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Off-energy-shell p- p scattering at sub-Coulomb energies via the Trojan horse method
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Two-proton scattering at sub-Coulomb energies has been measured indirectly via the Trojan horse method
applied to the p + d → p + p + n reaction to investigate off-energy shell effects for scattering processes. The
three-body experiment was performed at 5 and 4.7 MeV corresponding to a p-p relative energy ranging from
80 to 670 keV. The free p-p cross section exhibits a deep minimum right within this relative energy region due
to Coulomb plus nuclear destructive interference. No minimum occurs instead in the Trojan horse p-p cross
section, which was extracted by employing a simple plane-wave impulse approximation. A detailed formalism
was developed to build up the expression of the theoretical half-off-shell p-p cross section. Its behavior agrees
with the Trojan horse data and in turn formally fits the n-n, n-p, and nuclear p-p cross sections given the fact that
in its expression the Coulomb amplitude is negligible with respect to the nuclear one. These results confirm the
Trojan horse suppression of the Coulomb amplitude for scattering due to the off-shell character of the process.
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I. INTRODUCTION

The Trojan horse method (THM) [1–4] is a very powerful
tool to study charged-particle reactions at sub-Coulomb
energies because it makes it possible to extract their cross
sections down to the relevant energies without experiencing
Coulomb suppression. For this reason, it has been successfully
applied to rearrangement reactions of astrophysical interest
for the past 20 years [3,5–8]. In this article, we investigate
the suppression of the Coulomb amplitude when the THM is
applied to scattering processes. This is done by considering
p-p scattering at low energy whose features, described below,
can provide this important test for the THM.

p-p scattering represents one of the oldest source of quan-
titative information about the nuclear force [9,10]. Despite
its simplicity, this was the first scattering between identical
particles to be regarded as an exception, because distinct
differences from pure quantum mechanical Mott scattering
were observed. Indeed, in the description of such an interaction
both Coulomb scattering and nuclear effects have to be
considered. The Coulomb scattering is coherent with the
nuclear one and interference terms between the two effects
are expected to contribute to the cross section. In particular,
there is a region at low proton-proton relative energy (Epp)
where the nuclear scattering amplitude in the 1S state and
the l = 0 partial wave of the Coulomb scattering amplitude
give destructive interference. This interference generates the
deep minimum in the p-p cross section (about 1 mbarn/sr)
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at Epp = 191.2 keV and θc.m. = 90◦ [11], which is absent in
the n-n and p-n scattering cross sections. A simple analytic
expression of the p-p cross section at 90◦, which accounts for
the Coulomb scattering in all orbital angular momentum states
plus nuclear scattering in the singlet S state, is given by [10]:

σc.m.(90◦) =
(

2e2

mv2
p

)2 (
1 − 2

sinδ0 cos ε

η
+ sin2δ0

η2

)
, (1)

where δ0 is the phase shift generated by the nuclear field and η

is the Coulomb parameter; ε = δ0 − ηln2 is chosen in such a
way that close to the minimum, where sin δ0 ≈ η ≈ 0.25 rad,
cos ε ≈ 1; vp is the laboratory velocity of the incoming proton,
m its mass, and e its charge.

At low energy the p-p cross section is dominated by the
first term (Coulomb term) of Eq. (1) that goes as 1/E2 (with
E proton beam energy), whereas its second term describes
the interference pattern. As the energy increases, the phase
shift δ0 increases while the Coulomb parameter η decreases.
This makes the nuclear field dominating at higher energy and
the p-p cross section is given essentially by the third term of
Eq. (1), which drops as 1/E.

If one considers that a nonsizable Coulomb amplitude
would make the minimum to disappear, the strong interference
pattern offers a unique possibility to validate the THM
suppression of Coulomb amplitude for scattering. This has
been realized by measuring the p-p elastic scattering within
the region of the minimum through the 2H(p, pp)n reaction
in the quasi-free (QF) kinematics regime [12]. The idea is
to check whether there is remaining evidence of the nuclear

0556-2813/2008/78(6)/064001(12) 064001-1 ©2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevC.78.064001
mailto:tumino@lns.infn.it


A. TUMINO et al. PHYSICAL REVIEW C 78, 064001 (2008)

plus Coulomb interference minimum in the p-p cross section
extracted via the THM.

The low-energy 2H(p, pp)n reaction in QF kinematics was
measured several times before (see Ref. [13] and references
therein) but not in the region where the p-p Coulomb-
nuclear interference takes place. The first measurements of
this reaction at 6 MeV of beam energy in the interference
area have been reported in Refs. [14,15]. The experimental
setups provided the coincidence detection of the two exit
protons as described in Refs. [14,15] giving values of Epp

down to 200 keV. Although experimental data seem to exclude
the presence of the interference minimum, they have been
considered as preliminary because it was not possible from
those experiments to cover all the relevant relative energy
region. In addition, only few couples of coincidence proton
laboratory angles were contributing in QF kinematics to p-p
center-of-mass (c.m.) values close to 90◦.

To validate this result and reach lower p-p relative energies,
the 2H(p, pp)n experiment was performed at lower beam
energies with dedicated setups. The present article reports
on these experimental investigations. To extract the p-p
cross section we apply the plane-wave impulse approximation
(PWIA) [16], which leads to a factorized form of the TH double
cross section. We will stress that the cross section for the binary
reaction extracted from the THM is half-off-energy-shell
(HOES), due to the virtual nature of the transferred particle.
Here we will take into account the off-shell character of the
transferred proton by performing a HOES calculation. This
feature turns out to be very important below the Coulomb
barrier while it gives negligible contribution at higher energies.

We will employ three steps in the evaluation of the
experimental p + p + n data:

(i) first the QF contribution to the three-body breakup
reaction is selected from the experimental data after
removing a small contribution due to the final-state
interaction (FSI) [13] between the neutron and any one
of the two protons;

(ii) compare the QF yield with the results of Monte
Carlo simulations performed under the assumption of a
pure quasi-free mechanism; the two-body cross section
entering the PWIA factorization in the Monte Carlo
simulations is given in turn by the on-energy-shell
(OES) total p-p, n-n, n-p, and nuclear p-p cross
sections from the literature [10] as well as by the
calculated HOES p-p one;

(iii) finally, following the PWIA approach the cross section
for the elastic p-p scattering is extracted from the QF
data and compared with the calculated HOES one as
well as with the OES counterparts in the energy region
where the Coulomb-nuclear interference occurs.

II. THEORY OF THE TROJAN HORSE METHOD

The THM is an indirect technique for studying charged
particle two-body reactions at sub-Coulomb energies (see
Refs. [1–4] and references therein). The idea is to use nuclear
clusters as virtual projectiles/targets to measure cross sections
at ultra-low energies overcoming the main problems of direct

measurements. As mentioned, this technique was successfully
applied to nuclear astrophysics [3,5–8]. Indeed, when dealing
with charged-particle reactions at astrophysical energies, the
Coulomb barrier, usually of the order of few MeV, is much
higher than the energies of interest (�100 keV), thus implying
that the reaction takes place via a tunneling effect with an
exponential decrease of the cross section, σ (E) ∼ exp(−2πη).
In addition, the screening effect of the nuclear charges due to
the electron clouds surrounding the interacting nuclei leads
to a higher cross section compared to the one in the case
of bare nuclei [17,18] that represents the relevant parameter
for astrophysics. Up to date, the only way to determine the
bare nucleus cross section is by extrapolating the behavior of
the higher energy data. The extrapolation is done in terms of
the astrophysical S(E)-factor, which essentially removes the
dominant energy dependence of the cross section due to the
Coulomb barrier factor. The THM offers a novel approach
to avoid the extrapolation providing the only existing way to
measure the bare nucleus astrophysical S(E)-factor down to
sub-Coulomb energies.

A. The Trojan Horse method and the quasi-free kinematics
regime

The THM replaces the sub-Coulomb binary reaction:

A + x → C + c. (2)

by a suitable 2 → 3 particle process

A + a → C + c + s, (3)

establishing a relation between the two reactions by means of
nuclear reaction theory. The latter is chosen in such a way that
the target a (or equivalently the projectile) has a wave function
with a large amplitude for the x ⊕ s cluster configuration, x

being the target/projectile of the two-body reaction. In the
application of the THM, we are interested in the process that
can be regarded as a transfer reaction to the continuum, where
the TH nucleus a breaks up into the nucleus x, which is
transferred, and the nucleus s that remains as a spectator to
the subreaction (2). In the three-body phase space, where this
direct reaction mechanism gives the main contribution to the
cross section, the momentum transfer to the spectator s is
small. This is what we call the QF kinematics regime. The
transferred nucleus appears only as a virtual particle in the
reaction process, thus energy and momentum of the nucleus
x do not obey the usual energy-momentum relation for a free
particle.

Because the A + a interaction occurs at an energy above
the Coulomb barrier, the TH nucleus a breaks up inside the
nuclear region of A without experiencing either Coulomb
suppression or electron screening effects. Nevertheless, the
quasi-free A + x process can take place at sub-Coulomb,
even negative, relative energy EAx , thanks to the key role
of the a = (sx) binding energy Bsx in compensating for the
A + a relative motion. This is clearly seen invoking energy
and momentum conservation rules:

EAx = p2
Ax

2 µAx

− p2
sx

2 µsx

− Bsx, (4)
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where pij is the relative momentum of particles i and j,mij =
mi mj/(mi + mj ) is their reduced mass, and mi is the mass of
particle i. We note that pAx �= √

2 µAx EQF due to the virtual
nature of particle x. In the QF kinematics psx = 0 and

EAx = EQF = p2
Ax

2 µAx

− Bsx. (5)

In the laboratory system (the target is at rest, which means
pa = 0 and ps = 0):

pAx = mx pA − mA px

mx + mA

= mx

mx + mA

pA, (6)

where pA is the momentum of projectile A. Then, from
Eqs. (5) and (6) we get

EQF = mx

mx + mA

EA − Bsx. (7)

Both Eqs. (5) and (7) show how the binary reaction can be
induced at very low EQF in the THM using the beam energy
EA above the Coulomb barrier, a condition that is impossible
to achieve in direct measurements due to the Coulomb barrier.
It is important to notice that EQF is uniquely determined
from Eq. (7) once the projectile energy is fixed. Hence,
determining the energy dependence of the binary reaction cross
section from the THM requires changing the beam energy.
From a practical point of view it is more convenient to fix
the beam energy and deviate slightly from the optimal QF
condition by allowing the relative momentum psx to vary in
the interval 0 � psx � p(max)

sx < κsx , where κsx = √
2 µsx Bsx

is the a = (sx) bound-state wave number. Thus, thanks to
the Fermi motion of s and x inside a, it is possible to span
the entire astrophysical energy region fixed by the cutoff,
�psx = p(max)

sx , in the psx momentum distribution. Usually the
cutoff is of the order of a few tens of MeV/c performed on the
ps variable, the momentum of the spectator (in the laboratory
system psx = ps = −px). This approach strongly deviates
from the original idea [1] where, to reach the low energy region
for the binary reaction, the initial velocity of the projectile
A is compensated for by the Fermi motion of particle x.
In this framework, a momentum of the order of hundreds
of MeV/c is needed. This is very critical in the case of a TH
nucleus with a predominant l = 0 intercluster motion, because
such momenta populate the tail of the momentum distribution
for particle x, making the separation from eventual background
reaction mechanisms (like sequential decays feeding the same
exit channel) very complicated. Moreover, the description of
the tail is very sensitive to the theoretical approach applied to
get the relevant binary reaction cross section, in contrast to
the full shape at small ps values, thus implying much more
sophisticated treatments. In addition, higher relative momenta
mean shorter intercluster distances and the role of particles as
spectator is no longer so clearly defined. The novel approach
makes it possible to overcome these problems in the extraction
of the binary cross section.

B. Impulse approximation and half-off-shell effects

Let us consider the A + a → A + c + s breakup reaction
in the three-body model with a = (sx) and A = C, s, and

x = c constituent structureless particles. The exact reaction
amplitude in the prior form is then given by

M (prior)(kCc, kAa) = 〈
	

(−)
f

∣∣VAa

∣∣ϕa χ
(0)
Aa

〉
. (8)

Here, 	
(−)
f is the exact final state three-body scattering wave

function with the incident wave corresponding to the A + s +
x three-body channel in the continuum, VAa = VAx + VAs, Vij

is the interaction potential between nuclei i and j, χ
(0)
Aa is the

plane wave describing the relative motion of the noninteracting
nuclei A and a in the initial state moving with the relative
momentum kAa . Note that the Coulomb interaction of particles
A and a in the initial state is assumed to be screened for
a moment. Because the exact final-state wave function is
unknown usually for heavier nuclei the DWBA is used, but it
cannot be applied for the p + d → p + n+ p reaction under
consideration. A priori, the Fadeev equations are required
to get the wave function 	

(−)
f . In the simplest approach

linked to the QF kinematics one can replace 	
(−)
f by the

product χ (0)
s χ

(−)
Cc , where χ

(−)
Cc is the scattering wave function

of particles C and c in the final state. Essentially, this reflects
the assumption that in the QF kinematics the interaction of
the spectator with particles C and c is reduced. Such an
approximation represents the so-called PWIA [16,19–29], in
which only the scattering of the fragments C and c in the
final state is taken into account. It has been used to derive
the low-energy two-body cross section in terms of the TH
reaction (3) in the QF kinematics regime. This application is
strengthened by previous investigative works at low energies
[22,24,28–39].

The original expression for the PWIA (8) can be rewritten
as the sum of the amplitude of the pole diagram (it contains the
interaction potential VAx) and the one of the triangular diagram
(containing the interaction potential VAs) [40]. If s = n, as in
the case under consideration, then the spectator s interacts with
the other particles only via nuclear interaction that we neglect
in the QF conditions, i.e., approximate VAa ≈ VAx . Then, the
prior form amplitude for the QF breakup in the PWIA reduces
to the amplitude of the pole diagram

M (pole)(kCc, kAa) = 〈
χ (0)

s χ
(−)
Ax

∣∣VAx

∣∣ϕa χ
(0)
Aa

〉
. (9)

Thus the pole amplitude is the PWIA for the relative motion
A + a in the initial state and for the relative motion of s and the
center-of-mass of the system A + x, but the one of A + x is
taken accurately into account. For the QF p + d → p + p + n

breakup reaction of interest, the pole diagram is shown in
Fig. 1. In particular, the deuteron a = d is the TH nucleus,

FIG. 1. Pole diagram describing the QF p + d → p + p + n

process.
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the neutron s is the spectator, and the proton x = p is the
transferred virtual particle.

The amplitude (9) of the pole diagram describing the
TH reaction (3) consists of two factors. If we write down
the integral in its matrix element (9) in the momentum
representation, the two factors are given by

T (pAx, kAx) ∼ 〈ei pAx ·r |VAx(r) χ
(+)
Ax (r)〉 (10)

representing the HOES p-p scattering amplitude, with
χ

(−)
Ax (r) ≡ χ

(−)
kAx(r), and

ϕa(psx) = Wa(psx)

p2
sx + κ2

sx

, (11)

giving the Fourier transform of the (sx) bound-state wave
function, with Wa(psx) amplitude of the virtual breakup a →
s + x, presently d → n + p. For the case under consideration,
a = d, the Hulthén wave function is a good approximation for
ϕa(psx).

In a rigorous approach, the interaction between the nuclei in
the initial and final channels should be taken into account [41].
However, if we are interested only in the energy dependence
of the cross section, the treatment above is very well suited.
Then the expression of cross section for the TH reaction (3)
becomes particularly simple in the PWIA, being factorized
into two terms corresponding to the pole mechanism shown in
Fig. 1 [16,23,25–29]:

d3σ

dEcd�cd�C

∝ [KF |ϕa(psx)|2]

(
dσ

d�c.m.

)HOES

. (12)

Here KF is a kinematical factor containing the final-state
phase-space factor, which is a function of the masses, mo-
menta, and angles of the outgoing particles

KF = µAa mc

(2π )5h̄7

pC p3
c

pAa

[(
pFs

µFs

− pCc

mc

)
· pc

pc

]−1

; (13)

�j is the solid angle of particle j , (F = A + x = c + C);
[(dσ/d�)c.m.]HOES is the HOES differential cross section for
the binary reaction (2) (here the p-p scattering), built up from
Eq. (10) at the relative x − A kinetic energy EQF given by

EQF = EcC − Q2 . (14)

Here, Q2 is the Q value of the binary reaction (2), which is
zero for elastic scattering, and EcC is the relative energy of the
outgoing particles c and C (EcC = Epp in our case).

Because |ϕa(psx)|2 is known from nuclear clustering
studies, the product KF |ϕa(psx)|2 can be calculated, either
analytically (for fixed angles) or via a Monte Carlo simulation.
Therefore, it is possible to derive [(dσ/d�)c.m.]HOES from
a measurement of d3σ/dEcd�cd�C by using the following
equation(

dσ

d�c.m.

)HOES

∝
[

d3σ

dEcd�cd�C

]
1

KF |ϕa(psx)|2 . (15)

It was demonstrated [41] that, due to the virtual character
of fragment x (initially it is in the bound state of a), the
Gamow factor does not appear in the initial A + x state of
the binary subprocess making it possible to extract its cross
section down to the relevant energies without experiencing

Coulomb suppression. This appears to be the only consequence
of the off-energy-shell effects as suggested by the agreement
between HOES and OES cross sections for the neutron induced
6Li(n, α)3H reaction [42]. Thus, above the Coulomb barrier
HOES and OES fully agree. This allows us to derive the
absolute magnitude of the binary reaction cross section from
a scaling to the OES data available at higher energies.

We note that in the case of elastic scattering, the off-shell
suppression mechanism of the Coulomb interaction is quite
different from that of rearrangement reactions. In particular,
in the case of elastic scattering the total amplitude is given
by the sum of the Coulomb and Coulomb-modified nuclear
parts. As we will show, the off-shell effects cause the Coulomb
amplitude to be suppressed compared to the nuclear part.

The PWIA has been successfully applied to determine the
energy dependence of the triple differential cross section at Epp

higher than the Coulomb-nuclear interference minimum [13].
In this work, we extend the PWIA to the lower energies
within the interference region. We underscore again that
such a procedure will allow us to determine only the energy
dependence of the HOES p-p cross section but not its absolute
value. To check the applicability of the PWIA, the extracted
energy dependence of the p + p cross section will be compared
with the calculations.

C. Half-off-shell theoretical p- p cross section

The Coulomb-modified nuclear HOES p-p scattering
amplitude at low energies can be written in analytical form
by adopting a separable s-wave Yamaguchi potential of the
first rank [43]:

T CN(k, p) =
√

2

π

1

k2 + β2
[B(k, p)]−iηe−πη/2�(1 + iη)

×
(√

2

π

1

p2 + β2
−

√
2

π

1

k2 + β2

k

p

×{1F1[1, iη, 1 + iη, B1(k, p)]

− 1F1[1, iη, 1 + iη, B0(k, p)]}
)

× 1

λ−1 + G0(k, p)
. (16)

Here, p ≡ pAx is the relative virtual p-p momentum in
the entry channel of the p-p scattering (one of the protons
is virtual) and k ≡ pCc is the relative on-shell momentum
of the outgoing protons. Paramaters β = 1.095 fm−1 and
λ = 2.4 fm−3 were chosen to fit the low-energy p-p s-wave
scattering phase shift [43]. η is the p-p Coulomb parameter in
the exit channel and 1F1 is the hypergeometric function,

G0(k, p) = 1

2 β (β − i k)2 (1 + i η)
×1F1[1, iη, 2 + iη, B2(k)], (17)

B(k) = β + ik

β − ik
, (18)

064001-4



OFF-ENERGY-SHELL p-p SCATTERING AT SUB- . . . PHYSICAL REVIEW C 78, 064001 (2008)

FIG. 2. Theoretical HOES p-p scattering cross section from
Eq. (22).

B1(k, p) = B(k)
p − k

p + k
, (19)

B0(k, p) = B(k)
p + k

p − k
, (20)

B2(k) = B(k)2. (21)

The HOES differential cross section for the low-energy p-p
scattering is given by(

dσ

d�c.m.

)HOES

= 1

k2

(
1

4

[∣∣∣∣2µpp e2 e−πη�(1 + iη)

×
(

(p2 − k2)iη

(p − k)2(1+iη)
+ (p2 − k2)iη

(p + k)2(1+iη)

)
− 2 TCN (k, p)

∣∣∣∣
2]

+ 3

4

[∣∣∣∣2µpp e2 e−πη�(1 + iη)

×
(

(p2 − k2)iη

(p − k)2(1+iη)
− (p2 − k2)iη

(p + k)2(1+iη)

)∣∣∣∣
2])

. (22)

The part other than TCN is the HOES Coulomb amplitude, with
µpp the reduced mass of the two protons, and e the proton
charge. The cross section in the first brackets corresponds
to a total spin of the two protons S = 0 and contains even
partial waves; at low energies TCN(k, p) contributes only to
the s partial wave. The cross section in the second brackets
corresponds to a total spin S = 1 and contains only odd partial
waves.

We note that the HOES cross section depends on three
independent invariants, the initial off-shell relative momentum
of the two protons p, the OES exit relative momentum
k, and the scattering angle, in contrast to two independent
invariants, k and scattering angle, for the OES cross section.
In the QF kinematics the off-shell momentum p is fixed and
always larger than k (this feature will be later recalled), what

constitutes a very important difference compared to the OES
case where the entry momentum coincides with the exit one
k. The 1/k2 geometrical factor in Eq. (22), makes the energy
behavior of the HOES cross section comparable with the OES
counterpart after normalization to it at higher energies. In
contrast to the OES case, this factor must be introduced in
the expression of the HOES cross section, due to the virtual
nature of the process. The resulting HOES curve progress is
shown in Fig. 2 as solid line. A drastic suppression of the
Coulomb interaction is apparent even if we have multiplied
the HOES cross section by the missing factor 1/k2. This is
the key point that will be further discussed after showing the
comparison with the OES cross section and the experimental
HOES data.

III. THE EXPERIMENTS

The 2H(p, pp)n experiment was performed at the
ATOMKI, Debrecen (Hungary). A 5-MeV proton beam was
delivered by the cyclotron accelerator with a beam energy
spread of 10−3 onto a deuterated polyethylene target (98%
of 2H), 200 µg/cm2 thick, placed at 90◦ with respect to
the beam direction. The spot size of the beam on target
was approximately 1 mm. Proton-proton coincidences were
measured by four 500-µ-thick position sensitive detectors
(PSD), each of them with an effective area of 5 × 1 cm2. Some
details concerning the working principle of such detectors
are given soon after the description of the experiments. A
schematic diagram of the experimental setup with the four
PSDs is shown in the upper part of Fig. 3. Two of them
were placed almost symmetrically with respect to the beam
direction, covering angles 5◦ to 19◦ and 9◦ to 19◦. On the same
side of the less forward detector, the other two PSDs were
centered at 29◦ and 59◦, covering also 10◦. The alignment of
the detectors was checked by an optical system.

The trigger for the event acquisition was given by the
coincidences between the most forward PSD (drawn with
green color in Fig. 3), placed alone on one side of the scattering
chamber, and any one of the three PSD’s placed on the other
side with respect to the beam direction (drawn with red color
in Fig. 3). This setup allowed us to investigate the Epp range
from 550 keV down to 80 keV, right within the characteristic
interference minimum in the direct p-p cross section, and
a p-p center-of-mass angle θc.m. = 30◦ to 150◦. This range
corresponds to momentum values ps of the undetected neutron
up to 60 MeV/c, which fulfill the QF condition. This assures
that the bulk of the QF contributions for the break-up process
of interest falls inside the investigated regions.

Another experiment within the Epp interference region
was performed at the Dipartimento di Scienze Fisiche
dell’Universitá Federico II, Naples (Italy), to substantiate the
Debrecen results and to add some points in the region right
above the p-p Coulomb barrier (up to about 700 keV). This
would allow us also to check the consistency of the HOES
formalism in a wider range. A 4.7-MeV proton beam was
delivered by the 3-MV Tandem accelerator with a spot size of
about 1 mm onto a deuterated polyethylene target, 200 µg/cm2

thick, placed at 90◦ with respect to the beam direction. Two
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FIG. 3. (Color online) Schematic description of the experimental
setups for the two experiments. Green and red colors help to visualize
the coincidences between the detectors building up the trigger to the
acquisition (see text for details).

proton coincidences were measured by three PSDs (see the
lower part of Fig. 3 for a schematic view of this setup), two
of them placed almost symmetrically with respect to the beam
direction and covering the angular ranges 9◦ to 29◦ and 6◦ to
26◦. The third PSD was placed on the same side of the most
forward detector, covering angles 34◦ to 51◦. Coincidences
were registered between the 9◦ to 29◦ PSD (green color in the
lower part of Fig. 3) and any one of the two PSDs placed on
the other side with respect to the beam direction (drawn with
red color in the lower part of Fig. 3).

A similar range as before was covered in terms of p-p
center-of-mass angles, with a strong contribution in the region
close to θc.m. = 90◦. In both experiments, energy and position
signals for the detected particles were processed by standard
electronics together with the delay between the time signals
for each coincidence event and sent to the acquisition system
for on-line monitoring and data storage for off-line processing.

A. Schematic description of a silicon PSD

A PSD is a quite popular detector providing the information
on energy and angle of the detected particle. A schematic
diagram of its layout is shown in Fig. 4. The detector is made

FIG. 4. Schematic description of a PSD layout.

of a standard single wafer of doped n-type silicon, which is
depleted by a reverse voltage applied across the bulk of the
crystal. As known, the energy released by the particle causes a
charge signal (electrons/holes) at both faces. In the front face
a p-type layer, usually created by boron implantation, acts as
a resistive anode. At both ends of the implanted anode, two
readout contacts allow one to deduce the position information
from the partition of the energy signal. The collected charge
divides into two fractions, each one in inverse proportion to
the distance between the hit position of the particle and the
strip-end collecting such a fraction.

Usually, the charge fraction is collected only from one of
the two strip-ends (see Fig. 4), as this information is sufficient
to reconstruct the position of the hitting particle. The other
strip-end is closed through a resistor of the order of 1 k�

(about a 20% of the total resistive layer), which ensures a
measurable signal also when the hit position is close to this
end. The intrinsic α resolution of a standard PSD is quoted as
300 µm for the position and about 0.5% for the energy.

IV. DATA ANALYSIS

A. Selection of the process

Energy and angle calibrations of the PSDs were performed
using data acquired in preliminary runs of p + 197Au, p + 12C,
p + d, and p + p elastic scattering. Energy resolution was
found to be better than 2%. During the preliminary runs, grids
with equally spaced slits were placed in front of each PSD to
establish a position-angle correspondence needed for the angle
calibration. The angular resolution was found to be about 0.2◦.

The kinematics were reconstructed under the assumption of
a neutron as undetected particle. The corresponding locus of
events in the Ep vs. Ep plane is shown in Fig. 5. In addition, if
one considers a two-dimensional plot showing a kinematical
variable, such as the energy or the angle of any one of the
involved particles as a function of the Q value, coincidence
events of interest should lie on a vertical line that cuts the Q-
value axis at the expected value. The spectrum for the present
case is reported in Fig. 6 where the laboratory angle of one
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FIG. 5. Locus of events in the plane defined by the energies of
the coincident particles Ep and Ep . The kinematical locus for the
2H(p, pp)n reaction is apparent.

of the two detected protons (θp) is shown as a function of the
Q value. A sharp vertical line shows up, crossing the Q-value
axis at about −2.2 MeV. This value is in agreement with the
expected one of −2.22 MeV, referring to the p + p + n channel
of interest. The resulting spectra, in particular the vertical Q-
value line in Fig. 6, make us confident of the quality of the
calibration and of the possibility to identify the p + p + n

channel.

FIG. 6. Angle of one of the two detected protons θp vs. the Qvalue.

B. Selection of the QF mechanism

The first step of the analysis is the selection of events
corresponding to the 2H(p, pp)n three-body reaction. This
is accomplished by means of the graphical cut on the Ep

vs. Ep kinematical locus shown in Fig. 5. To investigate the
reaction mechanism involved, a calculation of the FSI between
the neutron and any of the two protons was performed in the
investigated Epp region. In the present case, the n-p FSI is
expected to contribute only slightly to the total cross section
due to the low relative energy of the two protons. The effect
of the FSI is usually taken into account by considering the
s-wave matrix element given by

Ts = 1

D(Enp)
T 0

S , (23)

where D(Enp)−1(Enp is the n-p relative energy) provides
the so-called enhancement factor and T0

S is obtained by a
simple modification of a standard Born approximation where
the value of the wave function at the origin is considered
[13,44,45]. In the effective range approximation, the n-p FSI
enhancement factor is given by [44,45]

Fnp = 1

|D(Enp)|2 =
(
k2
np + α2

)2 1
4 r2

0( − 1
anp

+ 1
2 r0 k2

np

)2 + k2
np

(24)

with

α = 1

r0
(1 + √

1 − 2r0/anp), (25)

where knp is the relative momentum of the neutron and
the proton; anp is the n-p scattering length, and r0 is the
effective range. Because the n-p pair can be interacting either
in the singlet or in the triplet state, both singlet and triplet
enhancement factors have been used for considering the n-p
FSI. The anp and r0 values entering the calculation were
−23.748 fm and 2.75 fm for the singlet and 5.42 fm and
1.76 fm for the triplet factor.

The calculated n-p FSI yield projected onto the Epp axis
in the spanned energy interval experiences a quite flat energy
dependence giving a contribution of less than 10% to the three-
body coincidence yield, as shown in Fig. 7. This contribution
was subtracted from the total events and a shape analysis of
the experimental momentum distribution for the neutron was
carried out with the remaining data. This is an observable
that turns out to be very sensitive to the reaction mechanism.
Dividing the quasi-free coincidence yield by the kinematic
factor, we are left with a quantity that is proportional to the
product of the momentum distribution for the neutron and the
differential HOES p-p two-body cross section [see Eq. (12)],
as given by:

|ϕa(ps)|2
(

dσ

d�c.m.

)HOES

E0

∝
[

d3σ

d�pd�pdEc.m.

]
[KF ]−1 ,

(26)

where E0 is the mean energy of the Epp relative energy win-
dow. In each restricted Epp range, the differential binary cross
section (dσ/d�c.m.)HOES of the p-p scattering can be consid-
ered almost constant. Thus the experimental ps momentum
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FIG. 7. Three-body coincidence yield σ3 projected onto the
proton energy axis Ep . The dashed line represents the contribution of
the n-p FSI.

distribution is given by:

|ϕa(ps)|2 ∝
[

d3σ

d�pd�pdEc.m.

]
[KF ]−1 . (27)

This quantity was derived for the two experimental runs and it
is shown in Fig. 8 as filled circles for the ATOMKI experiment
and open ones for the Naples run. Its width (full width at half
maximum, FWHM) of about 40 MeV/c in both cases is lower
than the theoretical asymptotic value for the p-n system in the

FIG. 8. Experimental neutron momentum distribution for the
ATOMKI (full circles) and Naples runs (open circles). The dashed
line represents the shape given by the square of the n-p Hulthén
bound-state wave function in momentum space.

deuteron (58 MeV/c) obtained from the p-n bound-state wave
function, in agreement with the one expected for the p + d

interaction at these beam energies [46]. This result, interpreted
as due to distortion effects [46–48], is yet to be fully understood
and three-body Faddeev equation calculations would be useful.

The full line superimposed onto the data in Fig. 8 is the
theoretical shape given by the squared Fourier transform of the
s-wave radial Hulthén function associated with the deuteron
bound state:

ϕa(ps) = 1

π

√
ab(a + b)

(a − b)2

[
1

a2 + p2
s

− 1

b2 + p2
s

]
(28)

with parameters a = 0.2317 fm−1 and b = 0.3 fm−1 [37] and
normalization constant fixed at the experimental maximum.
The b parameter has been changed from 1.202 fm−1, corre-
sponding to the asymptotic FWHM, to the present value to
reproduce the experimental width.

We note that the Hulthén (pn) bound-state wave function
is simultaneously the eigenfunction of both Hulthén and
Yamaguchi separable potentials making the treatment of the
(pn) bound state and the p-p scattering consistent. A quite
fair agreement shows up, giving us confidence that in the
experimentally selected kinematical region the QF mechanism
gives the main contribution. For further data analysis, only
events with ps values lower than 20 MeV/c were considered,
because they give contributions in the θc.m. region close to
90◦(80◦�θc.m.�100◦).

V. RESULTS

A. The TH p + d cross section

We note that a rigorous analysis of the experimental data
requires the full three-body Faddeev calculations with the
Coulomb p-p interaction [49]. However, it is impossible
to extract the HOES p-p scattering amplitude from such
calculations. As mentioned before, we employ a simple PWIA
described by the pole diagram shown in Fig. 1. The amplitude
of this diagram is proportional to the HOES p-p scattering
amplitude, where one of the incoming protons is HOES while
both exiting protons are OES.

The experiment was simulated by means of a Monte
Carlo calculation based on the PWIA. The reaction was
assumed to proceed through a pure quasi-free mechanism
and all experimental constraints in energy and scattering
angles for the detected particles were taken into account. The
momentum distribution of the neutron inside the deuteron was
described in terms of the parametrization given in Eq. (28).
The HOES two-body cross section entering the calculation
was first replaced with the free p-p one, where the l = 0
phase shift is calculated using the formalisms reported in
Ref. [10] with scattering length ap = −7.806 fm and effective
radius r0 = 2.794 fm. The three-body cross section was
calculated for proton laboratory angles corresponding to p-p
center-of-mass values close to 90◦ and compared with the
experimental coincidence yield corrected for the geometric
efficiency of the experimental setup. Results as a function
of a proton laboratory energy Ep are reported in Fig. 9(a)
for the ATOMKI experiment and (b) for the Naples one: the
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FIG. 9. (Color online) Experimental three-body cross section
(filled circles) vs. proton laboratory energy Elab

p from the Atomki
(a) and the Naples runs (b). Solid lines represent: (red) the calculated
OES p-p cross section; (green) the calculated nuclear p-p cross
section; (blue) the calculated HOES p-p cross section.

three-body coincidence yield is given as filled circles, whereas
the red solid line shows the calculation. A clear disagreement
is apparent.

Then, another set of calculations was performed by in-
troducing the on-shell n-n, n-p, and nuclear p-p ones [10].
The expression of the nuclear two-body cross section at low
energy was considered for different values of the a and r0

parameters: a = −18.5 fm, r0 = 2.75 fm for the n-n, a =
23.748 fm, r0 = 2.75 fm for the n-p, a = −17.3 fm, r0 =
2.85 fm for the nuclear p-p scattering [50]. Results are
reported also in Fig. 9(a) (ATOMKI) and (b) (Naples) as green
solid lines. The calculations give practically the same energy
behavior, which is represented by using the same solid line. It
is clearly seen the agreement with experimental data.

When the HOES p-p cross section is used in Eq. (12), the
calculation (solid line) nicely fits the experimental behavior of
the coincidence yield as shown by the blue solid lines on the
same Fig. 9(a) (ATOMKI) and (b) (Naples). One can clearly
observe that the HOES cross section strongly resembles the
behavior of n-n, n-p, or nuclear p-p cross section for the
reason that will be further explained.

B. From the TH p + d reaction to the HOES p- p scattering
cross section

Following the PWIA approach [Eq. (15)], it is possi-
ble to derive the THM differential two-body cross section

from the selected three-body coincidence yield divided by
the |ϕa(ps)|2KF factor. The geometrical efficiency of the
experimental setup as well as the detection thresholds were
accounted for in the procedure. An error calculation for Epp

was also performed giving a value ranging from 15 to 20 keV
the minimum estimate corresponding to the phase-space region
where the magnifying glass effect is more efficient [51].
Essentially this effect works better if we are closer to the
minimum of Epp when reported as a function of the energy of
one of the two protons, namely there is a weaker dependence
of Epp on it. The extracted p-p HOES cross section from
both runs is presented in Fig. 10(a) as a function of Epp in
a wider Epp range with respect to that reported in Ref. [12]
(black dots for the 5-MeV run and green dots for the 4.7-MeV
one) and compared to the free p-p cross section (black solid
line) [10] with the same parameters as used before in the
calculation of the three-body cross section [see Figs. 9(a) and
9(b)]. The red solid line represents the calculated HOES p-p
cross section [Eq. (22)]. Both calculated curves are integrated
over 80◦ � θc.m. � 100◦ and averaged over an energy bin of

FIG. 10. (Color online) (a) THM two-body cross section (black
and green dots from present experimental work, red triangles and
blue stars from previous work [15]) vs. Epp . Solid line represents
the theoretical OES p-p cross section calculated as explained in the
text. The red solid line is the HOES cross section calculated using
Eq. (22). (b) Weighted average of all the experimental data shown in
(a) vs. Epp with the same meaning for the solid lines as above.
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FIG. 11. (Color online) (a) THM two-body cross section (black
and green dots from present experimental work, red triangles and blue
stars from previous work [15]) vs. p-p relative energy E compared
with the on-shell n-n (dashed-dotted line), p-n (dashed line), and pure
nuclear p-p (dotted line) ones. The HOES calculated cross section
is also reported as red solid line. (b) Weighted average of all the
experimental data shown in (a) vs. Epp . The blue solid line represents
the theoretical HOES p-n cross section. The other lines have the same
meaning as in (a).

20 keV. Experimental and calculated HOES cross sections
are normalized to the calculated OES one at Epp close to
the Coulomb barrier (500 keV). Vertical error bars in the
figure include statistical and normalization errors as well as
the error due to the subtraction of the FSI contribution. Data
from previous p + d → p +p + n experiments [15] are also
shown as red triangles and blue stars. The weighted average
of all sets of data is reported in Fig. 10(b) compared to the
calculated curves as in Fig. 10(a). We observe a striking
disagreement between the THM (HOES) and the free p-p
(OES) cross sections throughout the region of the interference
minimum. Indeed, the minimum is missing in the THM data
that in contrast nicely fits the calculated HOES p-p cross
section Eq. (22). However, one can see that right above the
Coulomb barrier, in the region where the free p-p scattering
is dominated by the nuclear field [10,13], both curves are in
agreement with the additional THM points referring to the
4.7-MeV run.

The THM p-p cross section was further compared with the
on-shell n-n, p-n, and pure nuclear p-p ones [10] with the
same parameters [50] entering the PWIA parametrizations as
before. Results are reported in Figs. 11(a) and 11(b) (weighted
average of all the experimental points), with a dashed-dotted
line for the n-n, dashed line for the p-n, and dotted line for the
pure nuclear p-p cross section. The calculated HOES cross
section is again shown for completeness (red solid line). Good
agreement between the OES nucleon-nucleon nuclear cross
sections and the THM data shows up.

In addition, one can obtain the energy dependence of the
HOES n-n cross section simply replacing the two proton
charges Ze by zero in the HOES theoretical formulas. The
result is reported in Fig. 11(b) as a blue solid line. Surprisingly,
it fairly reproduces the behavior of the n-n and pure nuclear
p-p cross sections. This result is in agreement with the one
reported in Ref. [42] because it excludes the existence of
off-energy-shell effects when the Coulomb barrier is absent.

VI. DISCUSSION AND CONCLUSIONS

The results above represent compelling evidence of the
validity of the THM method for elastic scattering: the exper-
imental HOES p-p scattering cross section does not exhibit
the interference minimum. Thus it strongly disagrees with the
OES p-p behavior, heavily affected at low energies by the
Coulomb interaction. They come to the agreement right above
the Coulomb barrier where the OES p-p cross section is given
essentially by the nuclear part; in contrast, the experimental
HOES p-p scattering cross section has practically the same
energy dependence as pure nuclear OES nucleon-nucleon
cross sections throughout the whole Epp range investigated;
the experimental HOES p-p scattering cross section extracted
from the TH reaction is very well reproduced by the calculated
HOES p-p behavior. This indicates that the PWIA in the
QF kinematics regime can be used to obtain the energy
dependence of the p-p cross section even in the region
where strong Coulomb-nuclear interference takes place for
the OES p-p scattering. The behavior of the low-energy
HOES cross section can be easily explained using Eq. (22).
As already mentioned in the HOES scattering, the initial p

and final k momenta are different by definition. In particular,
for the p + d → p + p + n reaction in the QF kinematics
(ps = 0), p2 = k2 + 2 µBsx , where in the present case Bsx

is the deuteron binding energy. That is why p is always
larger than k. Hence the transfer momentum in the p-p elastic
scattering |p − k| at angles near 90◦ becomes large enough,
compared to the OES case, to suppress the Coulomb HOES
amplitude. For example, in the Epp region where the OES
cross section exhibits the interference minimum, |p − k| is
about of 0.3 fm−1, making it possible to probe a distance
between the two protons of the order of 3 fm, where the
nuclear scattering dominates. In contrast, the corresponding
transfer momentum in the on-shell p-p scattering is around
0.1 fm−1, matching with a distance of about 10 fm, where
only the Coulomb interaction is present.

The resulting HOES cross section at low energies is there-
fore dominated by the Coulomb modified nuclear amplitude
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TCN, revealing the typical behavior of the higher energy p-p
cross section, far from the interference region. The Coulomb
interaction does not affect the energy behavior of TCN at least
down to Epp ∼ 200 keV because the p-p Coulomb parameter
is small. That is why the HOES cross section formally fits
the OES nucleon-nucleon nuclear cross sections. However, at
lower Epp the HOES cross section slightly deviates from the
OES nuclear p-p one and just accidentally appears better in
agreement with the behavior of the n-p cross section. The n-p
scattering is increasing more rapidly than the n-n and p-p
counterparts when the energy goes to zero. This is because
in the case of low-energy n-n and p-p nuclear scattering
only the singlet state contributes, in contrast with the n-p
scattering where both singlet and triplet states do. In particular,
the behavior of the low-energy n-n and p-p nuclear cross
sections are affected by the virtual singlet poles at −133 keV
and −140 − i467 keV [52], whereas the low-energy n-p cross
section is dominated by the deuteron pole at −2.224 MeV in
the triplet state and by the virtual one at −66 keV in the singlet
state.

Responsible for the little increase of the HOES cross
section, which is contributed only by the singlet state, is the
residual Coulomb interaction in TCN. This consideration is
strengthened by the apparent agreement between the HOES
n-n cross section, free of any Coulomb effect, and both the
OES n-n and nuclear p-p counterparts. However, the striking
result is that the HOES p-p cross section is closely reproducing
the behavior of the THM data within the entire Epp range
investigated.

In conclusion, through a mechanism that differs from that
of nuclear rearrangement reactions, the present work strongly
sustains the THM basic feature, namely the suppression of
Coulomb effects in the two-body cross section at sub-Coulomb
energies. This appears to be a universal effect whether we
consider binary elastic or rearrangement processes. This result
puts on firmer grounds the applicability of the THM in
nuclear astrophysics as well as in all physics contexts where
it can be important to investigate nuclear effects at low
energies. Moreover, another issue has been readdressed with
the agreement between the energy behavior of the HOES

p-n cross section and that of the OES n-n and nuclear
p-p ones, namely the lack of off-energy-shell effects other
than the Coulomb suppression. It should be possible, for
example, to extract the low-energy behavior of the n-n and
n-p forces from the study of the QF n + d → n + n + p

and p + d → p + n + p reactions, respectively.
However, other questions have to be answered when

applying the THM. In particular, when dealing with the indirect
study of light heavy-ion resonant reactions at sub-Coulomb
energies [53,54], it is important to determine the contribution
of the different partial waves to the OES and HOES cross
sections. As known, direct measurements at lower energies
are extremely difficult because of the high Coulomb barrier.
Moreover, light heavy-ion reactions proceed through resonant
structures even at low energies, due to the high level density
in the excitation energy region of their compound nuclei. This
complicates the extrapolation procedure from available data to
very low energies. The THM offers a valid alternative path to
obtain this information, but the angular distribution analysis
of the fragments is needed to get the OES S(E) factor from
the THM data. For direct rearrangement reactions with large
Q values, both OES and HOES cross sections have practically
identical shapes because they are contributed dominantly by
the s wave [4]. For the elastic Coulomb-modified nuclear
scattering at sub-Coulomb energies, the fast decrease of the
scattering phase shifts for l > 0 makes sure that only the s wave
strongly contributes to the HOES and OES nuclear scattering
cross sections. This is in agreement with the present results.
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[27] -D. Miljanić et al., Phys. Lett. B50, 330 (1974).
[28] J. Kasagi et al., Nucl. Phys. A239, 233 (1975).
[29] I. Slaus et al., Nucl. Phys. A286, 67 (1977).
[30] N. Arena et al., Nuovo Cimento Soc. Ital. Fis., A 45, 405

(1978).

064001-11



A. TUMINO et al. PHYSICAL REVIEW C 78, 064001 (2008)

[31] M. Lattuada et al., Nuovo Cimento Soc. Ital. Fis., A 62, 165
(1981).

[32] M. Lattuada et al., Nuovo Cimento Soc. Ital. Fis., A 69, 1 (1982).
[33] M. Lattuada et al., Nucl. Phys. A458, 493 (1986).
[34] M. Lattuada et al., Z. Phys. A 330, 183 (1986).
[35] M. Zadro et al., Z. Phys. A 325, 119 (1986).
[36] M. Zadro et al., Nucl. Phys. A 474, 373 (1987).
[37] M. Zadro, D. Miljanic, C. Spitaleri, G. Calvi, M. Lattuada, and

F. Riggi, Phys. Rev. C 40, 181 (1989).
[38] S. Blagus et al., Z. Phys. A 337, 297 (1990).
[39] G. Calvi, M. Lattuada, D. Miljanic, F. Riggi, C. Spitaleri, and

M. Zadro, Phys. Rev. C 41, 1848 (1990).
[40] I. S. Shapiro, Proceedings of the XXXVIII International School of

Physics “Enrico Fermi” (Academic Press, New York/London,
1967), p. 210.

[41] A. M. Mukhamedzhanov et al., Eur. Phys. J. A 27, 205 (2006).
[42] A. Tumino et al., Eur. Phys. J. A 27, 243 (2005).
[43] H. van Haeringen and R. van Wageningen, J. Math. Phys. 16,

1441 (1975).

[44] M. C. Goldberger and K. M. Watson, Collision Theory (Wiley,
New York, 1964), p. 540.

[45] K. M. Watson, Phys. Rev. 88, 1163 (1952).
[46] D. J. Margazioties et al., Phys. Rev. C 2, 2050 (1970).
[47] S. Barbarino, M. Lattuada, F. Riggi, C. Spitaleri, and

D. Vinciguerra, Phys. Rev. C 21, 1104 (1980).
[48] R. G. Pizzone et al., Phys. Rev. C 71, 058801 (2005).
[49] E. O. Alt and M. Rauh, Phys. Rev. C 49, R2285

(1994).
[50] G. A. Miller et al., Phys. Rep. 194, 1 (1990).
[51] G. Baur and H. Rebel, Annu. Rev. Nucl. Part. Sci. 46, 321

(1996).
[52] L. P. Kok, Phys. Rev. Lett. 45, 427 (1980).
[53] M. La Cognata et al., Phys. Rev. C 76, 065804

(2007).
[54] M. L. Sergi et al., OMEG07, the 10th International Symposium

on Origin of Matter and Evolution of Galaxies: From the Dawn
of Universe to the Formation of Solar System, AIP Conference
proceedings, 1016 (2008), p. 433.

064001-12


