Bogoliubov (HFB) basis and an energy-density functional with a Skyrme mean-field part and
a density-dependent pairing is used to study the monopole collective excitations of spherical even-even nuclei.
The influence of the spurious state on the strength function of the isoscalar monopole excitations is clearly
assessed. We compare the effect of different kinds of pairing forces (volume pairing, surface pairing, and mixed
pairing) on the monopole excitation strength function. The energy of the isoscalar giant monopole resonance
(ISGMR), which is related to the nuclear incompressibility K∞, is calculated for tin isotopes and the results are
discussed.
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I. INTRODUCTION

The nuclear structure community have made great achieve-
ments in understanding the structure of the ground state and
of the excited states of stable atomic nuclei. As radioactive
beams provide more experimental results on the nuclei far
from the stability valley, the challenge is how to extrapolate
the theoretical models and predict or describe in detail the
exotic properties of the nuclei with large neutron or proton
excess. Another challenge is the prediction of the properties of
nuclear matter in a broad range of densities, i.e., in connection
with neutron stars, and to understand the origin of these new
properties.

For medium-mass and heavy nuclei, the most microscopic
models that we can use are the mean-field models based
on the effective interactions, either in the nonrelativistic or
relativistic framework. For closed-shell nuclei, Hartree-Fock
(HF) theory has already been proven to be a powerful tool to
describe the properties of ground states [1], in particular using
the zero-range Skyrme interactions [2–6]. In the open-shell
nuclei, the effect of nuclear pairing shows up. A simple theory
for the ground-state pairing is HF+Bardeen-Cooper-Schriffer
(BCS) [7]. The nuclei close to the neutron or proton drip lines
may exhibit some very unusual features such as the neutron
or proton skin [8] and the neutron haloes [9]. In these very
neutron-rich or proton-rich nuclei, nuclear pairing plays a
crucial role for the theoretical understanding of these new
phenomena [10–14]. A more appropriate theory is the HFB
approach [1] because the pairing component can no longer
be treated as a residual interaction, i.e., a small perturbation
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important only in the neighborhood of the Fermi surface,
as in the nuclei close to the line of β stability. This is
seen from the approximate HFB relations between the Fermi
level λ, pairing gap �, and the particle separation energy s:
s ≈ −λ − �, because s is very small and λ + � ≈ 0, for
drip-line nuclei. Consequently, the mean-field characterized
by λ and the pairing field � are equally important. Using
appropriate effective interactions in mean field and pairing
field, the HFB approach is already sophisticated enough to
allow precise analysis of ground-state properties, i.e., binding
energies, average neutron pairing gaps, etc., in most nuclei
either using the Skyrme force plus a density-dependent pairing
force [15] or the finite-range pairing force [16,17].

Studying the nuclear collective excitations is another
important tool to understand the structure of nuclei and
predict the exotic properties of nuclei far from stability
valley or the properties of nuclear matter. The QRPA is a
standard method for describing these collective excitations
in open-shell superconducting nuclei with stable mean-field
solutions [1,18]. Important nuclear collective excitations are
the nuclear compressional modes—particularly the ISGMR—
which provide the optimal route to determine the nuclear
incompressibility [19–21]. Both nonrelativistic RPA [22–24]
and relativistic RPA or QRPA [25,26] were recently used in
studying the nuclear collective excitations and the nuclear
incompressibility. However, the fully self-consistent QRPA,
formulated in the HFB canonical basis, which was introduced
and accurately tested using Skyrme energy density functionals
and density-dependent pairing functionals in Ref. [27] has
not been applied to extract information about the nuclear
incompressibility. If the models are characterized by a nuclear
incompressibility K∞ around 230 ∼ 240 MeV [or 250 ∼
270 MeV in the case of relativistic mean field (RMF)], they
will give the right ISGMR centroid energies compared with
the experimental data in 208Pb [19,25]. However, with these
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modes one tends to overestimate the centroid energies in the
tin isotopes [24,26]. Is there any need of more sophisticated
considerations for the nuclear pairing in tin? To answer this
question, we study the ground-state properties of tin isotopes
using the HFB theory with a Skyrme mean field and different
kind of pairing forces, and then we apply a self-consistent
QRPA model for the ISGMR.

The article is organized as follows. Section II discusses the
QRPA employed in this study. Because the QRPA equation
is solved on the canonical HFB basis, in this section we also
present a survey of the canonical HFB theory. We mention
briefly the meaning and role of self-consistency in the context
of RPA and QRPA calculations. In Sec. III, we give the
numerical details and the results. In this section, we discuss
the method of projecting out the spurious state, the influence
of pairing force on the strength function, and, in particular,
we study the energy of the ISGMR for tin isotopes. The last
section contains a short summary and our conclusions.

II. QRPA WITH CANONICAL HFB BASIS

The standard approach for describing collective excitations
in magic nuclei is the so-called RPA with stable mean-field
solutions. The extension to open-shell nuclei is the QRPA that
includes not only the particle-hole channel (mean field) but
also the particle-particle channel (pairing field). The first step
in solving the self-consistent QRPA is to obtain the ground-
state properties by solving the HFB equations. Because the
HFB theory is discussed in details in many textbooks and
articles [1,15], here we just present briefly the HFB theory in
canonical basis.

The canonical basis is a particular basis in which the density
matrix is diagonal, and the canonical basis wave functions
are all localized. Starting from the effective Hamiltonian of
a nuclear system, using the variational principle, the HFB
equations in the canonical basis are obtained as [15]

(h − λ)µν(uµvν + uνvµ) + h̃µν(uµuν − vνvµ) = 0 (1)

(h − λ)µν(uµuν − vνvµ) − h̃µν(uµvν + uνvµ) = Eµν, (2)

where h and h̃ are the particle-hole and particle-particle
Hamiltonian in the canonical basis, respectively. λ is the Fermi
energy while Eµν represents the HFB Hamiltonian in the
canonical basis. The canonical states µ are not eigenstates of
the HFB Hamiltonian. The right way to obtain the canonical
basis is to solve the HFB equations in the quasiparticle basis
to obtain the quasiparticle states, i.e., the quasiparticle wave
functions (including the upper and lower conponents φ1 and
φ2) and quasiparticle energies and then to build the density
matrix and to diagonalize it to get the canonical basis [15].
The square of vµ (uµ) represent the probability that a certain
state µ is occupied (empty). These quantities are solely
determined by the diagonal matrix elements of particle-hole
and particle-particle Hamiltonians,

vµ = −sgn(h̃µµ)

√
1

2
− hµµ − λ

2Eµµ

,

(3)

uµ =
√

1

2
+ hµµ − λ

2Eµµ

.

In the case of spherical symmetry, and without mixing of
the proton and neutron states, the quasiparticle wave functions
have the good quantum numbers (nljm); n turns out to be a
good quantum number because the continuum is discretized
inside a spherical box. Furthermore, the radial part of the
quasiparticle wave functions can be chosen to be real. Then
the quasiparticle wave function can be written as:

φi(nlj, rσ ) = ui(nlj, r)

r

∑
mlms

Y (l)
ml

(r̂)χ (σ )
ms

〈
lml

1

2
ms

∣∣∣∣ jm

〉
,

(4)
i = 1, 2,

where i = 1, 2 label the upper and lower components of
the wave functions. The density matrix elements can be
constructed using the lower components of the quasiparticle
wave functions,

ρ(lj )(r, r′) =
∑

n

φ2(nlj, r)φ∗
2 (nlj, r′), (5)

where the sum runs over all the states for a given (l, j ) block.
We will get the canonical basis after diagonalizing the density
matrix.

The QRPA takes the quasiparticle vacuum as the approxi-
mate ground state and is aimed at the description of small am-
plitude, collective excitations. Defining the phonon excitation
operators in the angular momentum coupled representation,

Q†
ν(JM) =

∑
α � β

[
Xν

αβA
†
αβ(JM) − Y ν

αβAαβ(J̃M)
]

(6)

Qν(JM) =
∑
α � β

[
Xν∗

αβAαβ(JM) − Y ν∗
αβ A

†
αβ(J̃M)

]
, (7)

where

A
†
αβ(JM) = 1√

1 + δαβ

∑
mαmβ

〈jαmαjβmβ |JM〉α†
αα

†
β (8)

Aαβ(JM) = 1√
1 + δαβ

∑
mαmβ

〈jαmαjβmβ |JM〉αβαα (9)

Aαβ(J̃M) = (−1)J+MAαβ(J − M), (10)

the QRPA equation can be easily obtained from the lineariza-
tion of Schrödinger equation,∑

α<β

(
Aαβ,γ δ Bαβ,γ δ

−B∗
αβ,γ δ −A∗

αβ,γ δ

)(
Xν

γδ

Y ν
γ δ

)
= Eν

(
Xν

αβ

Y ν
αβ

)
. (11)

In the angular momentum coupled representation and
canonical HFB basis, the matrix elements Aαβ,γ δ and Bαβ,γ δ

have the form [1,18,27],

Aαβ,γ δ = 1√
1 + δαβ

√
1 + δγ δ

[Eαγ δβδ − (−1)jα+jβ−J Eβγ δαδ

− (−1)jα+jβ−J Eαδδβγ + Eβδδαγ

+Gαβγ δ(uαuβuγ uδ + vαvβvγ vδ)

+Fαβγ δ(uαvβuγ vδ + vαuβvγ uδ)

− (−1)jγ +jδ−J ′
Fαβδγ (uαvβvγ uδ + vαuβuγ vδ)]

(12)
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Bαβ,γ δ = 1√
1 + δαβ

√
1 + δγ δ

[−Gαβδγ (uαuβvγ vδ

+ vαvβuγ uδ) − (−1)jδ+jγ −J ′
Fαβδγ (uαvβuγ vδ

+ vαuβvγ uδ) + (−1)jα+jβ+jγ +jδ−J−J ′

×Fαβγ δ(uαvβvγ uδ + vαuβuγ vδ)] (13)

with

Gαβγ δ =
∑

mαmβmγ mδ

〈jαmαjβmβ |JM〉〈jγ mγ jδmδ|J ′M ′〉V pp

αβ,γ δ

(14)

Fαβγ δ =
∑

mαmβmγ mδ

〈jαmαjβmβ |JM〉〈jγ mγ jδmδ|J ′M ′〉V ph

αδ̄β̄γ
,

(15)

where V
ph

αδ̄β̄γ
represents the matrix elements of the particle-hole

effective interaction and V
pp

αβ,γ δ represents the matrix elements
of the particle-particle effective interaction. Actually, in the
canonical basis, the equations of HFB+QRPA are almost the
same as those of HF-BCS+QRPA, except for the presence of
off-diagonal terms related to the quasiparticle energies in the
former case.

We remind the reader that self-consistency means, in the
RPA context, that the particle-hole residual interaction is
obtained as the exact second derivative of the energy functional
with respect to the density. Until quite recently, most of the
RPA calculations were not fully self-consistent; rather, some
parts of the residual interaction were neglected. Only full
self-consistency allows conservation of the energy-weighted
sum rule (EWSR) according to the Thouless theorem [28].
Moreover, in the case of monopole the inclusion of the whole
residual interaction is crucial to evaluate accurately the energy
of the giant resonance [23] and to assess quantitatively the
value of K∞ [19].

In the QRPA framework, self-consistency should mean,
in addition to what has been stated for RPA, that the particle-
particle residual interaction is obtained as the second derivative
of the energy functional with respect to the anomalous
density or pairing density. This prescription is obeyed both in
HF-BCS+QRPA and in HFB+QRPA. In the former case,
however, the model spaces for HF-BCS (which includes,
as a rule, only one major shell above the Fermi energy)
and for QRPA (which is much larger) differ. In this sense,
only HFB+QRPA is, strictly speaking, self-consistent. The
Thouless theorem concerning the EWSR obtained within HF
plus RPA is also valid for the self-consistent QRPA based on
HFB solution as it is demonstrated in Ref. [29].

The fully self-consistent calculation must include the
pairing-rearrangement terms in the matrix elements, namely
the contribution to the particle-hole interaction coming from
the density dependence of the pairing force [27,30]. In the
case of the volume pairing force, there are consequently no
pairing-rearrangement terms at all, whereas in the case of
the surface pairing force there exists a contribution from the
pairing-rearrangement terms. We have carefully checked that
this contribution has a negligible effect on the ISGMR. For
example, the ISGMR centroid energies obtained from the
QRPA calculations based on canonical HFB solution without

the effects of the pairing rearrangement using the SKM∗ force
and the surface pairing force are 16.32, 16.13, and 16.0 MeV
for 112Sn, 116Sn, and 124Sn, respectively. When including the
effects of the pairing rearrangement, the values of the ISGMR
centroid energies change to 16.34, 16.11, and 16.02 MeV for
112Sn, 116Sn, and 124Sn, respectively. Therefore, in the figures
and in the discussion below, we quote results obtained without
the pairing-rearrangement terms.

III. RESULTS AND DISCUSSIONS

For the ground-state properties of spherical nuclei, the HFB
equations are solved in coordinate space in a spherical box. In
the particle-hole channel, we use a Skyrme force, i.e., SLy5 [4]
or SKM∗ [6], and in the particle-particle channel, we use a
zero-range density-dependent pairing force,

v(r1, r2) = v0

{
1 − η

[
ρ( r1+r2

2 )

ρ0

]}
δ(r1 − r2), (16)

where ρ0 = 0.16 fm−3; the values of η are 0, 1, and 0.5
for volume, surface, and mixed pairing forces, respectively;
the value of v0 is fixed by fitting the experimental data of
the mean neutron gap of 120Sn (�n = 1.321 MeV). In the
case of the Skyrme force SLy5, v0 = −170.92,−537.05, and
−272.99 MeVfm3 for volume, surface, and mixed pairing
forces, respectively. In the case of the Skyrme force SKM∗,
v0 = −142.01,−490.48, and −233.22 MeV fm3 for volume,
surface, and mixed pairing forces, respectively. There are some
numerical parameters in the actual calculations: (i) we use a
high quasiparticle-energy cutoff (200 MeV) and a maximum
angular momentum jmax = 15/2 and (ii) the radius of the box
is fixed at 20 fm with a small mesh (0.05 fm).

The self-consistency of the HFB+QRPA calculations re-
quires the use in QRPA of a residual force derived from
the HFB fields. At the same time, for a real self-consistent
calculation, all the quasiparticle states produced by the HFB
calculation must be used to build the matrices A and B in
the QRPA equation. In actual calculation, there are about
500–600 quasiparticle states in the HFB calculation up to
200 MeV that is the HFB cutoff. Some states with very
small values of occupation probability in canonical basis or
some two-quasiparticle excitations with very high energy give
little contribution to the QRPA spectrum, so we cut off the
canonical-basis wave functions by excluding those with very
small values of occupation probability and with very high
values of single-particle energy and check the convergence of
the QRPA solution. Figure 1 shows the isoscalar 0+ strength
function (averaged with Lorentzians having 1 MeV width) in
120Sn with the Skyrme force SLy5 and the volume pairing
force defined above for different values of cutoff in excitation
energy and occupation probability. Comparing the curve with
circles with the curve with stars in Fig. 1, we find that the
levels with occupation probabilities smaller than 10−9 have
little influence on the isoscalar 0+ strength function. Similarly,
from the curves with squares, up-triangle, and circles in Fig. 1,
we find Ecut = 150 ∼ 200 MeV is a suitable excitation energy
cutoff in calculations to make our results stable at the level
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FIG. 1. (Color online) The isoscalar 0+ strength function (av-
eraged with Lorentzians having 1 MeV width) in 120Sn using the
Skyrme force SLy5 and the volume pairing force for different values
of single-particle energy cutoff and occupation probabilities.

of 300 keV for the centroid energy. Therefore, in the next
calculations, the value of the cutoff on occupation probability
is fixed at v2

cut = 10−9, and the excitation energy cutoff is
selected as Ecut = 200 MeV.

A. The spurious state

In the spherical QRPA solution, there exists the problem
of a spurious state in the monopole channel due to the
particle number symmetry broken by the HFB solution [1].
The spurious state should be orthogonal to all other physical
states and should appear at zero energy. However, in actual
calculations the spurious state is at low (but not zero) energy
for small numerical inaccuracies and contributes to the total
strength. Therefore, the spurious state must be projected out
from the real physical states.

Starting from the actual quasiparticle QRPA set of states
|n〉, we construct a new set of normalized states |n′〉 that are
the real physical states,

|n′〉 = |n〉 − αn|s〉, (17)

where |s〉 is the spurious state. The X and Y amplitudes of the
spurious state should be proportional to [1]

〈αβ|N |0〉 = −2ĵαuαvα, (18)

where |αβ〉 is a pair of canonical states, N is the particle
number operator, |0〉 is the phonon vacuum state, and ĵ =√

2j + 1. αn is obtained by the condition 〈n′|N |0〉 = 0,

αn = 〈n|N |0〉
〈s|N |0〉 = −

∑
α(Xαα + Yαα)2ĵαuαvα∑

α(2ĵαuαvα)2
. (19)

Figure 2 shows the influence of the spurious state on the
isoscalar 0+ strength function in 120Sn with the Skyrme force
SLy5 and the volume pairing force. The spurious state affects
the low-lying region as it is expected, whereas it does not
impact the ISGMR at all.

FIG. 2. (Color online) The isoscalar 0+ strength function (av-
eraged with Lorentzians having 1 MeV width) including spu-
rious state (line with circles) or not (line with squares) in
120Sn using the Skyrme force SLy5 and the volume pairing
force.

B. The isoscalar 0+ mode

The ISGMR is an important collective excitation because
its excitation energy is related to the nuclear incompressibility
K∞. The excitation operator of the ISGMR is F IS

monopole =∑A
i=1 r2

i . The macroscopic picture for a state excited by this
operator is the so-called breathing mode. The strength function
is defined as

S(E) =
∑

n

∣∣〈n|F IS
monopole|0〉∣∣2

δ(E − En), (20)

and the moments of the strength function are

mk =
∫

EkS(E) dE. (21)

The centroid energy can be defined as the ratio between the
EWSR sum rule m1 and the non-energy-weighted (NEWSR)
sum rule m0: E0 = m1/m0.

The ISGMR has been so far mainly described within the
HF+RPA and the HF-BCS+QRPA that have been defined

FIG. 3. Systematics of the moment ratios m1/m0 for the ISGMR
strength distributions in the tin isotopes using Skyrme HF+RPA.
They are evaluated in the energy interval between 10.5 and
20.5 MeV. The experimental data are extracted from Refs. [31,32].
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TABLE I. The single-particle energies (MeV) and occupation number of d3/2 and h11/2 in the tin isotopes using the Skyrme force
SLy5. In HFB, we use the volume pairing force in particle-particle channel.

A d3/2 h11/2

HF BCS HFB HF BCS HFB

ε V 2 ε V 2 ε V 2 ε V 2 ε V 2 ε V 2

112 −8.69 0 −8.63 0.18 −8.33 0.21 −7.14 0 −6.90 0.066 −6.60 0.048
114 −8.74 0 −8.65 0.26 −8.37 0.29 −7.45 0 −7.07 0.089 −6.80 0.067
116 −8.69 0 −8.67 0.36 −8.42 0.40 −7.49 0 −7.23 0.12 −6.98 0.095
118 −8.62 0.5 −8.70 0.48 −8.47 0.54 −7.61 0 −7.35 0.16 −7.11 0.14
120 −8.57 1.0 −8.74 0.64 −8.52 0.68 −7.72 0 −7.46 0.21 −7.22 0.20
122 −8.70 1.0 −8.81 0.78 −8.61 0.80 −7.69 0.17 −7.53 0.29 −7.28 0.29
124 −8.83 1.0 −8.90 0.87 −8.71 0.89 −7.66 0.33 −7.57 0.40 −7.33 0.41

above. In Fig. 3 we show the results for the ISGMR centroid
energies in the tin isotopes using HF+RPA (by employing
the Skyrme forces SLy5 [4], SGII [5], and SKM∗ [6]). The
centroid energies are evaluated in the energy interval between
10.5 and 20.5 MeV, and the experimental data come from
Ref. [31]. Other experiments devoted to the ISGMR in tin
isotopes have been reported in Refs. [32]. Their results are
also shown, although the centroid energies are evaluated in
the energy interval between 10 and 35 MeV. In the present
work, we have no clear way to judge the difference between
the two experimental results. The trend along the isotope
chain is similar for the three forces. The force SLy5 (K∞ =
233.8 MeV) gives higher centroid energy than the others
(which have K∞ around 215 MeV). HF+RPA overestimates
the centroid energies by about 1 MeV in all the measured
tin isotopes, and there exists a difference by few hundreds
of keV between different Skyrme forces. The force SLy5
reproduces well the monopole energy in 208Pb. The question
why it overestimates this energy in the tin isotopes has been
raised, as it is recalled in the introduction. If we take pairing
into account, by means of the HF-BCS+QRPA, the results
are very similar to those from HF+RPA, as it is expected and
shown in Fig. 4, which presents the ISGMR centroid energies
in the tin isotopes by using SLy5 and the volume pairing force.

FIG. 4. Systematics of the moment ratios m1/m0 for the ISGMR
strength distributions in the tin isotopes. They are evaluated in the
energy interval between 10.5 and 20.5 MeV.

One possible guess could be that theoretical models
overestimate the centroid energies in the tin isotopes because a
more appropriate method to deal with the pairing correlations
than HF-BCS+QRPA, i.e., the HFB+QRPA, is needed. As
shown in Fig. 4, HFB+QRPA makes the theoretical results
significantly closer to experiment, especially in 112,114,116Sn.
However, this improvement is not enough. The difference be-
tween HF-BCS+QRPA (HF+RPA) and HFB+QRPA comes
from the fact that in 112,114,116Sn, the single-particle energies
and occupation number of d3/2 and h11/2 are different
for HF-BCS (HF) and HFB, whereas they are similar in
120,122,124Sn. These numbers are shown in Table I.

Already from Fig. 3, it is clear that SKM∗ performs better
than SLy5 in the tin isotopes. Having understood that pairing
is also lowering the monopole energies, as a next step we
study the isoscalar 0+ excitations using HFB+QRPA with
SKM∗ in the mean field. At the same time, we would also
like to discuss in detail the influence of different kinds of
pairing forces on the ISGMR centroid energies. Figure 5 shows
the isoscalar 0+ strength function (averaged with Lorentzians
having 1 MeV width) in 120Sn with the Skyrme force SKM∗ for
different kinds of pairing force. The results with the volume
and the mixed pairing force are almost the same, whereas
the results with the surface pairing force are different from

FIG. 5. (Color online) The isoscalar 0+ strength function (aver-
aged with Lorentzians having 1 MeV width) in 120Sn with the Skyrme
force SKM∗ for different kinds of pairing forces.
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FIG. 6. Systematics of the moment ratios m1/m0 for the ISGMR
strength distributions in the tin isotopes using HFB+QRPA with the
Skyrme force SKM∗ and volume and surface pairing forces. They are
evaluated in the energy interval between 10.5 and 20.5 MeV.

the others, especially in the low-energy region. This difference
comes from the fact that in the ground-state HFB calculations,
the energies and occupation numbers of the levels around
the Fermi surface are very similar for volume and mixed
pairing, whereas they are different for surface pairing. Figure 6
shows the ISGMR centroid energies in the tin isotopes with
SKM∗ in the mean field and volume and surface pairing
forces. Using the SKM∗ plus surface pairing force, one can
reproduce the experimental data obtained at RCNP from 112Sn
to 120Sn, whereas SKM∗ plus the volume pairing force still
overestimates the centroid energies by about 0.5 MeV. The
discrepancy with the experimental findings from Texas A&M
remains quite significant.

IV. CONCLUSIONS

The fully self-consistent QRPA based on the canonical HFB
basis has been introduced by the authors of Ref. [27]. In the
present work, we focus on the same model, having developed
independently the formalism and the computer codes. Our
motivation is the description of the isoscalar monopole exci-
tations. The main novel aspect of this article is the attempt to
understand the anomaly in the experimental ISGMR energies
of the Sn isotopes, which cannot be reproduced using effective
forces that do reproduce the experimental energy in, e.g., 208Pb;
in other words, our goal is to answer the question raised in
Ref. [26], that is, “why is tin so soft?”

The model uses the zero-range Skyrme force in the particle-
hole channel and the density-dependent pairing force in the
particle-particle channel. The spurious state, caused by the fact
that the particle number symmetry is broken within HFB and
restored in QRPA, is projected out. We investigate the isoscalar
0+ strength function and the ISGMR centroid energies in the
tin isotopes. We have also found that the pairing-rearrangement
terms and find they have a negligible effects (about 0.1%) on
the ISGMR centroid energies in the tin isotopes. Compared
with HF+RPA and HF-BCS-QRPA, HFB+QRPA makes the
theoretical results of ISGMR centroid energies in the tin
isotopes significantly closer to experiment. Pairing improves
the absolute values of energy compared to experiment because
of the attractive character of the particle-particle residual
interaction. This amounts to say that the “softness” of tin with
respect to monopole excitations is to some extent related to
pairing.

Using an appropriate Skyrme force like SKM∗ and surface
pairing force, we reproduce the experimental ISGMR centroid
energies from 112Sn to 120Sn. The pairing energy in nuclear
matter, and consequently the effect of pairing on the nuclear
incompressibility K∞, is very small. Our results imply
therefore that, whereas 208Pb leads to values of K∞ around
230 ∼ 240 MeV, this value is about 10% smaller when Sn
experimental data are used. Our results do solve partly the
puzzle caused by the RCNP experimental results in the tin
isotopes. At the same time, the 10% variation of K∞ from
different nuclei points to our still incomplete understanding
of the details of the nuclear effective functionals, in particular
of their density dependence. Also in Fig. 8 of Ref. [25], it
is evident that RMF calculations fit very well the energies
of the monopole in Pb and Sn with two values of K∞ that
differ by ≈10%. Further investigations on how to constrain
the surface and asymmetry contributions to the final nuclear
incompressibility are demanded.
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[19] G. Colò, N. V. Giai, J. Meyer, K. Bennaceur, and P. Bonche,

Phys. Rev. C 70, 024307 (2004).
[20] S. Shlomo, V. M. Kolomietz, and G. Colò, Eur. Phys. J. A 30,
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