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Electromagnetic two-body currents of one- and two-pion range
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Nuclear electromagnetic currents are derived in time-ordered perturbation theory within an effective-field-
theory framework including explicit nucleons, � isobars, and pions up to one loop, or next-to-next-to-next-
to-leading order (N3LO). The currents obtained at next-to-next-to-leading order (N2LO), i.e., ignoring loop
corrections, are used in a study of neutron radiative captures on protons and deuterons at thermal energies, and
of A = 2 and 3 nuclei magnetic moments. The wave functions for A = 2 are derived from solutions of the
Schrödinger equation with the Argonne v18 (AV18) or CD-Bonn (CDB) potentials, while those for A = 3 are
obtained with the hyperspherical-harmonics-expansion method from a realistic Hamiltonian including, in addition
to the AV18 or CDB two-nucleon, a three-nucleon potential. With the strengths of the �-excitation currents
occurring at N2LO determined to reproduce the n-p cross section and isovector combination of the trinucleon
magnetic moments, we find that the cross section and photon circular polarization parameter, measured in n-d
and �n-d processes, are underpredicted by theory; for example, the cross section is underpredicted by 11–38% as
the cutoff is increased from 500 to 800 MeV. A complete analysis of the results, in particular their large cutoff
dependence, is presented.
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I. INTRODUCTION

The present work is the first stage of a research program
aimed at studying electromagnetic observables of light nuclei
(A � 8), and particularly radiative capture processes in the
three- and four-nucleon systems, within a theoretical approach
in which many-body electromagnetic current operators derived
in chiral effective field theory (χEFT) [1–3] are used in
transition matrix elements between nuclear wave functions
obtained from realistic Hamiltonians with two- and three-body
potentials. This “hybrid” approach was adopted in a recent
calculation of the astrophysical factor for the p-p and p-3He
fusion reactions by weak capture at the keV energies relevant
in the interior of the Sun [4].

Neutron and proton radiative captures on 2H, 3H, and 3He
are particularly challenging from the standpoint of nuclear
few-body theory. This can be appreciated by comparing the
measured values for the cross sections of thermal neutron
radiative capture on 1H, 2H, 3He. Their respective values in
mb are (332.6 ± 0.7) [5], (0.508 ± 0.015) [6], and (0.055 ±
0.003) [7]. Thus, in going from A = 2 to 4, the cross
section has dropped by almost four orders of magnitude.
These processes are induced by magnetic dipole transitions
between the initial two-cluster state in the relative S wave
and the final bound state. The 3H and 4He wave functions,
respectively, �3 and �4, are approximately eigenfunctions
of the magnetic dipole operator µ, namely, µz�3 � µp�3

and µz�4 � 0, where µp = 2.793 µN is the proton magnetic
moment—the experimental value of the 3H magnetic moment
is 2.979 µN , while 4He has no magnetic moment. These
relations would be exact if the 3H and 4He wave functions were
to consist of the symmetric S-wave term only. In fact, tensor
components in the nuclear potentials generate significant D-
state admixtures, which partially spoil this eigenstate property.

To the extent that it is approximately satisfied, though, the
matrix elements 〈�3| µz| �1+2〉 and 〈�4| µz| �1+3〉 vanish due
to orthogonality between the initial and final states. This
orthogonality argument fails in the case of the deuteron,
since then µz�2 � (µp − µn)φ2(S)χ0

0 η1
0, where χS

MS
and ηT

MT

are two-nucleon spin and isospin states, respectively. The
magnetic dipole operator can therefore connect the large
S-wave component φ2(S) of the deuteron to a T = 11S0 n-p
state—the orthogonality between the latter and the deuteron
follows from the orthogonality between their respective spin-
isospin states.

As a result of this suppression, the n-d, p-d, n-3He,
and p-3H radiative (as well as p-3He weak) captures are
very sensitive to small components in the wave functions,
particularly the D-state admixtures generated by tensor forces,
and to many-body terms in the electromagnetic (and weak)
current operators.

There have been in the past several calculations of these
processes in the conventional framework—referred to as the
standard nuclear physics approach (SNPA) in Ref. [4]—see
Ref. [8] and references therein. Some of these studies, in
particular the recent ones of Ref. [9], have used accurate
(essentially exact) bound and continuum wave functions corre-
sponding to realistic Hamiltonians, which provide an excellent
description of A = 3 and 4 binding energies and radii, as
well as of a variety of low-energy scattering observables (see
Ref. [10] and references therein). The electromagnetic current
operator includes, in addition to the standard convection and
spin-magnetization terms of individual protons and neutrons,
also two- and three-body terms, constructed from, respectively,
the two- and three-nucleon potentials so as to satisfy exactly
current conservation (CC) with them. The method by which
this is achieved has been improved over the years [11], and its
latest implementation is discussed at length in Ref. [9]—for

0556-2813/2008/78(6)/064002(25) 064002-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.064002


S. PASTORE, R. SCHIAVILLA, AND J. L. GOITY PHYSICAL REVIEW C 78, 064002 (2008)

an alternative formulation, though, see Ref. [12]. It is not
unique, since obviously the CC relation puts no constraints
on the transverse component of the current. Nevertheless, it
does generate two- and three-body terms, whose behavior,
particularly at short range, is consistent with that of the cor-
responding potentials. This behavior in the latter is ultimately
“determined” by reproducing a set of experimental two- and
three-nucleon scattering data and binding energies.

These currents have been shown to provide a very sat-
isfactory description of a variety of electronuclear properties,
including, for example, n-p capture [9] and deuteron photodis-
integration at low energy [13], and magnetic moments of A =
3–7 nuclei [14]. Yet, they lead to an ∼10% overestimate of the
experimental cross section in n-d capture [9]. The discrepancy
between theory and experiment increases to ∼60% in the case
of the n-3He capture cross section [15], although this earlier
study, in contrast to that of Ref. [9], is not based on wave
functions derived from the latest generation of potentials. The
one-body (impulse-approximation or IA) term of the magnetic
dipole operator gives, respectively, only 45% and 10% of the
n-d and n-3He cross-section experimental values because of
the suppression mentioned above.

Electromagnetic currents up to one-loop corrections have
been derived in χEFT within the heavy-baryon formalism by
Park et al. [16]. These currents were used in hybrid calculations
of the n-p capture cross section [16,17], spin observables in
�n- �p capture [18], and, more recently, magnetic moments of
the deuteron and trinucleons [17].

In the present work, we derive the electromagnetic currents
by including, in addition to nucleon and pion, also �-isobar
degrees of freedom. Thus we assume that the �-nucleon mass
difference, just as the pion mass, is of the same order as
the low momentum scale generically indicated by Q. Formal
expressions up to one loop are obtained in time-ordered
perturbation theory by employing nonrelativistic Hamiltonians
derived from the chiral Lagrangian formulation of Refs. [1–3].
The present study is similar to that of Ref. [16], albeit it
uses a different formalism. Various aspects of the calculations
are discussed in considerable detail. However, a discussion
of renormalization is not given here; it is deferred to a later
publication [19]. It is nonetheless opportune to comment on
it. There are two stages of regularization necessary in the
one-loop calculations: the first is the usual regularization
of the one-loop corrections to the potential and to the
currents, and the second is the regularization necessary
for solving the Schrödinger equation and for calculating
the current matrix elements. All this must be followed by
corresponding renormalization procedures. In the calculations
to follow at next-to-next-to-leading order (N2LO), the only
loop corrections needed are those of the one-body current,
which can be absorbed into the proton and neutron magnetic
moments and electromagnetic radii. Therefore the required
regularization is in the calculation of the matrix elements
of the two-body components of the current. The latter is
implemented as usual through a short-range cutoff parameter,
and although a full fledged renormalization is not carried out
at this point, we expect that a choice of the cutoff equal to that
in the input potentials will give realistic values for the matrix
elements.

These N2LO currents are used to calculate the magnetic
moments of A = 2 and 3 nuclei and thermal neutron radiative
captures on protons and deuterons. Realistic two- and three-
nucleon (for A = 3) potentials are used to generate the bound
and continuum wave functions. To have an estimate of the
model dependence arising from short-range phenomena,
the variation of the predictions is studied as a function of
the short-range cutoff parameter mentioned above, which
is used to regularize the two-body operators, as well as of
the input potentials—either the Argonne v18 (AV18) [20] or
CD-Bonn (CDB) [21] in combination with, respectively, the
Urbana IX [22] or Urbana IX∗ [23]—used to generate the wave
functions (the AV18 and CDB have rather different short-range
behaviors).

We find that the N2LO calculations do not provide a
satisfactory description of the experimental data, particularly
for the suppressed process 2H(n, γ )3H. This clearly points to
the need of including loop corrections. However, it remains an
interesting question as to whether these corrections will resolve
the present discrepancies between theory and experiment.

This paper is organized into eight sections and four
appendixes. In Sec. II, we list, after defining our notation
and conventions, the relevant strong- and electromagnetic-
interaction Hamiltonians, obtained from chiral Lagrangians
with nucleons, � isobars, and pions, while in Sec. III we
derive the nuclear electromagnetic current up to N2LO, i.e.,
ignoring loop corrections, in momentum space, and we give
the configuration-space representation of its operators in
Sec. IV. Section V consists of two subsections: the first
contains a derivation of one-loop two-body currents, while
the second lists the two-body currents at next-to-next-to-next-
to-leading order (N3LO), implied by four-nucleon contact
Lagrangians involving two gradients. In Sec. VI we show
that the currents up to N3LO are conserved when used in
combination with the χEFT potential including corrections up
to one loop. In Sec. VII, we present and discuss results for
the magnetic moments of the deuteron and trinucleons and
for the radiative captures of thermal neutrons on protons and
deuterons. Finally, in Sec. VIII we summarize our conclusions
and outline the next stage in the research program initiated
here.

A number of details are relegated to the appendixes,
including expressions for the vertices associated with the
interaction Hamiltonians of interest (Appendix A), a collection
of formulas relevant for the configuration-space representation
of the N2LO operators (Appendix B), a listing of the analytical
expressions for the one-loop currents involving � isobars in
the intermediate states (Appendix C), and, lastly, a listing of
the four-nucleon contact Hamiltonians (Appendix D).

II. PRELIMINARIES

Before listing the interaction Hamiltonians, it is useful to
define our notation and conventions. In the Schrödinger picture
adopted in the present study, the isospin triplet of pion fields
πa(x) and their canonical conjugates �a(x), with a = x, y, z,
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are represented at position x as

πa(x) =
∑

p

1√
2ωp

[cp,ae
ip·x + h.c.], (2.1)

�a(x) =
∑

p

i

√
ωp

2
[cp,ae

ip·x − h.c.], (2.2)

where the annihilation and creation operators cp,a and c
†
p,a sat-

isfy standard commutation relations, and ωp ≡ (p2 + m2
π )1/2.

The nucleon and �-isobar fields, respectively, N (x) and �(x),
with their corresponding canonical conjugates iN †(x) and
i�†(x), are given, in the nonrelativistic limit of interest here,
as

N (x) =
∑
p,σ τ

bp,σ τ e
ip·xχστ , (2.3)

�(x) =
∑

p,σ�τ�

dp,σ�τ�
eip·xχσ�τ�

, (2.4)

where the b’s and d’s are annihilation operators for nucleons
and � isobars, and χστ and χσ�τ�

denote their respective
spin-isospin states. Again, the b’s and b†’s, and similarly the
d’s and d†’s, satisfy the standard anticommutation relations,
appropriate for fermionic fields.

Standard time-ordered perturbation theory is used to calcu-
late the transition amplitude:

〈N ′N ′| T | NN ; γ 〉 = 〈N ′N ′| H1

×
∞∑

n=1

(
1

Ei − H0 + iη
H1

)n−1

| NN ; γ 〉, (2.5)

where | NN ; γ 〉 (| N ′N ′〉) represents, in a schematic notation,
an initial (final) state containing two nucleons and a photon
(two nucleons only) of energy Ei (Ef = Ei), H0 is the
Hamiltonian describing free pions, nucleons, and � isobars,
and H1 is the Hamiltonian describing interactions among these
particles as well as their couplings to the electromagnetic field.
The evaluation of this amplitude is carried out in practice
by inserting complete sets of eigenstates of H0 between
successive terms of H1 in the expansion above. However, since
we are only interested in retaining irreducible contributions,
we omit from these intermediate states those that contain
only two nucleons (this aspect of the present calculations
is elaborated on in Secs. III A and V A). Thus, the nuclear
electromagnetic current j of interest here is obtained from

〈N ′N ′| T | NN ; γ 〉| irreducible = − êqλ√
2ωq

· j, (2.6)

where q, ωq , and êqλ denote, respectively, the photon mo-
mentum, energy, and polarization, and only first-order contri-
butions in the electromagnetic interaction are retained in the
evaluation of the transition amplitude.

A. Pion, nucleon, and �-isobar interaction Hamiltonians

The interaction Hamiltonians involving nucleon, �-isobar,
and pion fields are derived from the effective chiral Lagrangian
approach formulated in Refs. [1,2]. Their explicit expressions

are given by

HπNN = gA

Fπ

∫
dxN †(x) [σ · ∇πa(x)] τaN (x), (2.7)

HπN� = hA

Fπ

∫
dx�†(x) [S · ∇πa(x)] TaN (x) + h.c., (2.8)

HππNN = 1

F 2
π

∫
dxN †(x) [π (x) × �(x)] · τN (x), (2.9)

where gA � 1.25 and Fπ � 186 MeV are the nucleon axial
coupling constant and pion decay amplitude, respectively, hA

is the πN� coupling constant, and Sα and Ta are transition
spin and isospin operators, converting a nucleon into a � isobar
and satisfying

S†
αSβ = 2

3
δαβ − i

3
εαβγ σγ , (2.10)

and similarly for T
†
a Tb (note that in Ref. [2] the isospin

transition operator is half that defined here).
In addition to these, there is a set of four-fermion contact

interactions described by

HCT,1 =
∑

α=S,T

Cα

2

∫
dx[N †(x)�αN (x)] · [N †(x)�αN (x)],

(2.11)

HCT,2 = DT

∫
dx[N †(x)στaN (x)] · [�†(x)STaN (x)] + h.c.,

(2.12)

HCT,3 =
∑

α=S,T

C ′
α

∫
dx[N †(x)�αN (x)] · [�†(x)�′

α�(x)],

(2.13)

HCT,4 = D′
T

∫
dx[�†(x)STaN (x)] · [�†(x)STaN (x)] + h.c.,

(2.14)

HCT,5 = D′′
T

∫
dx[�†(x)STaN (x)] · [N †(x)S†T †

a �(x)],

(2.15)

where we have defined

�S = �′
S = 1, �T = σ , �′

T = �, (2.16)

and �/2 is the spin-3/2 operator. As it will become clear below,
terms involving more than two � isobars are not needed in the
present study. Finally, when discussing the renormalization
of the two-body currents at tree level in a later work [19],
we shall also need to consider the following Hamiltonians
involving three- and four-pion interactions:

H3π = − gA

F 3
π

∫
dx π2(x)N †(x)[σ · ∇πa(x)]τaN (x), (2.17)

H4π = 1

2F 2
π

∫
dx[[π2(x)�2(x) − π2(x)∇πa(x) · ∇πa(x)

+ h.c.] − m2
π [π2(x)]2], (2.18)

obtained by including corrections up to π2(x)/F 2
π in the

expansion of D−1 factors, where D ≡ 1 + π2(x)/F 2
π , entering

the chiral Lagrangians [1].
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B. Electromagnetic interactions

The charged pion field is defined as

π∓(x) = 1√
2

[πx(x) ∓ iπy(x)], (2.19)

and minimal substitution,

∇π∓(x) → [∇ ∓ ieA(x)] π∓(x), (2.20)

in the pion-derivative couplings leads to the interaction
Hamiltonians:

HγπNN = −e
gA

Fπ

εabz

∫
dx A(x) · N †(x)στaN (x)πb(x),

(2.21)

HγπN� = −e
hA

Fπ

εabz

∫
dx A(x) · �†(x)STaN (x)πb(x) + h.c.,

(2.22)

Hγππ = −eεabz

∫
dx A(x) · [∇πa(x)] πb(x),

(2.23)

HγππNN = − e

2mN

1

F 2
π

∫
dx A(x) · [N †(x)[i(

−→∇ − ←−∇ )

+ σ × (
−→∇ + ←−∇ )]τaN (x)]

× [πa(x)πz(x) − δa,zπ
2(x)], (2.24)

Hγ 3π = e
gA

F 3
π

εabz

∫
dx A(x) · N †(x)σ τaN (x)πb(x)π2(x),

(2.25)

Hγ 4π = e
2

F 2
π

εabz

∫
dx A(x) · [∇πa(x)] πb(x)π2(x),

(2.26)

where e(>0) is the electric charge, and the transverse vector
field A(x) (in Coulomb gauge) is expanded as

A(x) =
∑

p

∑
λ=1,2

1√
2ωp

[ap,λe
ip·xêp,λ + h.c.]. (2.27)

The linear polarization (unit) vectors êp,1, êp,2 form along with
p̂ a right-handed orthonormal system of axes, êp,1 × êp,2 = p̂.

The interactions of individual nucleons and � isobars
with the electromagnetic field are described by the following
Hamiltonians:

HγNN = e

2mN

∫
dxN †(x)[ieN [−←−∇ · A(x) + A(x) · −→∇ ]

−µNσ · ∇ × A(x)]N (x), (2.28)

HγN� = − eµ∗

2mN

∫
dx�†(x)S · [∇ × A(x)]TzN (x) + h.c.,

(2.29)

with

eN = (1 + τz)/2, κN = (κS + κV τz)/2,
(2.30)

µN = eN + κN,

where κS and κV are the isoscalar and isovector combinations
of the anomalous magnetic moments of the proton and
neutron (κS = −0.12 µN and κV = 3.706 µN ), and µ∗ is the

N�-transition magnetic moment (µ∗ � 3µN ). In the γN�

term, we only take into account the dominant magnetic dipole
(M1) coupling, ignoring the much smaller Coulomb (C2)
and electric quadrupole (E2) couplings. The expressions in
Eqs. (2.28) and (2.29) result from considering the nonrela-
tivistic limit of the effective Hamiltonians with nonminimal
couplings

H R
γNN = e

∫
dxψN (x)

×
[
eNAµ(x)γµ + κN

4mN

σµνF
µν(x)

]
ψN (x), (2.31)

H R
γN� = −i

eµ∗

2mN

∫
dxψ

µ

�(x)gµλγνγ5TzψN (x)Fνλ(x) + h.c.,

(2.32)

where ψN (x) and ψ
µ
�(x) are the spinor and spinor-vector

fields describing the nucleon and � isobar, and Fνλ(x) is the
electromagnetic field tensor. The Bjorken and Drell conven-
tions [24] are used for relativistic four-vectors, γ matrices,
and Dirac spin-1/2 spinors, except that the latter are taken to
be normalized as u†(p, s)u(p, s) = 1. The Rarita-Schwinger
spin-3/2 spinors are defined as

uµ(p, s�) =
∑
λs

〈1λ, 1/2s| 3/2s�〉εµ(p, λ)u(p, s), (2.33)

where in the particle rest-frame the four-vector εµ is space-like,
εµ = (0, ε̂λ), and λ = ±1, 0 denote spherical components.

C. Power counting

We denote generically by Q a “small momentum,” i.e.,
Q � M , where M � 1 GeV is the typical hadronic mass scale,
and we consider as effective degrees of freedom the nucleon,
� isobar, and pion. Thus, we assume that the pion mass and
the mass difference between the � isobar and nucleon are
both of order Q,mπ ∼ Q and m� − mN ∼ Q. However, the
photon energy ωq is assumed to be suppressed by an additional
factor Q/M relative to this small-momentum scale, i.e., ωq ∼
Q2/M . A generic coupling constant of dimensions (energy)α

is assumed to scale with M as g = g̃Mα with the expectation
that g̃ � 1.

Contributions to the transition amplitude in Eq. (2.6) can
be organized as an expansion in powers of Q/M [1]. The
power counting implied by the interaction Hamiltonians in the
previous two sections can be easily inferred by examining the
structure of their associated vertices, listed in Appendix A.
This power counting is summarized in Table I.

In the perturbative series, Eq. (2.5), a generic irreducible
contribution will be characterized by a certain number, say
N , of vertices, each scaling as Qαi × Q−βi/2 (i = 1, . . . , N),
where αi is the power counting in Table I, and βi is the number
of pions in and/or out of the vertex (this last factor is associated
with the 1/

√
2ωp included in the pion field), a corresponding

N–1 number of energy denominators, and possibly L loops.
Each of the energy denominators will involve pion energies
and/or �N mass differences, both of order Q, as well as kinetic
energies of nucleons and/or � isobars, which, however, are
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TABLE I. Powers of Q, the small momentum scale,
associated with the vertices from the strong- and
electromagnetic-interaction Hamiltonians of Secs. II A
and II B.

Q scaling Q scaling

HπNN Q HγπNN eQ0

HπN� Q HγπN� eQ0

HππNN Q Hγππ eQ

HCT,1−5 Q0 HγππNN eQ

H3π Q Hγ 3π eQ0

H4π Q2 Hγ 4π eQ

HγNN eQ

HγN� eQ

suppressed by a further Q/M factor relative to Q. Loops on
the other hand will contribute a factor Q3 each, since they
involve integrations over intermediate three-momenta. Hence
the power counting associated with such a contribution is

irreducible contribution =
(

N∏
i=1

Qαi−βi/2

)
× Q−(N−1) × Q3L.

(2.34)

When one expands the nucleon propagators in powers of the
kinetic energy around the static limit, terms with higher powers
of Q appear as the kinetic energy is order Q2.

The power counting of Eq. (2.34) can also be obtained by
considering the Feynman diagram where the loop integrals
are carried out in four dimensions. The power of Q of
an irreducible diagram is then given by 4L − 2nπ − nN +∑N

i=1 αi , where nπ is the number of pion propagators, and
nN the number of nucleon propagators. This equation together
with the topological relation nπ + nN = L + N − 1 leads to
the power counting of Eq. (2.34).

Finally, the transition amplitude in Eq. (2.6) can be
represented diagrammatically as in Fig. 1. The disconnected
contributions in panels (a) and (b) will each contain a δ

function in the initial and final three-momenta of one of
the two particles, for example, panel (a) ∝ δ(p′

2 − p2), and
will therefore be enhanced by a factor Q−3 relative to the
connected (and irreducible) contributions in panel (c). The
power counting of diagrams (a) and (b) is then eQ × Q−3 =
eQ−2. In fact, these diagrams are the leading contributions
to the nuclear electromagnetic current. This fact certainly fits
in well with what is known empirically about, for example,

q

p1 p2

=

p′
1 p′

2

(a) (b) (c)

FIG. 1. Schematic representation of the disconnected, (a) and (b),
and connected, (c), contributions to the NNγ → NN amplitude.
Solid and wavy lines denote nucleons and photons, respectively.

magnetic moments of nuclei or radiative captures, such as the
1H(n, γ )2H process considered later in this work.

III. CURRENTS UP TO N2LO

In this section, we derive the nuclear electromagnetic
currents up to next-to-next-to-leading order (N2LO), that is
eQ0. The relevant contributions are illustrated in Figs. 2
and 3. The expressions below are given in momentum space;
configuration-space representations are discussed in Sec. IV.
The momenta are defined as

ki = p′
i − pi , Ki = (p′

i + pi)/2, (3.1)

where pi and p′
i are the initial and final momenta of nucleon

i. The leading order (LO), eQ−2, is given by the one-body
current, panel (a) in Fig. 2,

jLO
a = e

2mN

[2eN,1K1 + iµN,1σ 1 × q] + 1 ⇀↽ 2, (3.2)

where q is the photon momentum, q = ki .
The contributions to next-to-leading order (NLO), eQ−1,

are represented by diagrams (b), (c), and (d)–(i) in Fig. 2. A
straightforward evaluation of these diagrams in the static limit
leads to the expressions

jNLO
b,c = −ie

g2
A

F 2
π

(τ 1 × τ 2)z
1

k2
2 + m2

π

σ 1(σ 2 · k2) + 1 ⇀↽ 2,

(3.3)

jNLO
d−i = ie

g2
A

F 2
π

(τ 1 × τ 2)z
k1 − k2(

k2
1 + m2

π

)(
k2

2 + m2
π

)
× (σ 1 · k1)(σ 2 · k2), (3.4)

where the momenta transferred to nucleons 1 and 2 add up to
q, k1 + k2 = q.

At N2LO, eQ0, there are two distinct contributions, illus-
trated in Fig. 3. The first is due to (Q/M)2 corrections to the
one-body current in Eq. (3.2). These are easily derived from a
nonrelativistic expansion of Eq. (2.31):

jN2LO
a = − e

8m3
N

eN,1
[
2
(
K2

1 + q2
/

4
)
(2K1 + iσ 1 × q)

+ K1 · q (q + 2iσ 1 × K1)
]

− ie

8m3
N

κN,1[K1 · q (4σ 1 × K1 − iq)

− (2iK1 − σ 1 × q) q2/2

+ 2(K1 × q)σ 1 · K1] + 1 ⇀↽ 2. (3.5)

At this point we should comment on the one-loop corrections
to the one-body current, see Fig. 4. They occur at NLO and
N2LO and are absorbed into the anomalous magnetic moments
and electromagnetic radii of the proton and neutron.

The second class of N2LO contributions, represented by
diagrams (b)–(i), involve �-isobar excitation and therefore
vertices from HγN�,HπN�, and HCT,2. In the static limit, we
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+ 1 ⇀↽ 2

(a) (b) (c)

(f)(e)(d)

(g) (h) (i)

FIG. 2. Complete set of time-ordered dia-
grams contributing at LO and NLO. Nucleons,
pions, and photons are denoted by solid, dashed,
and wavy lines, respectively.

find

jN2LO
b−g = i

eµ∗

9mN

gAhA

�F 2
π

σ 2 · k2

k2
2 + m2

π

[4τ2,zk2 − (τ 1 × τ 2)zσ 1 × k2]

× q + 1 ⇀↽ 2, (3.6)

jN2LO
h−i = −i

eµ∗

9mN

DT

�
[4τ2,zσ 2 − (τ 1 × τ 2)zσ 1 × σ 2]

× q + 1 ⇀↽ 2, (3.7)

where � is the � − N mass difference, � = m� − mN , and
use has been made of the identities in Eq. (2.10) to eliminate

+ 1 ⇀↽ 2

(a) (b) (c) (d)

(g)(f)(e)

(h) (i)

FIG. 3. Complete set of time-ordered dia-
grams contributing at N2LO. The square repre-
sents the (Q/M)2 correction to the LO one-body
current, while � isobars are denoted by thick
solid lines, otherwise the notation is the same as
in Fig. 2.
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(a) (b)

FIG. 4. NLO and N2LO corrections to the one-body current.
Same notation as in Fig. 2.

spin- and isospin-transition operators in favor of Pauli spin and
isospin matrices.

We conclude this section by noting that the expressions in
Eqs. (3.3), (3.4), and (3.6) are the well-known pion seagull
and in-flight, and �-excitation currents commonly used in the
literature (see, for example, the classic work of Ref. [25]).

A. Recoil corrections: Cancellations at N2LO

In the present formulation based on time-independent
perturbation theory, there are in principle the additional N2LO
contributions represented by diagrams (a) and (b) in Fig. 5.
However, these are exactly canceled by recoil corrections,
also entering at N2LO, to the reducible diagrams (c)–(f). For
example, the contribution of diagrams (c) + (d) is given by

(c) + (d) = VγNN (1)VπNN (1)VπNN (2)

Ei −Ep −E′
2 − ωq + iη

×
[

1

Ei −Ep− E2− ωq − ωk + iη

+ 1

Ei −E1−E′
2− ωq − ωk + iη

]
, (3.8)

where the V (i)’s denote the vertices from the interaction
Hamiltonians relative to nucleon i, and the labeling of
momenta is as illustrated in the figure. The initial and final
energies Ei and Ef (Ei = Ef ) are Ei = E1 + E2 + ωq and
Ef = E′

1 + E′
2, while Ep is the energy of the intermediate

nucleon. These energies are all suppressed by Q/M relative
to ωk ∼ Q, and therefore the denominators in square brackets
can be expanded as

[. . .] � − 2

ωk

− Ei − Ep − E′
2 − ωq

ω2
k

, (3.9)

so that the contribution of diagrams (c) + (d) now reads

(c) + (d) = VγNN (1)
1

Ei −Ep −E′
2 − ωq + iη

vπ (k)

×
[

1 + Ei −Ep −E′
2 − ωq

2ωk

]
, (3.10)

where vπ (k) is the static one-pion-exchange potential (OPEP),
defined as

vπ (k) ≡ − 2

ωk

VπNN (1)VπNN (2) = − g2
A

F 2
π

σ 1 · kσ 2 · k
k2 + m2

π

τ 1 · τ 2.

(3.11)

The second term on the right-hand side exactly cancels the
contribution due to (the irreducible) diagram (a) in Fig. 5, as
can be easily surmised by noting that, in the static limit, the
two energy denominators occurring in this diagram are each
given by (−1/ωk), and therefore

(a) = −VγNN (1)vπ (k)

2ωk

. (3.12)

The discussion above becomes more delicate when the
intermediate states describe fully interacting rather than free
particles. Let δvπ be the recoil correction to the static OPEP vπ ,
and let | ϕ〉 denote a bound or continuum state corresponding
to H0 + vπ with energy E. To first order in δvπ , the perturbed
state | ψ〉 is

| ψ〉 = | ϕ〉 + 1

E − H0 − vπ
δvπ | ϕ〉 ≡ |ϕ〉 + | δϕ〉, (3.13)

p1 p2

k −kq p

p′
1 p′

2

(a) (b) (c) (d)

(f)(e)

FIG. 5. Time-ordered diagrams illustrating
the cancellation of the irreducible contributions
(a) and (b) by the recoil corrections to the LO
diagrams (c)–(f). Same notation as in Fig. 2.
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and the matrix element of the current operator j between initial
and final states | ψi〉 and | ψf 〉 can be expressed as

〈ψf | j| ψi〉 = 〈ϕf | j| ϕi〉 + 〈ϕf | jLO| δϕi〉 + 〈δϕf | jLO| ϕi〉
= 〈ϕf | j| ϕi〉 + 〈ϕf | jLO 1

Ei − H0 − vπ
δvπ

+ h.c.| ϕi〉, (3.14)

where we have dropped terms of order (δϕ)2 as well as
corrections beyond LO to the current in the matrix elements
between | ϕi,f 〉 and | δϕf,i〉. In the analysis following Eq. (3.8),
in which the nucleonic intermediate states are free particles,
the recoil correction can be written as

δvπ |free = (Ei − H0)
vπ

2ω
+ h.c., (3.15)

where ω is the pion energy. In momentum space, the expression
for δvπ | free coincides with that implied by Eq. (3.10), namely,

δvπ (k, K1, K2)| free = vπ (k)

2ωk

k · (K1 − K2)

mN

, (3.16)

with Ki defined as in Eq. (3.1).
If we assume that the nucleonic intermediate states describe

fully interacting particles, i.e., they are eigenstates of H0 + vπ ,
then it is plausible that the correction δvπ should be expressed
as

δvπ = (Ei − H0 − vπ )
vπ

2ω
+ h.c., (3.17)

from which it follows that

〈ψf | j| ψi〉 = 〈ϕf | jLO + jNLO −
(

vπ

2ω
jLO + h.c.

)
× | ϕi〉 + 〈ϕf | vπ

2ω
jLO + h.c.| ϕi〉. (3.18)

The last two terms exactly cancel the two-body current
contribution represented in Fig. 5 panels (a)–(b), namely, the
terms in brackets. Thus, if OPEP is taken in the static limit,
Eq. (3.11), as is the case for the calculations reported below,
then the contributions of diagrams (a) and (b) should not be
retained, since they are canceled by recoil corrections to OPEP.

IV. CURRENTS IN CONFIGURATION SPACE

The calculations of electromagnetic observables reported
in Sec. VII are carried out in configuration space, and hence
configuration-space representations of the current operators
are needed. Those of the one-body operators in Eqs. (3.2) and
(3.5), generically denoted as j(1), follow from

j(1)(q) =
∫

k1

∫
K1

eik1·(r′
1+r1)/2eiK1·(r′

1−r1)δ(k1 − q)j(1)(k1, K1),

(4.1)

while those for the two-body current operators j(2) are derived
from

j(2)(q) =
∫

k1

∫
k2

eik1·r1eik2·r2δ(k1 + k2 − q)j(2)(k1, k2),

(4.2)

where the momenta ki and Ki are defined as in Eq. (3.1), and
we have introduced the notation∫

p
≡

∫
dp

(2π )3
, δ(. . .) ≡ (2π )3δ(. . .). (4.3)

Note that Ki → −i∇′
iδ(r′

i − ri), i.e., the configuration-space
representation of the momentum operator. The LO current is
then found to have the standard expression associated with the
nucleon’s convection and spin-magnetization currents,

jLO
a (q) = e

2mN

(eN,1[−i∇1, e
iq·r1 ]+ + iµN,1σ 1 × qeiq·r1 )

+ 1 ⇀↽ 2, (4.4)

where [. . . , . . .]+ denotes the anticommutator; this notation is
also used in Eq. (4.11) below.

At NLO and N2LO, however, the operators have 1/r2 and
1/r3 singularities (r is the interparticle separation), which need
to be regularized to avoid divergencies in the matrix elements
of these operators between nuclear wave functions. We adopt
a simple regularization procedure [2], i.e., a momentum-space
cutoff. While its precise functional form is arbitrary, the choice
made here of a Gaussian cutoff function,

C�(p) = e−(p/�)2
, (4.5)

with the parameter � � M � 1 GeV, is merely dictated by
convenience, since it leads to analytical expressions for the
Fourier transforms below. It is expected that this arbitrariness
is of little relevance, since the dependence of theoretical
predictions on variations in the cutoff is (or should be) largely
removed by a renormalization of the theory free parameters,
which are fixed by reproducing a given set of observables. We
shall return to this issue later, in Secs. VII and VIII.

The two-body currents at NLO are obtained as

jNLO
b−c (q)= eg2

A

F 2
π

(τ 1 × τ 2)z eiq·r1σ 1 (σ 2 · ∇) f�(r) + 1 ⇀↽ 2,

(4.6)

jNLO
d−i (q)= eg2

A

F 2
π

(τ 1 × τ 2)z eiq·R[σ 1 · (∇ + iq/2)]

× [σ 2 · (∇ − iq/2)]∇g�(r, q), (4.7)

where r and R denote the relative and center-of-mass position
vectors, respectively, r = r1 − r2 and R = (r1 + r2)/2, and
the functions f�(r) and g�(r, q) are defined as

f�(r) =
∫

p
e−ip·r C�(p)

p2 + m2
π

, (4.8)

g�(r, q) =
∫ +1

−1
dx e−ixq·r/2

∫
p
e−ip·r C�(p)

[p2 + L2(q; x)]2
,

(4.9)

with

L(q; x) =
√

m2
π + (1 − x2)q2/4. (4.10)

Note that standard Feynman parametrization techniques have
been employed to express g� in the form given above. We
defer to Appendix B for a listing of the formulas resulting
from application of the gradients to f�(r) and g�(r, q).
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Finally, at N2LO, the one-body term of Eq. (3.5) reads

jN2LO
a (q) = − e

16m3
N

eN,1
[ − 2i

(−∇2
1 + q2

/
4
)
(2∇1 − σ 1 × q)

− i∇1 · q(q + 2σ 1 × ∇1), eiq·r1
]
+

− ie

16m3
N

κN,1[−∇1 · q(4σ 1 × ∇1 + q)

− (2∇1 − σ 1 × q)q2/2 − 2(∇1 × q)σ 1

· ∇1, e
iq·r1 ]+ + 1 ⇀↽ 2, (4.11)

while the two-body terms are given by

jN2LO
b−g (q) = i

eµ∗

9mN

gAhA

�F 2
π

eiq·r1 q

× [4τ2,z∇ − (τ 1 × τ 2)zσ 1 × ∇]σ 2

· ∇f�(r) + 1 ⇀↽ 2, (4.12)

jN2LO
h−i (q) = i

eµ∗

9mN

DT

�
eiq·r1 q × [4τ2,zσ 2 − (τ 1 × τ 2)zσ 1 × σ 2]

×h�(r) + 1 ⇀↽ 2, (4.13)

where h�(r) is simply the Fourier transform of the Gaussian
cutoff function,

h�(r) =
∫

p
e−ip·rC�(p) = �3

(4π )3/2
e−(�r/2)2

. (4.14)

In the limit � → ∞, h�(r) reduces to δ(r). In this limit,
as discussed later in Sec. VII, the magnetic dipole operator
derived from jN2LO

h−i (q) gives no contribution to nuclear electro-
magnetic observables—this follows from the antisymmetry of
two-nucleon states. Smearing the δ function as in Eq. (4.13) is
effectively including corrections of higher order than N2LO.
We shall return to this issue in Sec. VII.

V. BEYOND N2LO: LOOP CORRECTIONS

At N3LO (eQ), there are four classes of contributions: (i)
one-loop two-body currents, (ii) currents from four-nucleon
contact interactions involving two gradients of the nucleon
fields, (iii) one-loop renormalization corrections to tree-level
two-body currents, and (iv) (Q/M)2 relativistic corrections to
the NLO currents resulting from the nonrelativistic reduction
of the vertices. We now turn to a derivation of the contributions
in the first two classes. Those in the last two will be derived in
a later work [19].

A. One-loop two-body currents

In this section, we consider one-loop two-body currents.
Those involving pions and nucleons only in the intermediate
states are illustrated by the diagrams in Fig. 6, where we show
only one among all possible time orderings. Referring to this
figure, we find

type (a) = −2i
eg2

A

F 4
π

∫
τ2,z(σ 1 × q2) + (τ 1 × τ 2)zq2

ω1ω2(ω1 + ω2)

+ 1 ⇀↽ 2, (5.1)

2

1

(a)
p2

2

1
331

(b) (c)
p1

2 2

3

1
1

(d) (e) (f)

1

p2 + k2p1 + k1

2

2
1

(g) (h) (i)

1

2

1

FIG. 6. Diagrams illustrating one-loop two-body currents. Only
one among the possible time orderings is shown. Same notation as in
Fig. 2.

where the qi’s and ωi = (q2
i + m2

π )1/2 denote the momenta
(with the flow as indicated in the figure) and energies of the
exchanged pions, and the integration is on any one of the qi’s,
the remaining qj ’s with j �= i being fixed by momentum-
conserving δ functions. Type (b) diagrams give

type (b) = 2i
eg2

A

F 4
π

∫
q1 − q3

ω1ω2ω3

ω1 + ω2 + ω3

(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

× [(τ 1 × τ 2)zq1 · q2 − τ2,zσ 1 · (q1 × q2)] + 1 ⇀↽ 2.

(5.2)

Next, the contributions of type (c)–(e) diagrams are

type (c) = −i
e

2F 4
π

(τ 1 × τ 2)z

×
∫

q1 − q3

ω1ω3

ω2(ω1 + ω2 + ω3) − 3ω1ω3

(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)
,

(5.3)

type (d) = −2i
eg4

A

F 4
π

∫
ω2

1 + ω2
2 + ω1ω2

ω3
1ω

3
2(ω1 + ω2)

× [(τ 1 × τ 2)zq2 (q1 · q2) + 2τ2,zq1 · q2(σ 1 × q2)

+ 2τ1,z q2 σ 2 · (q1 × q2)] + 1 ⇀↽ 2, (5.4)

type (e) = 2i
eg4

A

F 4
π

∫
(q1 − q3)f (ω1, ω2, ω3)

× [(τ 1 × τ 2)z(q1 · q2)(q2 · q3)
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+ 2τ2,z(q2 · q3)σ 1 · (q2 × q1)

+ 2τ1,z(q1 · q2)σ 2 · (q3 × q2)], (5.5)

where the function f (ω1, ω2, ω3) containing the pion energy
factors from field normalizations and energy denominators for
diagrams of type (e) is defined as

f (ω1, ω2, ω3) = 1

ω1ω2ω3(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

×
[
ω1ω2 + ω2ω3 + ω1ω3

ω1ω2ω3

+ (ω1 + ω2)(ω2 + ω3)
(
ω2

1 + ω2
3

)
ω2

1ω2ω
2
3

+ ω2

ω1ω3
+ ω1 + ω2 + ω3

ω2
2

]
. (5.6)

Lastly, diagrams of types (f) and (h) vanish, since the integrand
(in the static limit) is an odd function of the loop momentum
q1, that is,

type (f) and (h) ∝
∫

q1

ω3
1

× (spin-isospin structure). (5.7)

However, the contributions of type (g) and (i) diagrams read

type (g) = 2i
eg2

ACT

F 2
π

(τ 1 × τ 2)z

∫
q1 − q2

ω3
1ω

3
2

ω2
1 + ω1ω2 + ω2

2

ω1 + ω2

× (σ 1 · q2)(σ 2 · q1), (5.8)

type (i) = − eg2
A

2F 2
π

(τ 1 × τ 2)z

∫
q1 − q2

ω3
1ω

3
2

ω2
1 + ω1ω2 + ω2

2

ω1 + ω2

[CSσ 1 · (q1 × q2) + iCT [(σ 1 · q2)(σ 2 · q1)

+ (σ 1 · q1)(σ 2 · q2) + iσ 2 · (q1 × q2)]] + 1 ⇀↽ 2.

(5.9)

A few comments are now in order. First, the evaluation
of the current operators resulting from the (d), (e), and (g)
diagrams of Fig. 6 is carried out by including the recoil
corrections of order eQ to the reducible (a)–(c) diagrams
shown in Fig. 7. As an example, we consider the irreducible
and reducible contributions represented in Fig. 6(d) and
Fig. 7(a), respectively. We follow the procedure adopted in
Sec. III A and expand, in the reducible diagrams, the energies
of the intermediate nucleonic states, which are suppressed by

1
3

p1 p2

˜p1
1

˜p2

p′
2p′

1
2 2

1
2

(a) (b) (c)

FIG. 7. Diagrams illustrating the reducible one-loop two-body
currents. Only one among the possible time orderings is shown. Same
notation as in Fig. 2.

a factor Q/M with respect to the pionic energies ωi ∼ Q.
Up to order eQ, the current operator jred associated with the
reducible box diagrams then reads

jred =
∫

vπ (q2)
1

Ei − Ẽ1 − Ẽ2 + iη
jNLO(q1)

−
∫

2
ω1 + ω2

ω1ω2
VπNN (2, q2)VπNN (2, q1)

×VπNN (1, q2)VγπNN (1, q1), (5.10)

where vπ (q2) and jNLO(q1) are the OPEP and pion-seagull
current operators defined in Eqs. (3.11) and (3.3), respectively.
The V (i, qj ) denotes the vertex from the interaction Hamil-
tonian relative to nucleon i and a pion with momentum qj ,
and Ei is the initial energy of the system, while Ẽ1 and Ẽ2

are the energies of the intermediate nucleons. The first term
of Eq. (5.10) is then embedded in the iterated solution of the
Lippmann-Schwinger equation, whereas the second term due
to recoil corrections is retained and added to the irreducible
contribution jirr, which is given by

jirr =
∫

2

ω1ω2(ω1 + ω2)
VπNN (2,q2)VπNN (2, q1)VπNN (1, q1)

×VγπNN (1, q1) +
∫

2
ω2

1 + ω2
2 + ω1ω2

ω1ω2(ω1 + ω2)
×VπNN (2, q1)VπNN (2, q2)

×VπNN (1, q2)VγπNN (1, q1). (5.11)

The first term above comes from the irreducible direct
diagrams [in which, with reference to Fig. 6(d), pion 1 is
absorbed before pion 2], while the second term is from the
crossed diagrams (in which pion 1 is absorbed after pion 2).
Equation (5.11) can be further simplified expressing the
product VπNN (2, q1)VπNN (2, q2) as

VπNN (2, q1)VπNN (2, q2) = [VπNN (2, q1), VπNN (2, q2)]−
+VπNN (2, q2)VπNN (2, q1),

(5.12)

to obtain

jirr =
∫

2
ω1 + ω2

ω1ω2
VπNN (2, q2)VπNN (2, q1)VπNN (1, q2)

×VγπNN (1, q1) +
∫

2
ω2

1 + ω2
2 + ω1ω2

ω1ω2(ω1 + ω2)
× [VπNN (2, q1), VπNN (2, q2)]−
×VπNN (1, q2)VγπNN (1, q1). (5.13)

The complete current of type (d) is then

type(d) =
∫

2
ω2

1 + ω2
2 + ω1ω2

ω1ω2(ω1 + ω2)
[VπNN (2, q1), VπNN (2, q2)]−

×VπNN (1, q2)VγπNN (1, q1) − h.c., (5.14)

where the h.c. term corresponds to including the diagrams
in which the photon hooks up to the pion with momentum
q2. Note that the recoil corrections exactly cancel the first
term of Eq. (5.13), leaving the term proportional to the energy
factor associated with the crossed diagrams only. We find it
interesting that these cancellations are also obtained for the
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1

2 2

(c) (d) (e) (f)

1
1 1

1

2
2

(b)(a)

1

FIG. 8. Diagrams illustrating N4LO contributions not included in the present work. Only one among the possible time orderings is shown.
Same notation as in Fig. 2.

current of type (e), which reads

type (e) =
∫

4f (ω1, ω2, ω3) [VπNN (2, q3), VπNN (2, q2)]−

×VπNN (1, q2)VπNN (1, q1)Vγππ (q1, q3) − h.c.,

(5.15)

and it is therefore tempting to conjecture that they persist at
higher orders. However, this statement has not been proven.

Second, we observe that diagrams of the type shown in
Fig. 8 are suppressed by an extra power of Q relative to those
considered in this section, i.e., they are of order eQ2. For
example, type (a) diagrams give rise to the following current
operator

type (a) in Fig. 8

= e

m

g2
A

F 4
π

τ1,z(2K1 + iσ 1 × k1)
∫

q1 · q2

ω2
1ω

2
2

+ 1 ⇀↽ 2, (5.16)

where the momentum Ki is as given in Eq. (3.1), while those of
type (b) vanish, since they are proportional (δazτ1,b + δbzτ1,a −
2δabτ1,z) εabcτ2,c = (εzbc + εbzc)τ1,bτ2,c.

Lastly, as a check, we have re-derived the nucleon-nucleon
potential at the one-loop level (both with and without the
inclusion of explicit �-isobar degrees of freedom) and have
explicitly verified that it is in agreement with that obtained in
Refs. [2] and [3]. In particular, we note that if recoil corrections
to the reducible diagrams, for example, box diagrams, are
retained along with the contributions of irreducible diagrams,
the resulting potential is in agreement with that derived in
Ref. [3] with the method of unitary transformations (in this
respect, see Sec. VI).

We conclude this section by showing in Figs. 9 and 10
the one-loop two-body currents involving one- and two-�
intermediate states. A listing of the explicit expressions is
given in Appendix C.

B. Currents from four-nucleon contact interactions

In this section, we report the N3LO contributions to the
current operator from the contact electromagnetic interactions
of Eqs. (D11)–(D17). We find that

jN3LO
CTγ = −ee1[2(2C ′

1 − C ′
2)K2 + 4C ′

3K1

+ iC ′
4(σ 1 + σ 2) × k2 + iC ′

5σ 1 × k1

p1 p2

2

1

2

31

1
3

2

2 2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k)

1

1

1

1

21

1

11

2

p1 + k1 p2 + k2

FIG. 9. Diagrams illustrating one-loop two-
body currents with a single � isobar in the
intermediate states. Only one among the possible
time orderings is shown. Thin, thick, dashed, and
wavy lines denote nucleons, � isobars, pions,
and photons, respectively.
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p1 p2

11

2

1
3

1

2

(m)

(n) (o) (p)

1

(l)

p2 + k2p1 + k1

2

1

1
2

1

(q) (r) (s)

2

FIG. 10. Diagrams illustrating one-loop two-body currents with
two � isobars in the intermediate states. Only one among the possible
time orderings is shown. Same notation as in Fig. 9.

− iC ′
6σ 2 × k1 + 2(2C ′

7 − C ′
10)(K2 · σ 2)σ 1

+ 2(2C ′
8 − C ′

11)(K2 · σ 1)σ 2

− 2C ′
13[(K1 · σ 1)σ 2 + (K1 · σ 2)σ 1]

+ 2(2C ′
9 − C ′

12)K2(σ 1 · σ 2)

− 4C ′
14K1(σ 1 · σ 2)] + 1 ⇀↽ 2. (5.17)

Again, we note that the nucleon-nucleon potential generated
by the contact interactions of Eqs. (D2)–(D9) is in agreement
with that obtained in Ref. [3].

VI. CURRENT CONSERVATION UP TO N3LO

The nuclear electromagnetic current operator is related to
the Hamiltonian through the continuity equation, which in
momentum space reads

q · j =
[

p2
1

2mN

+ p2
2

2mN

+ v12, ρ

]
−

, (6.1)

where [. . . , . . .]− denotes the commutator, q is momentum
transfer, and ρ is the charge operator given to LO, in the
notation of Eq. (2.30), by

ρ = e(e1 + e2). (6.2)

It is well known (and easily verified) that the LO and NLO
currents satisfy the continuity equation with, respectively,
the kinetic energy terms and the LO (Q0) contribution to
the potential, i.e., OPEP. The N2LO currents involving �

p1 p2

3

2

2

3

˜p2

p1 + k1 p2 + k2

˜p1

(a) (b)

FIG. 11. Diagrams illustrating the reducible (a) and irreducible
(b) two-body box potentials. Only one among the possible time
orderings is shown. Same notation as in Fig. 2.

excitation are purely transverse and therefore do not enter
the continuity equation, while those arising from relativistic
corrections to the LO one-body term require the inclusion of
these corrections also in the charge operator, in order for the
continuity equation to be satisfied. We will not discuss them
further here.

As an internal check, we have explicitly verified that the
N3LO current operators obtained in the previous section satisfy
the continuity equation with the N2LO (Q2) contributions to
the potential, induced by the interaction Hamiltonians given in
Sec. II A and Appendix A. For the purpose of illustration, we
give more details on the calculation carried out for the currents
of types (d) and (e) of Fig. 6. The potential generated by the
box diagrams shown in Fig. 11 is given by

vbox = − g4
A

F 4
π

∫
ω2

2 + ω2
3 + ω2ω3

ω3
2ω

3
3(ω2 + ω3)

× [2τ 1 · τ 2(q2 · q3)2 + 3σ 1 · (q2 × q3)σ 2 · (q2 × q3)],

(6.3)

where q2 + q3 = k2 or −k1. We note that the recoil corrections
to the reducible box diagrams have been included, consistent
with our treatment in the previous section.

Evaluation of the commutator of vbox with the charge
operator gives

[vbox, ρ] = −ie
2g4

A

F 4
π

(τ 1 × τ 2)z

×
∫

ω2
2 + ω2

3 + ω2ω3

ω3
2ω

3
3(ω2 + ω3)

(q2 · q3)2 + 1 ⇀↽ 2, (6.4)

where k1 + k2 = q and q2 + q3 = k2. On the other hand, the
left-hand side of Eq. (6.1) for the type (d) and (e) currents in
Fig. 6 reads

q · jd = −ie
2g4

A

F 4
π

∫
ω2

2 + ω2
3 + ω2ω3

ω3
2ω

3
3(ω2 + ω3)

× [(τ 1 × τ 2)zq2(q2 · q3) + 2τ2,z(q2 · q3)(σ 1 × q2)

+ 2τ1,zq2σ 2 · (q3 × q2)] · q + 1 ⇀↽ 2, (6.5)
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q · je = ie
2g4

A

F 4
π

∫ [
ω2

2 + ω2
3 + ω2ω3

ω3
2ω

3
3(ω2 + ω3)

− ω2
1 + ω2

2 + ω1ω2

ω3
1ω

3
2(ω1 + ω2)

]
× [(τ 1 × τ 2)z(q1 · q2)(q2 · q3)

+ 2τ2,z(q2 · q3)σ 1 · (q2 × q1)

+ 2τ1,z(q1 · q2)σ 2 · (q3 × q2)], (6.6)

where q1 = q2 + k1, and the factor q · (q1 − q3)f (ω1,

ω2, ω3) = (ω2
1 − ω2

3)f (ω1, ω2, ω3) has been written as in
the square brackets of the last equation. Combining
Eqs. (6.5) and (6.6), we obtain

q · (jd + je)

= −ie
2g4

A

F 4
π

∫
ω2

2 + ω2
3 + ω2ω3

ω3
2ω

3
3(ω2 + ω3)

[(τ 1 × τ 2)z(q2 · q3)2

+ 2τ2,z(q2 · q3)σ 1 · (q2 × q3)

+ 2τ1,z(q2 · q3)σ 2 · (q3 × q2)] + 1 ⇀↽ 2, (6.7)

and the last two terms of the previous equation vanish. This
is easily seen by changing q2 → k2/2 + q2 (implying q3 =
k2/2 − q2), and observing that the integrands are odd under
q2 → −q2. Hence we are left with the first term, which is
equal to Eq. (6.4), showing that the continuity equation is
indeed satisfied.

Two closing remarks are in order. First, ignoring the recoil
corrections in both the potential and currents leads to a
violation of the continuity equation. This remains valid also
for the current of type (g) and the potential vct, generated by
the diagrams shown in Fig. 12 and given explicitly by

vct = 4

3

g2
A

F 2
π

τ 1 · τ 2σ 1 · σ 2

∫
q2

1

ω3
1

. (6.8)

Second, in hybrid calculations, such as those reported below,
current conservation is not strictly satisfied. Assuming, how-
ever, that differences between the χEFT and realistic potentials
occur at orders higher than N2LO, the N3LO currents derived
here are then approximately conserved.

VII. ELECTROMAGNETIC OBSERVABLES AT N2LO IN
A = 2–3 SYSTEMS

We present results obtained for a number of low-energy
electromagnetic observables in the A = 2 and 3 nuclei using
the current operators derived at N2LO. In the tables to
follow, we denote, respectively, with LO, NLO, N2LO-RC,

1

1˜p2˜p1

p2p1

p2 + k2p1 + k1

(b)(a)

FIG. 12. Diagrams illustrating the reducible (a) and irreducible
(b) two-body one-loop contact potentials. Only one among the
possible time orderings is shown. Same notation as in Fig. 2.

N2LO-�, and N2LO-�c the contributions calculated with
the one-body current, or impulse-approximation (IA), of
Eq. (4.4), the one-pion exchange two-body current at tree level
of Eqs. (4.6) and (4.7), the relativistic correction (RC) to the
LO current of Eq. (4.11), the single �-isobar excitation current
of Eq. (4.12), and lastly the two-body current of Eq. (4.13), due
to the contact (NN )(�N ) interaction. In the long-wavelength
limit of interest in the present work, the LO and N2LO-RC
currents are completely determined by the experimental values
of the proton and neutron magnetic moments, respectively,
+2.793 and –1.913 in units of nuclear magnetons (µN ). The
NLO current involves the combination gA/Fπ , for which we
adopt the value (mπgA/Fπ )2/(4π ) = 0.075 as inferred from
the Nijmegen analysis of nucleon-nucleon elastic scattering
data [26]. The N� transition magnetic moment is taken to
be µ∗ = 3µN from an analysis of γN data at resonance [27].
The coupling constant hA in the N2LO-� term is fixed by
reproducing the width of the � resonance, hA = 2.191gA and
gA = 1.267, while the (unknown) coupling constant DT in the
N2LO-�c term is expressed as

DT = f ′ gAhA

F 2
π

, (7.1)

and the parameter f ′ is determined as described below.
To have a realistic estimate of the model dependence of the

results, we use cutoff values � in the range 500–800 MeV
and wave functions corresponding to two different nuclear
Hamiltonians. The wave functions for A = 2 are derived from
solutions of the Schrödinger equation with the Argonne v18

(AV18) [20] or CD-Bonn (CDB) [21] two-nucleon potentials,
while those for A = 3 are obtained with the hyperspherical
harmonics (HH) expansion method (see Ref. [10] and refer-
ences therein) from a Hamiltonian including, in addition to
the AV18 or CDB two-nucleon, a three-nucleon potential, the
Urbana-IX (UIX) model [22]. The AV18/UIX and CDB/UIX∗
combinations both reproduce the experimental 3H binding
energy. The former also reproduces most of the measured
low-energy N -d scattering observables [10], with the notable
exception of the vector analyzing power in N -d elastic
scattering. Unfortunately, HH continuum wave functions for
the CDB/UIX∗ combination are not yet available. The UIX∗
model [23] is a slightly modified version of the original UIX
[22] (in the UIX∗, the parameter U0 of the central repulsive
term has been reduced by the factor 0.812).

We consider the following two- and three-nucleon ob-
servables: the 1H(n, γ )2H cross section at thermal energies,
the deuteron magnetic moment, the isoscalar and isovector
combinations of the trinucleon magnetic moments, the cross
section and photon circular polarization parameter Rc mea-
sured in the radiative capture of (polarized, in the case of Rc)
neutrons on deuterons at thermal energies. At N2LO there are
no three-body currents. We also observe that at this order the
only isoscalar terms are from the (one-body) LO and N2LO-RC
operators, which are independent of the cutoff �. In Tables II
and III, we list their contributions to the deuteron magnetic
moment and isoscalar combination of the 3He and 3H magnetic
moments. The N2LO-RC correction is (in magnitude) about
1% of the LO contribution but of opposite sign, so that its
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TABLE II. Contributions in µN to the
deuteron magnetic moment, obtained with the
AV18 and CDB potential models. The experimen-
tal value is 0.8574µN .

AV18 CDB

LO 0.8469 0.8521
N2LO-RC −0.0082 −0.0080

inclusion increases the difference between the measured and
calculated values. As a result, the experimental deuteron and
trinucleon isoscalar magnetic moments are underpredicted by
theory at the 1.6–2.1% and 3.0–4.7% levels, respectively,
depending on whether the CDB and CDB/UIX∗ or AV18 and
AV18/UIX combinations are adopted in the A = 2 and A = 3
calculations. However, a recent calculation of these same
observables [17], based on variational Monte Carlo (VMC)
wave functions corresponding to the AV18/UIX Hamiltonian,
finds the magnitude of the N2LO-RC correction somewhat
smaller in A = 2 (−0.0069 µN ) and significantly larger
in A = 3 (−0.012 µN ) than obtained here. The magnetic
moment operator is derived via

µ = − i

2
∇q × j(q)

∣∣∣∣ q=0, (7.2)

and from Eq. (4.11), the N2LO-RC term follows as

µN2LO
RC = − e

8m3
N

A∑
i=1

[[
p2

i , eN,iLi + µN,iσ i

]
+

+ eN,ipi × (σ i × pi)
]
, (7.3)

where pi = −i∇i and Li are the linear momentum and angular
momentum operators of particle i, and [. . . , . . .]+ denotes
the anticommutator. The expression for this correction is
different from that given in Ref. [17], which, in turn, is
different from that listed in an earlier work [18] by some
of the same authors of Ref. [17]. When compared with Eq.
(7.3) above, for example, the term with the anticommutator is
missing in Ref. [18], since the authors of that work normalize
the spinors as uu = 1 rather than u†u = 1 as in the present
work. These differences might partly explain the different
contributions calculated here and in Ref. [17] for the N2LO-RC
correction.

Next, we examine the 1H(n, γ )2H radiative capture at
thermal neutron energies. Various aspects of the calculations,
which will not be discussed here, were reviewed most recently
in Ref. [28]. The calculated values for the cross section are

TABLE III. Contributions in µN to the isoscalar
combination of the trinucleon magnetic moments,
obtained with the AV18/UIX and CDB/UIX∗ Hamil-
tonian models. The experimental value is 0.4257 µN .

AV18/UIX CDB/UIX∗

LO +0.4104 +0.4183
N2LO-RC −0.0045 −0.0052

TABLE IV. Cumulative contributions in mb to the 1H(n, γ )2H
cross section at thermal neutron energy, obtained with the AV18
and CDB potential models and cutoff values in the range 500–800
MeV. The LO and N2LO-RC contributions are cutoff independent,
while the matrix element of the N2LO-�c operator vanishes. The
experimental value is 332.6(0.7) mb from Ref. [5].

� (MeV) AV18 CDB

500 600 800 500 600 800

LO 304.6 304.6 304.6 306.6 306.6 306.6
NLO 319.1 319.6 319.9 321.3 321.7 321.9
N2LO-RC 317.4 317.9 318.2 319.9 320.3 320.5
N2LO-� 321.9 323.8 326.3 323.8 325.3 327.1

listed in Table IV. As remarked earlier in Sec. IV, we note that
the N2LO-�c current does not contribute, since the associated
magnetic moment operator,

µN2LO
�c

= −2eµ∗

9mN

DT

�

A∑
i<j=1

[2(τi,zσ i + τj,zσ j )

− (τ i × τ j )zσ i × σ j ]h�(rij ), (7.4)

is readily seen to vanish when acting on the 1S0 n-p state [4].
If P r

ij , P
σ
ij , and P τ

ij denote, respectively, the space, spin, and
isospin exchange operators, where

P σ
ij = 1 + σ i · σ j

2
, (7.5)

and similarly for P τ
ij , then P r

ijP
σ
ij P τ

ij = −1 for a two-nucleon
state. The identity

σ i × σ j = i(σ i − σ j )P σ
ij , (7.6)

and the analogous one for τ i × τ j allow one to express the
magnetic dipole operator in Eq. (7.4) as

µN2LO
�c

= −2eµ∗

9mN

DT

�

A∑
i<j=1

h�(rij )
[
2(τi,zσ i + τj,zσ j )

− (τi,z − τj,z)(σ i − σ j )P r
ij

]
. (7.7)

When acting on a two-nucleon state of even relative orbital
angular momentum, the square bracket in the equation above
reduces to (τi,z + τj,z)(σ i + σ j ), and therefore vanishes, since
this state will have either S = 0 and T = 1 or S = 1 and
T = 0. Indeed, in the limit h�(rij ) → δ(rij ), the operator in
Eq. (7.4) gives no contribution. It is in this sense that one can
interpret contributions at finite � as representing corrections
beyond N2LO.

The cutoff dependence and the different short-range be-
haviors of the AV18 and CDB wave functions lead to a
cross section of 324.5 ± 2.6 mb. Thus, at N2LO the ex-
perimental value, 332.6 ± 0.7 mb [5], is underpredicted by
roughly 2.5%. The LO and NLO contributions calculated
here are in agreement with those obtained for the AV18 in
Ref. [17]—which uses the same form for the cutoff function—
up to tiny differences presumably due to numerics. The
N2LO-RC contribution, however, is found to be consider-
ably larger (in magnitude) here than in Ref. [17], although
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TABLE V. Parameter f required to reproduce,
for a given value of the cutoff �, the experimental
1H(n, γ )2H cross section at thermal neutron energy
with the AV18 or CDB potential models. See text
for notation.

� (MeV) AV18 CDB

500 3.352 3.234
600 2.471 2.447
800 1.772 1.814

both studies predict the same sign for it, opposite to the
LO contribution. Reference [17] suggests that corrections
from current operators at N3LO might resolve the present
discrepancy between experiment and theory (at N2LO) and
possibly reduce the model dependence in the latter. This
issue will be investigated in future work. Instead, rather
than using the � width and γ -N data to fix the values
of the coupling constants hA and µ∗ entering the N2LO-�
current, Eq. (4.12), we determine the combination µ∗hA by
reproducing the n-p radiative capture cross section. In fact,
we make the replacement µ∗hA → f µ∗hA, take µ∗ = 3 µN

and hA = 2.191gA (as before) and fix f accordingly. The
latter is listed in Table V for the various combinations of
potentials and cutoffs considered in this work. The resulting
N2LO contribution becomes then as large as the NLO—a
somewhat unsettling feature of the present procedure. At NLO
there is a significant cancellation between the contributions of
the seagull [Eq. (4.6)] and pion-in-flight [Eq. (4.7)] currents.
This destructive interference persists also for the three-nucleon
observables considered next. Lastly, it is worth noting that
conventional calculations of the 1H(n, γ )2H cross section
based on two-body currents constructed to satisfy current
conservation with the potential used to generate the wave
functions accurately reproduce the measured value [9].

Results for the isovector combination of the trinucleon
magnetic moments are presented in Table VI. Note that the
row labeled N2LO-� lists the contributions obtained with the
strength of the N2LO-� current determined as in Table V.

TABLE VI. Contributions in units of µN to the isovector
combination of the trinucleon magnetic moments, obtained with the
AV18/UIX and CDB/UIX∗ Hamiltonian models and cutoff values
in the range 500–800 MeV. The LO and N2LO-RC contributions are
cutoff independent. The experimental value is −2.553 µN .

� (MeV) AV18/UIX CDB/UIX∗

500 600 800 500 600 800

LO −2.159 −2.159 −2.159 −2.180 −2.180 −2.180
NLO −0.156 −0.197 −0.238 −0.113 −0.156 −0.200
N2LO-
RC

+0.029 +0.029 +0.029 +0.024 +0.024 +0.024

N2LO-� −0.258 −0.253 −0.250 −0.205 −0.202 −0.200
Sum −2.544 −2.580 −2.618 −2.474 −2.514 −2.556

TABLE VII. Parameter f ′ required to re-
produce, for a given value of the cutoff �,
the experimental isovector combination of the
trinucleon magnetic moments with the AV18/UIX
or CDB/UIX∗ Hamiltonian models.

� (MeV) AV18/UIX CDB/UIX∗

500 −3.036 −38.57
600 +11.86 −25.25
800 +51.13 +3.485

Consequently, they are significantly larger (in magnitude) and
much less cutoff-dependent than those at NLO. The NLO
contribution calculated in Ref. [17] with VMC wave functions
and a cutoff of 600 MeV is −0.205 µN , which is 4% larger
than obtained here. This is most likely due to differences in
the wave functions (we note, incidentally, that VMC wave
functions are less accurate than HH ones). We determine the
strength of the N2LO-�c current to reproduce, for a given
cutoff � and Hamiltonian model, the experimental isovector
magnetic moment. The resulting values for the parameter f ′,
defined in Eq. (7.1), are listed in Table VII. The violent change
of f ′ as the cutoff � is increased is due to the fact that the
short-range behavior of the N2LO-�c current is governed by
a Gaussian of half-width 2/�.

However, with the values of the parameters f and f ′ fixed
as discussed above, the current up to N2LO is now completely
determined. We can therefore use it to make predictions for the
cross section σT and photon circular polarization parameter Rc

measured in the reaction 2H(n, γ )3H. At thermal energies, this
process proceeds through S-wave capture predominantly via
magnetic dipole transitions from the initial doublet J = 1/2
and quartet J = 3/2 n-d scattering states. In addition, there is
a small contribution due to an electric quadrupole transition
from the initial quartet state. We adopt here the notation and
conventions of Ref. [29] and define

m22 = M̃
0 1/2 1/2
1 , m44 = M̃

0 3/2 3/2
1 , e44 = Ẽ

0 3/2 3/2
2 , (7.8)

where M̃LSJ
� and ẼLSJ

� are the reduced matrix elements (RME’s)
of the magnetic and electric multipole operators of order �,
normalized as in Eq. (6.3) of Ref. [29]. In terms of these
RME’s, the capture total cross section is given by

σT = 2

9

α

vrel

q3

4m2
N

(| m22| 2 + |m44| 2 + | e44| 2), (7.9)

where α = e2/(4π ) is the fine structure constant, vrel is the
d-n relative velocity, q is the energy of the emitted γ ray,
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TABLE VIII. Cumulative contributions (in fm3/2) to the reduced matrix elements (RME’s) of the 2H(n, γ )3H reaction at thermal energies,
obtained with the AV18/UIX Hamiltonian model and cutoff values in the range 500–800 MeV. See text for notation. The m22 and m44 RME’s
are purely imaginary, while the e44 RME is purely real.

� (MeV) m22 m44 e44

500 600 800 500 600 800 500 600 800

LO −10.6 −10.6 −10.6 13.5 13.5 13.5 −0.14 −0.14 −0.14
LO+NLO −13.2 −12.5 −11.5 13.3 13.4 13.5 +0.02 +0.02 +0.02
LO + · · · + N2LO-RC −12.0 −11.3 −10.3 13.5 13.6 13.7 +0.02 +0.02 +0.02
LO + · · · + N2LO-� −20.2 −19.4 −18.4 12.6 12.7 12.8 +0.02 +0.02 +0.02
LO + · · · + N2LO-�c −20.6 −18.3 −15.6 12.6 12.6 12.7 +0.02 +0.02 +0.02

and mN is the nucleon mass. Similarly, the circular polarization
P� resulting from S-wave capture of a neutron polarized along

the direction Pn is proportional to the parameter Rc [29], i.e.,
P� = RcPn · q̂, where

Rc = −1

3

[
1 − (7/2)| m44| 2 + √

8Re(m22m
∗
44) + (5/2)| e44| 2 + √

24Im(m22e
∗
44) − √

3Im(m44e
∗
44)

| m22| 2 + | m44| 2 + | e44| 2

]
. (7.10)

The predicted RME’s are listed in Table VIII, the cross
section and parameter Rc in Table IX. Note that only results
corresponding to the AV18/UIX Hamiltonian model are
available at this time for the reason explained earlier. At LO,
the quartet m44 is, in absolute value, about 27% larger than the
doublet m22. However, the contributions at NLO and N2LO
are large and interfere constructively with those at LO for
m22, while they are much smaller and interfere destructively
for m44. Consequently, the doublet m22 at N2LO is found to
be larger than the quartet m44 by 63–23% as the cutoff �

is increased from 500 to 800 MeV. The calculation of the
RME’s is carried out with the Monte Carlo (MC) integration
techniques of Ref. [29], and the results reported in Table VIII
are obtained from a random walk consisting of a large number
(of the order of 2 × 106) configurations. The statistical errors
associated with these MC integrations are typically less than
2% for m22 and much less than 1% for m44. However, they are

25% for e44 at LO, and indeed much larger than the central
value at N2LO, so that beyond LO, the value of this RME
is consistent with zero. We note that in S-wave capture, the
e44 RME is predominantly due to transitions S(2H) → D(3H)
and D(2H) → S(3H), where S and D denote S- and D-wave
components in the 2H and 3H ground states. In the case of
the AV18/UIX Hamiltonian, the contributions associated with
these transitions interfere destructively, thus producing a small
e44. This cancellation was found to be significantly model
dependent in Ref. [29], and use of CDB/UIX∗ wave functions
would presumably produce somewhat different results for this
RME in view of the considerably weaker tensor force of CDB
relative to AV18 at intermediate and short range.

At N2LO, the cross section is underpredicted by theory
by 11–38% as the cutoff is increased from 500 to 800 MeV.
This rather drastic cutoff dependence is mostly due to the
contribution of the N2LO-�c current. Indeed, removing it leads

TABLE IX. Cumulative contributions to the cross section σT (in mb) and photon polarization parameter Rc of the
reaction 2H(n, γ )3H at thermal energies, obtained with the AV18/UIX Hamiltonian model and cutoff values in the range
500–800 MeV. The experimental values for σT and Rc are, respectively, 0.508 ± 0.015 mb from Ref. [6] and −0.42 ± 0.03
from Ref. [30].

σT Rc

� (MeV) 500 600 800 500 600 800

LO 0.229 0.229 0.229 −0.060 −0.060 −0.060
LO + NLO 0.272 0.260 0.243 −0.218 −0.182 −0.123
LO + · · · + N2LO-RC 0.252 0.241 0.226 −0.152 −0.109 −0.041
LO + · · · + N2LO-� 0.438 0.416 0.389 −0.432 −0.418 −0.397
LO + · · · + N2LO-�c 0.450 0.382 0.315 −0.437 −0.398 −0.331
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to a much weaker variation of the cross section—roughly ±5%
about the value obtained with � = 600 MeV (next to last row
of Table IX). It will be interesting to see to what extent, if any,
loop corrections at N3LO will improve the present predictions
and in particular reduce the cutoff dependence.

The photon polarization parameter is very sensitive to
contributions of NLO and N2LO currents, which produce more
than a sixfold increase, in absolute value, of the LO result,
and bring it into much closer agreement with the measured
value. All results listed in Table IX for Rc (and σT ) include
the small e44 RME, although it only has a significant effect
for the LO prediction (Rc = −0.060 vs −0.072, depending on
whether e44 is retained or not). The cause of the Rc sensitivity
to corrections beyond LO becomes clear by examining the
expression given in Eq. (7.10). Neglecting e44, it reads

1 + 3Rc = 7/2 − √
8| m22/m44|

1 + | m22/m44| 2
, (7.11)

and therefore the value attained by Rc is driven by the ratio
| m22/m44|, which is about 0.79 at LO and ranges from 1.63
to 1.23 for � = 500–800 MeV.

We conclude this section by remarking that recent calcu-
lations of n-d capture observables [31], based on an effective
field theory formulated in terms of nucleon, deuteron, and
triton fields with gradient couplings, seem to lead to predictions
that are in agreement with data. However, it should be stressed
that such a theory cannot be applied to other processes,
for example, the n-3He capture, without including additional
degrees of freedom. It is, in this sense, of a more limited scope
than the approach advocated in the present work.

VIII. CONCLUSIONS AND OUTLOOK

The goals of the present work were twofold: first, to
derive the nuclear electromagnetic current up to one loop,
i.e., up to N3LO, within an effective-field-theory approach
including explicit nucleons, � isobars, and pions, and second
to implement this formalism in the calculation of a number
of few-nucleon electromagnetic observables at low energy by
using accurate wave functions—the so-called hybrid approach,
advocated, for example, in Refs. [4,16]. This last objective has
been partially carried out here, since results have been reported
only at N2LO, i.e., ignoring loop corrections.

Up to this order, the only isoscalar terms are those
generated in a nonrelativistic expansion of the one-body
current: they provide a (cutoff-independent) 1% correction—
relative to LO—to the deuteron and isoscalar combination
of the trinucleon magnetic moments. This correction is of
opposite sign to the LO contribution, and therefore increases
the underprediction of the corresponding experimental values
from (0.9 ± 0.3)% for the deuteron and (2.7 ± 0.9)% for
the trinucleons at LO to, respectively, (1.9 ± 0.3)% and
(3.8 ± 0.8)% at N2LO. The spread reflects differences in the
short-range behavior of the AV18 and CDB potentials, in
particular the weaker tensor components of the latter relative
to the former in this range.

At NLO, isovector terms arise from the pion seagull and
in-flight contributions, while at N2LO, in addition to the

relativistic corrections mentioned above, isovector terms due
to �-isobar excitation are also obtained. The value for the
combination of coupling constants (gA/Fπ )2 entering the
NLO two-body currents is that inferred by an analysis of
nucleon-nucleon elastic scattering data [26]. However, the
strengths of the N2LO two-body �-excitation currents, i.e.,
the combinations µ∗gAhA/F 2

π and µ∗DT in Eqs. (4.12) and
(4.13), respectively, have been determined, as functions of
the cutoff � and for the Hamiltonian model of interest, by
reproducing the cross section for n-p capture and the isovector
combination of the trinucleon magnetic moments. This current
has then been used to make predictions—with the AV18/UIX
model only—for the cross section σT and photon circular
polarization parameter Rc. The experimental σT (| Rc| ) is
found to be underestimated by 11% (overestimated by 4%)
for � = 500 MeV and by 38% (underestimated by 21%)
for � = 800 MeV. We note that the parameter Rc is mostly
sensitive to the ratio of doublet to quartet magnetic dipole
transition matrix elements | m22/m44| (the cross section is
proportional to | m22| 2 + | m44| 2).

The results display a significant cutoff dependence, partic-
ularly so for the N2LO contributions associated with � isobar
degrees of freedom. Indeed, these contributions are much
larger than those at NLO. This is partly because the two NLO
(pion seagull and in-flight) terms interfere destructively. For
example, the seagull (in-flight) contributions to m22 and m44, in
units of fm3/2 and for � = 500 MeV, are, respectively, −9.1i

(+6.5i) and −0.8i (+0.6i), which add up to the NLO values
−2.6i and −0.2i from Table VIII. As a result, σT = 0.425 mb
and Rc = −0.425 at LO + NLO (seagull only), which should
be compared with σT = 0.272 mb and Rc = −0.218 at LO +
NLO (seagull + in-flight) from the second row of Table IX.

The relatively large �-excitation contributions also point
to the need for including loop corrections at N3LO, which
these N2LO currents, because of the procedure adopted here
to determine their strength, are implicitly making up for. This
is also evident by examining the results for the n-p capture
cross section in Table IV. Had we chosen to fix the N -�
transition axial coupling constant hA and magnetic moment
µ∗ via, respectively, the � width and γ -N data at resonance,
the contribution of the N2LO-� current would have been
considerably smaller than that at NLO, and it would have
fallen more in line with naive expectations.

The N3LO corrections will presumably reduce the cutoff
dependence in the n-d predictions and hopefully bring theory
into more satisfying agreement with experiment. For the time
being, we only observe that calculations [9] based on the
AV18/UIX Hamiltonian with leading two- and three-body cur-
rents constructed consistently—in the sense of being exactly
conserved— with, respectively, the AV18 two-nucleon and
UIX three-nucleon potentials overestimated both σT and | Rc|
by about 10% in the 2H(n, γ )3H process at thermal energies,
while at the same time provided an excellent description
of cross section data for the p-d radiative capture in the
energy range from a few to 80 keV, and, in particular, of
the astrophysical factor at zero energy extrapolated from these
data.

Thus, as already emphasized in the Introduction, very
low-energy radiative (and weak) capture reactions involving
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three- and four-body nuclei constitute a crucial testing ground
for the models used to describe the ground- and scattering-state
wave functions—and indirectly, the underlying interactions
that generate these wave functions—and the many-body
electroweak current operators [8].

The next stage in the research program we have undertaken
is to incorporate the N3LO operators derived here into the
calculations of the captures and magnetic moments involving
light nuclei (with mass number A � 8), and indeed to extend
these calculations to also include p-d capture at energies up to
a few MeV, and possibly four-nucleon processes, in particular
3He(n, γ )4He at thermal energies. Of course, at N3LO, three-
body currents also occur, and will need to be derived. Work
along these lines is being pursued vigorously.
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APPENDIX A: VERTICES

The interaction Hamiltonians in Secs. II A and II B are
assumed to be normal-ordered. Explicit expressions for the
associated vertices are easily derived (these expressions
include the 1/

√
2ωki

factors from pion fields).
(i) Strong-interaction vertices:

〈p′, χ ′; k, a| HπNN | p, χ〉 = −i
gA

Fπ

σ · k√
2ωk

τa, (A1)

〈p′
�, χ ′

�; k, a| HπN�| p, χ〉 = −i
hA

Fπ

S · k√
2ωk

Ta, (A2)

〈p′, χ ′; k1, a; k2, b| HππNN | p, χ〉

= − i

F 2
π

ωk1 − ωk2√
4ωk1ωk2

εabcτc, (A3)

〈p′
1, χ

′
1; p′

2, χ
′
2| HCT,1| p1, χ1; p2, χ2〉

=
∑

α=S,T

Cα�1α · �2α, (A4)

〈p′, χ ′; p′
�, χ ′

�| HCT,2| p1, χ1; p2, χ2〉
= DT τ 1 · T2σ 1 · S2, (A5)

〈p′, χ ′; p′
�, χ ′

�| HCT,3| p, χ ; p�, χ�〉
=

∑
α=S,T

C ′
α�1α · �′

2α, (A6)

〈p′
1,�, χ ′

1,�; p′
2,�, χ ′

2,�| HCT,4| p1, χ1; p2, χ2〉
= D′

T T1 · T2S1 · S2, (A7)

〈p′
�, χ ′

�; p′, χ ′| HCT,5| p, χ ; p�, χ�〉
= D′′

T T1 · T†
2S1 · S†

2, (A8)

〈p′, χ ′; k1, a; k2, b; k3, c| H3π | p, χ〉

= 2igA

F 3
π

1√
8ωk1ωk2ωk3

(σ · k1τaδbc + σ · k2τbδca

+ σ · k3τcδab), (A9)

〈k1, a; k2, b; k3, c; k4, d| H4π | 0〉

= − 4

F 2
π

1√
16ωk1ωk2ωk3ωk4

[
δabδcd

(
k1µk

µ

2 + k3µk
µ

4 + m2
π

)
+ δacδbd

(
k1µk

µ

3 + k2µk
µ

4 + m2
π

)
+ δadδbc

(
k1µk

µ

4 + k2µk
µ

3 + m2
π

)]
. (A10)

(ii) Electromagnetic-interaction vertices:

〈p′, χ ′; k, a| HγπNN | p, χ ; q, λ〉

= e
gA

Fπ

σ√
2ωk

· êqλ√
2ωq

εzabτb, (A11)

〈p′, χ ′
�; k, a| HγπN�| p, χ ; q, λ〉

= e
hA

Fπ

S√
2ωk

· êqλ√
2ωq

εzabTb, (A12)

〈k1, a; k2, b| Hγππ | q, λ〉

= ie
k1 − k2√
4ωk1ωk2

· êqλ√
2ωq

εzab, (A13)

〈p′, χ ′; k1, a; k2, b| HγππNN | p, χ ; q, λ〉

= − e

F 2
π

1√
4ωk1ωk2

× êqλ√
2ωq

· (p′ + p) + iσ × (p′ − p)

2mN

× (δazτb + δbzτa − 2δabτz), (A14)

〈p′, χ ′; k1, a; k2, b; k3, c| Hγ 3π | p, χ ; q, λ〉

= −2e
gA

F 3
π

σ√
8ωk1ωk2ωk3

· êqλ√
2ωq

× τd (εzadδbc + εzbdδca + εzcdδab) , (A15)

〈k1, a; k2, b; k3, c; k4, d| Hγ 4π | q, λ〉
= −ie

4

F 2
π

1√
16ωk1ωk2ωk3ωk4

êqλ√
2ωq

· [δcdεzab(k1 − k2) + δabεzcd (k3 − k4)

+ δbdεzac(k1 − k3) + δadεzbc(k2 − k3)

+ δacεzbd (k2 − k4) + δbcεzad (k1 − k4)], (A16)
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〈p′, χ ′| HγNN | p, χ ; q, λ〉
= − e

2mN

êqλ√
2ωq

· [eN (p′ + p) + iµnσ × q], (A17)

〈p′
�, χ ′

�| HγN�| p, χ ; q, λ〉
= −i

eµ∗

2mN

êqλ√
2ωq

· S × qTz. (A18)

In these expressions, p and p� denote nucleon and �-isobar
momenta in spin-isospin states specified by χ and χ�,
respectively, while the k’s and a, b, . . . denote pion momenta
in isospin states a, b, . . ., and q and λ the photon momentum
and polarization state. For brevity, on the right-hand side of
the equations above, the spin-isospin states of the nucleon and
� isobar as well as the δ functions enforcing three-momentum
conservation, are not shown explicitly. In Eq. (A10), the
notation k

µ

i kjµ denotes the combination ωki
ωkj

− ki · kj .
Finally, vertices involving �-isobar deexcitation into a nucleon
are obtained by replacing S and T by their adjoint operators S†

and T†, while vertices in which one or more pions are in the
initial state are obtained from those listed in Eqs. (A1)–(A3),
(A9), (A10), (A13), and (A16) by replacing ki → −ki and/or
ωki

→ −ωki
(of course, the energy replacements are not to

be carried out in the pion-field normalization factors). For
example,

〈p′, χ ′; k1, a| HππNN | p, χ ; k2, b〉 = − i

F 2
π

ωk1 + ωk2√
4ωk1ωk2

εabcτc.

(A19)

APPENDIX B: CONFIGURATION-SPACE
REPRESENTATION

We list here the configuration-space representation of the
two-body currents at NLO and N2LO. To this end, it is
convenient to define zπ ≡ mπr, z� ≡ �r, zL ≡ rL(q; x),

z± ≡ mπ/� ± z�/2, z∗
± ≡ L(q; x)/� ± z�/2, (B1)

and the complement error function

φ(z) ≡ 2√
π

∫ ∞

z

dt e−t2
. (B2)

The dependence of zL and z∗
± upon the variable x is understood.

Then the functions f�(r) from Eq. (4.8), its first derivative
f ′

�(r), and ∇g�(r, q) [Eq. (4.9)] are given by

f�(r) = mπ

8π

em2
π /�2

zπ

[φ(z−)e−zπ − φ(z+)ezπ ], (B3)

f ′
�(r) = m2

π

8π

em2
π /�2

z2
π

[φ(z+)ezπ (1 − zπ )

−φ(z−)e−zπ (1 + zπ )] + �2

4π
√

π

e−z2
�/4

z�

,

(B4)

∇g�(r, q)| ⊥ = r̂
∫ +1

−1
dx e−ixq·r/2Eq(x, r), (B5)

where only the transverse part of ∇g�(r, q) (orthogonal to the
photon momentum q) is of interest, and

Eq(x, r) = eL2(q;x)/�2

8πz2
�

[
φ(z∗

+)ezL
(
1 − zL − z2

�

/
2
)

−φ(z∗
−)e−zL

(
1 + zL − z2

�

/
2
)] + e−z2

�/4

4π
√

πz�

.

(B6)

In the limit � → ∞, these functions reduce to

f∞(r) = mπ

4π

e−zπ

zπ

, f ′
∞(r) = −m2

π

4π

e−zπ

z2
π

(1 + zπ ) ,

(B7)

Eq,∞(r) = e−zL

8π
.

The complete NLO current—the sum of the two contributions
in Eqs. (4.6) and (4.7)—is then written as

jNLO(q)| ⊥

= e
g2

A

F 2
π

(τ 1 × τ 2)z

{
eiq·r1f ′

�(r)σ 1(σ 2 · r̂)

+ eiq·r2f ′
�(r)σ 2(σ 1 · r̂) + eiq·R

[
g

(1)
� (r, q)

r2

× [σ 1(σ 2 · r̂) + σ 2(σ 1 · r̂) + r̂(σ 1 · σ 2)]

+ i
g

(2)
� (r, q)

r
σ 1(σ 2 · q) − i

g
(2)
� (−r, q)

r
σ 2(σ 1 · q)

− i
g

(3)
� (r, q)

r
r̂(σ 1 · r̂)(σ 2 · q)

+ i
g

(3)
� (−r, q)

r
r̂(σ 1 · q)(σ 2 · r̂)

− g
(4)
� (r, q)r̂(σ 1 · q)(σ 2 · q)

− g
(5)
� (r, q)

r2
r̂(σ 1 · r̂)(σ 2 · r̂)

]}
, (B8)

where r = r1 − r2 and R = (r1 + r2)/2, and the functions g
(i)
�

with i = 1, . . . , 5 are defined as

g
(1)
� (r, q) =

∫ +1

−1
dx e−ixq·r/2

(
1 − r

d

dr

)
Eq(x, r), (B9)

g
(2)
� (r, q) = 1

2

∫ +1

−1
dx e−ixq·r/2 (1 + x) Eq(x, r), (B10)

g
(3)
� (r, q) = 1

2

∫ +1

−1
dx e−ixq·r/2 (1 + x)

(
1 − r

d

dr

)
Eq(x, r),

(B11)

g
(4)
� (r, q) = 1

4

∫ +1

−1
dx e−ixq·r/2 (

1 − x2)Eq(x, r), (B12)

g
(5)
� (r, q) =

∫ +1

−1
dx e−ixq·r/2

(
3 − 3r

d

dr
+ r2 d2

dr2

)
Eq(x, r).

(B13)
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The configuration-space representation of the N2LO current in
Eq. (4.12) reads

jN2LO
b−g (q) = i

eµ∗

9mN

gAhA

�F 2
π

eiq·r1 q

× [4τ2,z[hS(r)σ 2 + hT (r)r̂(σ 2 · r̂)] − (τ 1 × τ 2)z

× [hS(r)σ 1 × σ 2 + hT (r)(σ 1 × r̂)(σ 2 · r̂)]]

+ 1 ⇀↽ 2, (B14)

where hS(r) = f ′
�(r)/r , and

hT (r) = f ′′
�(r) − f ′

�(r)/r

= m3
π

8π

em2
π /�2

z3
π

[
φ(z−)e−zπ

(
3 + 3zπ + z2

π

)
−φ(z+)ezπ

(
3 − 3zπ + z2

π

)]

− �3

8π
√

π

e−z2
�/4

z2
�

(
6 + z2

�

)
, (B15)

and again in the limit � → ∞,

hS,∞(r) = −m3
π

4π

e−zπ

z3
π

(1 + zπ ) ,

(B16)

hT,∞(r) = m3
π

4π

e−zπ

z3
π

(
3 + 3zπ + z2

π

)
.

APPENDIX C: ONE-LOOP TWO-BODY CURRENTS WITH
� ISOBARS

We begin by including a single � isobar in the intermediate
states. The relevant diagrams are shown in Fig. 9. We find for
type (a) and (b) diagrams,

type (a) = −e
h2

A

F 4
π

(2τ2,z − T
†

1,zT1 · τ 2)
∫

(S†
1 · q2)S1

(ω1 + �)(ω2 + �)(ω1 + ω2)
− h.c., (C1)

type (b) = e
h2

A

F 4
π

(2τ2,z − T
†

1,zT1 · τ 2)
∫

(q1 − q3)(S†
1 · q2)(S1 · q1)

ω1 + ω2 + ω3 + �

(ω1 + �)(ω2 + �)(ω3 + �)(ω1 + ω2)(ω1 + ω3)(ω2 + ω3)

− h.c., (C2)

where S and T are the spin- and isospin-transition operators
defined in Eq. (2.10), and � denotes m� − mN . The spin-
isospin structures can be further simplified and expressed in
terms of the Pauli matrices σ and τ .

The contributions of type (c)–(e) diagrams can be written
as

type (c) =
∫ [

−v
π†
�N (q2)jπ�N (q1)

�
+ j(−)

c (q1, q2)

]
− h.c.,

(C3)

type (d) =
∫ [

−v
π†
N�(q2)jπN�(q1)

�
+ j(−)

d (q1, q2)

]
− h.c.,

(C4)

type (e) =
∫ [

−v
π†
�N (q2)jππ

�N (q1, q3)

�
+ j(−)

e (q1, q2, q3)

]
− h.c., (C5)

where we have defined the one-pion-exchange transition
potential NN → �N as

vπ
�N (q2) = −gAhA

F 2
π

(S1 · q2)(σ 2 · q2)

q2
2 + m2

π

T1 · τ 2, (C6)

the transition currents γNN → �N associated with the seag-
ull γπN�-coupling and pion-in-flight terms, respectively, as

jπ�N (q1) = −ie
gAhA

F 2
π

S1(σ 2 · q1)

q2
1 + m2

π

(T1 × τ 2)z, (C7)

jππ
�N (q1, q3) = ie

gAhA

F 2
π

q1 − q3(
q2

1 + m2
π

)(
q2

3 + m2
π

)
× (S1 · q1)(σ 2 · q3)(T1 × τ 2)z, (C8)

and vπ
N� and jπN� are obtained from vπ

�N and jπ�N by the
replacements S ⇀↽ σ and T ⇀↽ τ . The contributions labeled
j(−)
c,d,e are given by

j(−)
c (q1, q2) = −e

(gAhA)2

F 4
π

f �
1 (ω1, ω2)(S†

1 · q2)

× S1[(T†
1 × T1)zσ 2 · (q1 × q2)

+ (2τ2,z − T
†

1,zT1 · τ 2)q1 · q2], (C9)
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j(−)
d (q1, q2)

= ie
(gAhA)2

2F 4
π

f �
1 (ω1, ω2)(σ 1 · q2)σ 1

× [(S†
2 · q1)(S2 · q2)[(T†

2 × T2)z

+ i(2τ1,z − τ 1 · T†
2T2,z)] + h.c.], (C10)

j(−)
e (q1, q2, q3)

= e
(gAhA)2

F 4
π

f �
2 (ω1, ω2, ω3)(q1 − q3)(S†

1 · q2)(S1 · q1)

× [(T†
1 × T1)zσ 2 · (q3 × q2)

+ (2τ2,z − T
†

1,zT1 · τ 2)q2 · q3], (C11)

where the functions f �
1 (ω1, ω2) and f �

2 (ω1, ω2, ω3) denote
the following combinations of pion energies and �N mass
differences:

f �
1 (ω1, ω2) = (ω1 + ω2 + �)(ω1 + ω2) − ω1ω2

ω2
1ω

2
2(ω1 + �)(ω2 + �)(ω1 + ω2)

, (C12)

f �
2 (ω1, ω2, ω3)

= [
ω2

1ω
2
2ω

2
3(ω1 + �)(ω2 + �)(ω3 + �)(ω1 + ω2)

× (ω1 + ω3)(ω2 + ω3)]−1
{
ω1ω2ω3(ω1 + ω2 + ω3)2

+�2(ω1 + ω2)(ω1 + ω3)(ω2 + ω3) + ω2
1ω

2
2(ω1 + ω2)

+ω2
1ω

2
3(ω1 + ω3) + ω2

2ω
2
3(ω2 + ω3)

+�[3ω1ω2ω3(ω1 + ω2 + ω3) + ω1ω2(ω1 + ω2)2

+ω1ω3(ω1 + ω3)2 + ω2ω3(ω2 + ω3)2]
}
. (C13)

At this stage, it is useful to comment on the structure of the
contributions in Eqs. (C3)–(C5). The first terms on the right-
hand side of each of these equations are represented by the
diagrams in Fig. 13, i.e. (from top to bottom in these diagrams)
an instantaneous interaction mediated by a transition potential,
a �-nucleon energy denominator taken in the static limit,
and a two-body current inducing excitation of a single �.
They have a simple interpretation [15]: for example, type (c)
in Fig. 9 is the matrix element 〈�N | jπ�N | NN〉 evaluated
by treating the final | �N〉 state in first-order perturbation

(a) (b) (c)

FIG. 13. Direct box diagrams with a single � isobar in the
intermediate states. See text for discussion. Dashed lines with a cross
represent v�N transition potentials, or jπ�N and jππ

�N transition currents.

theory,

| �N〉 = |NN〉 +
∑
�′N ′

| �′N ′〉 〈�
′N ′| v�N | NN〉
ENN − E�′N ′

�
(

1 − vπ
�N

�

)
| NN〉. (C14)

One additional feature of these terms is that their
configuration-space representations are particularly simple,
since they are given, for example, for type (c), by the product
−vπ

�N (r)jπ�N (q)/�, and similarly for types (d) and (e). Here
vπ

�N (r) and jπ�N (q) are the configuration-space representations
of, respectively, the transition potential and the current in
Eq. (C7).

The remaining terms j(−)
c,d,e represent corrections to this

picture, arising from crossed-box diagrams. In particular,
the functions f �

1 (ω1, ω2) and f �
2 (ω1, ω2, ω3) give, up to

pion-energy factors from field normalizations, the sum of the
energy denominators for the six and 30 crossed-box diagrams
from, respectively, types (c) and (d) and type (e) contributions,

f �
1 (ω1, ω2) = − 1

2ω1ω2

[sum of 6 type (c) or (d) crossed-box diagrams], (C15)

f �
2 (ω1, ω2, ω3) = 1

4ω1ω2ω3

[sum of 30 type (e) crossed-box diagrams]. (C16)

Lastly, the contributions of type (f)–(i) diagrams vanish,
while those of types (j) and (k) are written as

type (j) =
∫ [

−v
c†
�N jππ

�N (q1, q2)

�
+ j(−)

j (q1, q2)

]
− h.c.,

(C17)

type (k) = −ie
gAhADT

2F 2
π

∫
(q1 − q2)

×
[
f �

1 (ω1, ω2)(σ 1 · q2)(S†
1 · σ 2)(S1 · q1)

× [T†
1 · τ 2(T1 × τ 1)z − i[(T†

1 × T1) × τ 2]z]

+ 1

�ω2
1ω

2
2

S†
1 · σ 2(S1 · q1)(σ 1 · q2)

× T†
1 · τ 2(T1 × τ 1)z

]
− h.c., (C18)

where the contact (momentum-independent) transition poten-
tial vc

�N has been defined as

vc
�N = DT T1 · τ 2S1 · σ 2, (C19)

and the current j(−)
j is given by

j(−)
j (q1, q2) = ie

gAhA

2F 2
π

(q1 − q2)f �
1 (ω1, ω2)

× [
v

c†
�N (T1 × τ 2)z(σ 2 · q2) − DT

× [T†
1 · τ 2(T1 × τ 2)z − 2i(2τ2,z − T

†
1,zT1 · τ 2)]

× (σ 2 · q2)(S†
1 · σ 2)

]
(S1 · q1) − h.c. (C20)
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The next set of contributions we consider includes two �

isobars in the intermediate states, the relevant diagrams are
displayed in Fig. 10. In analogy to Eqs. (C3)–(C5), we write

type (l) =
∫ [

−v
π†
��(q2)jπ��(q1)

2�
+ j(−)

l (q1, q2)

]
− h.c.,

(C21)

type (m) =
∫ [

−v
π†
��(q2)jππ

��(q1, q3)

2�
+ j(−)

m (q1, q2, q3)

]
− h.c., (C22)

where the transition potential vπ
�� and currents jπ�� and jππ

�� are
obtained from Eqs. (C6)–(C8) by the replacements gA → hA

and σ 2(τ 2) → S2(T2), and

j(−)
l (q1, q2)

= −v
π†
��(q2)jπ��(q1)

[
f �

3 (ω1, ω2) − 1

2�

]
− ie

h4
A

2F 4
π

f �
4 (ω1, ω2) (S†

1 · q2) S1

× [(S†
2 · q1) (S2 · q2) [(T†

1 × T†
2)z T1 · T2 − 2 (T†

1 × T1)z

+ T†
2 · (T†

1 × T1)T2,z]

− (S†
2 · q2) (S2 · q1) T†

1 · T†
2 (T1 × T2)z], (C23)

j(−)
m (q1, q2, q3)

= −v
π†
��(q2)jππ

��(q1, q3)

[
f �

5 (ω1, ω2, ω3) − 1

2�

]

+ ie
h4

A

2F 4
π

(q1 − q3)f �
6 (ω1, ω2, ω3) (S†

1 · q2)(S1 · q1)

× [(S†
2 · q3) (S2 · q2)[ (T†

1 × T†
2)zT1 · T2 − 2(T†

1 × T1)z

+ T†
2 · (T†

1 × T1)T2,z]

− (S†
2 · q2) (S2 · q3) T†

1 · T†
2(T1 × T2)z]. (C24)

The functions f �
3 (ω1, ω2) and f �

5 (ω1, ω2, ω3) are defined as

f �
3 (ω1, ω2) = −ω1ω2

4
[sum of 12 type (m) direct and crossed-box diagrams],

(C25)

f �
5 (ω1, ω2, ω3) = ω1ω2ω3

8
[sum of 60 type (n) direct and crossed-box diagrams],

(C26)

while f �
4 (ω1, ω2) and f �

6 (ω1, ω2, ω3) as in Eqs. (C15) and
(C16), but for diagrams of type (l) and (m), respectively. They
are explicitly given by

f �
3 (ω1, ω2)

= ω1ω2 [2�3 + (4�2 + ω1ω2) (ω1 + ω2) + 2�(ω1 + ω2)2]

2�(ω1 + ω2) (ω1 + �)2 (ω2 + �)2
,

(C27)

f �
4 (ω1, ω2) = �2 + ω2

1 + ω1ω2 + ω2
2 + 2� (ω1 + ω2)

ω1ω2 (ω1 + ω2) (ω1 + �)2 (ω2 + �)2
,

(C28)

and

f �
5 (ω1, ω2, ω3) = ω1ω2ω3

2

[
(ω1 + ω2 + ω3) (ω1 + ω2 + ω3 + �)

(ω1 + �) (ω2 + �) (ω3 + �) (ω1 + ω2) (ω1 + ω3) (ω2 + ω3)

+ 1

� (ω1 + �) (ω2 + �) (ω3 + �)
+ ω1ω2ω3f

�
6 (ω1, ω2, ω3)

]
, (C29)

f �
6 (ω1, ω2, ω3) = ω1 + ω2 + ω3

ω1ω2ω3 (ω1 + ω2) (ω1 + ω3) (ω2 + ω3)

[
1

(ω1 + �)2
+ 1

(ω2 + �)2
+ 1

(ω3 + �)2

]

+ ω1ω2ω3 − �2 (ω1 + ω2 + ω3)

ω1ω2ω3(ω1 + ω2)(ω1 + ω3) (ω2 + ω3)

[
1

(ω1 + �)2 (ω2 + �)2
+ 1

(ω1 + �)2(ω3 + �)2

+ 1

(ω2 + �)2 (ω3 + �)2

]
+ �4(ω1 + ω2 + ω3) + ω1ω2ω3(ω1ω2 + ω1ω3 + ω2ω3 − 6�2)

ω1ω2ω3(ω1 + �)2 (ω2 + �)2 (ω3 + �)2 (ω1 + ω2) (ω1 + ω3) (ω2 + ω3)
.

(C30)

We observe that, in contrast to the case of a single �,
the energy denominators for the direct and crossed-box
diagrams do not add up to 1/(2�)—as one would have
naively expected—indeed, that is the reason for including

this term within the square brackets of Eqs. (C23) and
(C24).

Next, we consider diagrams (n)–(s) in Fig. 10, which
involve contact terms with two �’s. The contributions of types
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(n)–(p) vanish, while those of types (q)–(s) read

type (q)

= ie
h2

A

2F 2
π

(T†
1 × T1)z

∫
(q1 − q2) f �

4 (ω1, ω2)

× [C ′
S(S†

1 · q2) (S1 · q1) + C ′
T (S†

1 · q2) (�1 · σ 2) (S1 · q1)],

(C31)

type (r)

= −ie
h2

A

2F 2
π

D′
T

�
(T†

1 · T†
2) (T1 × T2)z (S†

1 · S†
2)

×
∫

(q1 − q2)(S1 · q1) (S2 · q2)

× ω1 + ω2 + �

ω1ω2 (ω1 + ω2) (ω1 + �) (ω2 + �)
− h.c., (C32)

type (s)

= −ie
h2

AD′′
T

2F 2
π

[T†
1 · T†

2 (T1 × T2)z + 2(T†
1 × T1)z

− T
†

2,zT2 · (T†
1 × T1)]

∫
(q1 − q2) f �

4 (ω1, ω2)

× (S†
1 · q1) (S1 · S†

2) (S2 · q2) − h.c. (C33)

APPENDIX D: CURRENTS FROM CONTACT
INTERACTIONS

In this Appendix, we list the four-nucleon contact inter-
action Hamiltonians involving two gradients of the nucleon
fields. Minimal substitution,

∇N (x) → [∇ − ieeN A(x)]N (x), (D1)

in the nucleon-derivative couplings then leads to the corre-
sponding electromagnetic-interaction Hamiltonians, which are
listed as well. In the last section of this Appendix we report the
expressions for the vertices induced by these Hamiltonians.

A. Four-nucleon contact interaction Hamiltonians

The four-nucleon contact interaction Hamiltonians with
two gradients acting on the nucleon fields have the following
expressions [2,3]:

HCT2D,1 = C ′
1

∫
dx [[N †(x) ∇N (x)]2 + [[∇N (x)]†N (x)]2],

(D2)

HCT2D,2 = C ′
2

∫
dx[N †(x) ∇N (x)] · [[∇N (x)]†N (x)], (D3)

HCT2D,3 = C ′
3

∫
dx[N †(x)N (x)][N †(x)∇2N (x)

+ [∇2N (x)]†N (x)], (D4)

HCT2D,4 = iC ′
4

∫
dx[[N †(x)∇N (x)] · [[∇N (x)]† × σN (x)]

+ [[∇N (x)]†N (x)] · [N †(x)σ × ∇N (x)]], (D5)

HCT2D,5 = iC ′
5

∫
dx[N †(x)N (x)][[∇N (x)]† · σ × ∇N (x)],

(D6)

HCT2D,6 = iC ′
6

∫
dx[N †(x)σN (x)] · [[∇N (x)]† × ∇N (x)],

(D7)

HCT2D,7 = (C ′
7δikδjl + C ′

8δilδkj + C ′
9δij δkl)∫

dx[[N †(x)σk∂iN (x)][N †(x)σl∂jN (x)]

+[[∂iN (x)]†σkN (x)][[∂jN (x)]†σlN (x)]],

(D8)

HCT2D,8 = (C ′
10δikδjl + C ′

11δilδkj + C ′
12δij δkl)∫

dx[N †(x)σk∂iN (x)][[∂jN (x)]†σlN (x)], (D9)

HCT2D,9 =
(

1

2
C ′

13(δikδjl + δilδkj ) + C ′
14δij δkl

)
∫

dx[[∂iN (x)]†σk∂jN (x)

+ [∂jN (x)]†σk∂iN (x)][N †(x)σlN (x)]. (D10)

B. Contact electromagnetic-interaction Hamiltonians

Minimal substitution leads to the following contact
electromagnetic-interaction Hamiltonians:

HCTγ ,1 = −ieC ′
1

∫
dx A(x)

× [[N †(x)(
−→∇ − ←−∇ )N (x)][N †(x)eNN (x)]

+ [N †(x)eNN (x)][N †(x)(
−→∇ − ←−∇ )N (x)]], (D11)

HCTγ ,2 = −ieC ′
2

∫
dx A(x) · [[N †(x)eNN (x)][[∇N (x)]†N (x)]

− [N †(x)∇N (x)][N †(x)eNN (x)]], (D12)

HCTγ ,3 = −ieC ′
3

∫
dx A(x) · [2N †(x)N (x)]

× [N †(x)(
−→∇ − ←−∇ )eNN (x)], (D13)

HCTγ ,4 = eC ′
4

∫
dx A(x) · [[N †(x)(

−→∇ + ←−∇ )N (x)]

× [N †(x)σeNN (x)] + [N †(x)eNN (x)]

× [N †(x)(
−→∇ + ←−∇ ) × σN (x)]], (D14)

HCTγ ,5 = eC ′
5

∫
dx A(x) · [N †(x)N (x)][N †(x)(

−→∇ + ←−∇ )

× σeNN (x)], (D15)

HCTγ ,6 = eC ′
6

∫
dx A(x) · [N †(x)σN (x)]

× [N †(x)(
−→∇ + ←−∇ )eNN (x)], (D16)

HCTγ ,7 = −ie(C ′
7δikδjl + C ′

8δilδkj + C ′
9δij δkl)∫

dx[Aj (x)[N †(x)(
−→
∂i − ←−

∂i )σkN (x)]
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× [N †(x)σleNN (x)] + Ai(x)[N †(x)σkeNN (x)]

× [N †(x)(
−→
∂j − ←−

∂j )σlN (x)]], (D17)

HCTγ ,8 = ie(C ′
10δikδjl + C ′

11δilδkj + C ′
12δij δkl)∫

dx [Aj (x)[N †(x)σk∂iN (x)]

× [N †(x)σleNN (x)] − Ai(x)[N †(x)σkeNN (x)]

× [[∂jN (x)]†σlN (x)]], (D18)

HCTγ ,9 = ie

(
1

2
C ′

13(δikδjl + δilδkj ) + C ′
14δij δkl

)
∫

dx [Aj (x) [N †(x) (
−→
∂i − ←−

∂i )σkeNN (x)]

× [N †(x)σlN (x)] + Ai(x) [N †(x) (
−→
∂j − ←−

∂j )

× σkeNN (x)][N †(x) σlN (x)]]. (D19)

C. Contact interaction vertices

The vertices induced by the contact electromagnetic-
interaction Hamiltonians are listed below. The notation is the
same as in Appendix A, but for

〈HCTγ,i〉 ≡ 〈p′
1, χ

′
1; p′

2, χ
′
2| HCTγ ,i | p1, χ1; p2, χ2; q, λ〉,

i = 1, . . . , 9, (D20)

and

〈HCTγ ,1〉 = 2e C ′
1 [e1(p2 + p′

2) + e2 (p1 + p′
1)] · êqλ√

2ωq

,

(D21)

〈HCTγ ,2〉 = −e C ′
2[e1(p2 + p′

2) + e2(p1 + p′
1)] · êqλ√

2ωq

,

(D22)

〈HCTγ ,3〉 = 2e C ′
3[e1(p1 + p′

1) + e2(p2 + p′
2)] · êqλ√

2ωq

,

(D23)

〈HCTγ ,4〉 = −ie C ′
4(σ 1 + σ 2) × [e1(p2 − p′

2) + e2(p1 − p′
1)]

· êqλ√
2ωq

, (D24)

〈HCTγ ,5〉 = −ie C ′
5[e1σ 1 × (p1 − p′

1) + e2σ 2 × (p2 − p′
2)]

· êqλ√
2ωq

, (D25)

〈HCTγ ,6〉 = ie C ′
6[e1 σ 2 × (p1 − p′

1) + e2σ 1 × (p2 − p′
2)]

· êqλ√
2ωq

, (D26)

〈HCTγ ,7〉 = 2e[C ′
7[e1(p2 + p′

2) · σ 2σ 1 + e2(p1 + p′
1) · σ 1σ 2]

+C ′
8[e1(p2 + p′

2) · σ 1σ 2 + e2(p1 + p′
1) · σ 2σ 1]

+C ′
9σ 1 · σ 2[e1(p2 + p′

2) + e2(p1 + p′
1)]]

· êqλ√
2ωq

, (D27)

〈HCTγ ,8〉 = −e[C ′
10[e1(p2 + p′

2) · σ 2σ 1 + e2(p1 + p′
1) · σ 1σ 2]

+C ′
11[e1(p2 + p′

2) · σ 1σ 2 + e2(p1 + p′
1) · σ 2σ 1]

+C ′
12σ 1 · σ 2[e1(p2 + p′

2) + e2(p1 + p′
1)]]

· êqλ√
2ωq

, (D28)

〈HCTγ ,9〉 = −e[C ′
13[e1(p1 + p′

1) · σ 1σ 2 + e1(p1 + p′
1) · σ 2σ 1

+ e2(p2 + p′
2) · σ 1σ 2 + e2(p2 + p′

2) · σ 2σ 1]

+ 2C ′
14σ 1 · σ 2[e1(p1 + p′

1) + e2(p2 + p′
2)]]

· êqλ√
2ωq

. (D29)
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