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Cluster formation in compact stars: Relativistic versus Skyrme nuclear models
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We present various properties of nuclear and compact-star matter, comparing the predictions from two kinds
of phenomenological approaches: relativistic models (with both constant and density-dependent couplings) and
nonrelativistic Skyrme-type interactions. We mainly focus on the liquid-gas instabilities that occur at subsaturation
densities, leading to the decomposition of the homogeneous matter into a clusterized phase. Such study is related
to the description of neutron-star crust (at zero temperature) and supernova dynamics (at finite temperature).
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I. INTRODUCTION

The knowledge of the equation of state (EOS) of nuclear
matter under exotic conditions is essential to our understanding
of the nuclear force and for astrophysical applications. This
implies high isospin asymmetries, finite temperatures, and a
wide density range (both for subsaturation and suprasaturation
densities). The next generation of observational and experi-
mental data is expected to bring new constraints in order to
refine the theoretical models; for instance, the forthcoming
radioactive-ion-beam facilities (such as the Facility for An-
tiproton and Ion Research (FAIR) at GSI and SPIRAL2 at
GANIL) will allow the investigation of the isospin degree of
freedom in nuclear structure and dynamics.

The present work is dedicated to the predictions of different
effective nuclear models. It is mainly focused on the liquid-gas
instabilities present in nuclear and stellar matter at subsatura-
tion density. These instabilities are directly related to the bulk
EOS. They are used to explain the multifragmentation phe-
nomenon occurring in collisions around the Fermi energy [1]:
in the spinodal decomposition scenario, fragment formation is
induced by the fast development of spinodal instabilities in the
low-density expanding matter formed just after the collision
[2]. Finite-size liquid-gas instabilities are also important
for compact-star physics: matter nonhomogeneities in the
(hot) core of type II supernovae are expected to affect the
dynamics of the explosion, and the crust of (cold) neutron
stars contains a nonhomogeneous phase commonly named
the pasta phase [3–5]. It should be noticed that the study of
liquid-gas instabilities is complementary to the equilibrium
approaches that are also used to describe the clusterized
stellar matter, namely (at very low density) the virial equation
of state [6] and (at higher density) the calculation of the
pasta phases as the ground state shaped by the competition
between Coulomb repulsion and surface tension. Although
nuclear equilibrium is expected to be reached in most stellar
conditions, the spinodal-instability properties should help us to
understand the physics of compact stars in the following ways:
(i) giving an estimation of clusterized-matter properties, such
as cluster size and composition, (ii) showing the minimal
region where the equilibrated matter must be formed of

clusters, and (iii) possibly playing a direct role in cluster
formation for specific situations involving very short time
scales (as may happen during a supernova explosion).

In this paper, we compare predictions from two kinds
of models based on phenomenological density functionals:
relativistic and nonrelativistic. Both are commonly used to
describe asymmetric nuclear matter in the framework of exotic
nuclei as well as compact stars. However, it is well known
that although all give a quite good description of stable
nuclei (consistent with the constraints included in the fitting
procedures), they present different behaviors as soon as exotic
conditions are reached, especially in the isovector channel.
Our scope is to explore the impact of these different behaviors
on quantities of interest for compact-star physics, such as
the clusterization properties and the matter composition at
β equilibrium.

As a nonrelativistic approach, we use the effective density-
dependent Skyrme-type interaction [7–9]. The simple form of
the Skyrme functional makes it an attractive model for the
description of both nuclei and compact-star matter. It was
originally intended to describe nuclear properties through the
mass table, and the older parametrizations only include in
their fits constraints from magic-nucleus properties along the
stability line. Trying to give a reliable description of exotic
nuclei and stellar matter, the modern Skyrme parametrizations
also include in their fitting procedures results from microscopic
calculations of neutron-rich matter. The Skyrme-Lyon (SLy)
forces, for instance, have been used in studies of neutron-star
crust [10,11]. Such parametrizations are among the 27 forces
that were not ruled out for unfit neutron-star properties in the
extensive study by J. R. Stone et al. [12], where 87 Skyrme
parametrizations were checked.

In contrast with the Skyrme approach, the relativistic
nuclear models are, by construction, causal and can thus be
applied to a wider region of the compact stars (as long as
matter is supposed to be in a hadronic phase). Relativistic
mean-field (RMF) models have been used to describe the EOS
of compact stars [13–15], both cold and warm. The density-
dependent hadronic (DDH) models are an alternative approach
to the description of nuclear matter and finite nuclei [16]. In
DDH models, the nonlinear self-interactions of the mesons
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occurring in constant coupling models are substituted by
density-dependent meson-nucleon coupling parameters, moti-
vated by Dirac-Brueckner calculations of nuclear matter. Such
models are found to behave more closely to the nonrelativistic
ones.

Relativistic and Skyrme approaches have been compared
from the formal point of view in a recent work [17], where
low-density expansions of the RMF and DDH models have
been used to directly compare the different density functionals.
Both kinds of models have been used separately in several
previous works for the study of spinodal instabilities in
nuclear and compact-star matter, at zero and finite temperature;
see, for instance, Refs. [18–22] for relativistic models and
Refs. [23–25] for Skyrme models. The same qualitative
features are reproduced (general shape of the instability
regions, isospin-distillation property of the phase separation).
The scope of the present paper is then to have a direct look at the
quantitative differences between relativistic and Skyrme model
predictions. We wish to investigate the extent to which the
different temperature and isospin dependences of the nuclear
EOS can affect the neutron-star properties and determine the
sensitive features that have to be constrained.

In Sec. II, we briefly review the relativistic and Skyrme
models used in the present work. In Sec. III, we present
the Vlasov formalism that we use to address the dynamic
instabilities, in both frameworks. Nuclear-matter properties
are discussed for the different models in Sec. IV, where we
present the nuclear EOS (in isoscalar and isovector channels)
as well as the spinodal instabilities (in both thermodynamic and
dynamic frameworks). Properties of stellar matter, including
homogeneous β-equilibrium matter and instabilities against
clusterization, are discussed in Sec. V. In the last section, we
draw the main conclusions from our work.

II. EFFECTIVE NUCLEAR MODELS

In this section, we will give a short presentation of the
models discussed in the present paper. All expressions are
given in units h̄ = c = 1. We will consider first the density
functionals based on Skyrme forces, then the RMF and DDH
models. The nuclear matter saturation properties obtained with
all models used in the present work are reported in Table I.

TABLE I. Nuclear matter properties of the Skyrme and relativistic
models used in this work.

Model B/A ρ0 K m∗/m as(ρ0) L(ρ0) Ksym(ρ0)
(MeV) (fm−3) (MeV) (MeV) (MeV) (MeV)

SIII [26] 15.9 0.145 356 0.76 28.2 9.9 −394
SGII [27] 15.6 0.159 215 0.79 26.9 37.6 −146
SLy230a [28] 16.0 0.16 230 0.70 32.0 44.3 −98
NRAPR [29] 15.9 0.16 226 0.70 32.8 59.6 −123
LNS [30] 15.3 0.175 211 0.83 33.4 61.5 −127
NL3 [31] 16.3 0.148 272 0.60 37.4 118.3 101
NLδ [32] 16.0 0.160 240 0.75 30.5 102.7 127
TW [33] 16.3 0.153 240 0.56 32.0 55.3 −125
DD-ME2 [34] 16.1 0.152 251 0.57 32.3 51.7 −88
DDHδ [35] 16.3 0.153 240 0.56 25.1 48.6 81

A. Skyrme functional

The local Skyrme interaction [8] allows us to introduce an
energy density H(r) so that the total energy for a system of
nucleons in a Slater determinant |ψ〉 reads

〈ψ |Ĥ |ψ〉 =
∫

H(r) d3r, (1)

where H(r) is the Skyrme energy-density functional.
In the case of homogeneous, spin-saturated matter with no

Coulomb interaction, the Skyrme energy-density functional
[28] reduces to four terms:

Hb = K + H0 + H3 + Heff, (2)

where the label b (bulk) is used to mark the thermodynamic
framework. In this expression,K is the kinetic-energy term,H0

a density-independent two-body term,H3 a density-dependent
term, and Heff a momentum-dependent term:

K = τ

2m
, (3)

H0 = C0ρ
2 + D0ρ

2
3 , (4)

H3 = C3ρ
σ+2 + D3ρ

σ ρ2
3 , (5)

Heff = Ceffρτ + Deffρ3τ3. (6)

We have introduced the isoscalar and isovector particle
densities, ρ and ρ3, as well as kinetic densities, τ and τ3:

ρ = ρn + ρp, τ = τn + τp,

ρ3 = ρn − ρp, τ3 = τn − τp,
(7)

where, denoting i the third component of the isospin (n for
neutrons and p for protons), the kinetic densities are defined by
τi = 〈k̂2〉i . The coefficients C and D, associated, respectively,
with the symmetry and asymmetry contributions, are linear
combinations of the traditional Skyrme parameters:

C0 = 3t0/8,

D0 = −t0(2x0 + 1)/8,

C3 = t3/16,
(8)

D3 = −t3(2x3 + 1)/48,

Ceff = [3t1 + t2(4x2 + 5)]/16,

Deff = [t2(2x2 + 1) − t1(2x1 + 1)]/16.

In the mean-field approach, the individual particle level is
derived from this functional. For each particle species, it is
given by

ĥb
i = mi + ∂Hb

∂ρi

+ ∂Hb

∂τi

k̂2
i (9)

= mi + Ui + 1

2m∗
i

k̂2
i , (10)

where we have included the nuclear mass energy m. The kinetic
energy is expressed in the nonrelativistic limit, in terms of an
effective mass m∗

i defined by

1

2m∗
i

= 1

2mi

+ ∂Heff

∂τi

. (11)
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The chemical potentials µi are such that the Fermi-Dirac
occupation number is

ni(k) = [
1 + e

β( k2

2m∗
i
+Ui−µi )]−1

; (12)

we can also define a chemical potential µt
i = µi + mi includ-

ing the mass energy, such that

ni(k) = [
1 + e

β(mi+ k2

2m∗
i
+Ui−µt

i )]−1
. (13)

In this work, we will use conventional and modern Skyrme
interactions. The earlier parametrizations, such as SIII [26] and
SGII [27], were established by fitting the properties of stable
nuclei (such as radii and ground-state energy). They are thus
in principle poorly adapted to a description of neutron-rich
matter. It is indeed found that SIII presents an unrealistic
behavior in the isovector channel; furthermore, it has a too high
incompressibility at saturation. As a result, this interaction
will present an atypical behavior all through the following
study. SGII, however, for which spin properties have also
been used as constraints, presents a more reasonable evolution
in the isovector channel. In particular, it has been shown to
reproduce isospin effects in giant dipole resonances [27].
Among the modern Skyrme-type parametrizations, we have
chosen to use one of the Skyrme-Lyon forces (SLy230a [28]),
as well as the NRAPR [29] and LNS [30] parametrizations.
All these recent forces include in their fitting procedure results
from microscopic calculations. SLy230a uses the pure-neutron
matter equation of state UV14+UVII by R. B. Wiringa et al.
[36]. NRAPR (nonrelativistic APR) stands for the Skyrme
interaction parameters obtained from a fitting to the Akmal-
Pandharipande-Ravenhall (APR) equation of state [37]. LNS
is based on Brueckner-Hartree-Fock calculations of infinite
nuclear matter at different values of isospin asymmetry. Such
constraints from microscopic calculations are intended to
control the behavior of the resulting effective force far from
saturation and up to high isospin asymmetry.

B. Relativistic approaches

In the present paper, we will consider two kinds of
relativistic effective approaches: RMF models, which have
constant coupling parameters described by the Lagrangian
density of nonlinear Walecka models (NLWM), and DDH
models with density-dependent coupling parameters. In each
case, we consider models that do and do not include the δ

meson, which have been introduced to include in the isovector
channel the same symmetry existing already in the isoscalar
channel with the meson pair (σ, ω) responsible for saturation
in RMF models [32]. The presence of the δ meson softens
the symmetry energy at subsaturation densities and hardens it
above saturation density. The RMF parametrizations we use
are NL3 [31] and NLδ [32]; the DDH ones are TW [33],
DD-ME2 [34], and DDHδ [35]. Only NLδ and DDHδ include
the δ meson.

The relativistic approach is based on a Lagrangian density
given by

L =
∑
i=p,n

Li +Lσ+Lω+Lρ + Lδ. (14)

The nucleon Lagrangians read

Li = ψ̄i[γµiDµ − M∗]ψi, (15)

with

iDµ = i∂µ − 
vV
µ − 
ρ

2
�τ · �bµ, (16)

M∗ = m − 
sφ − 
δ �τ · �δ, (17)

where �τ is the isospin operator. We use the vector symbol to
designate a vector in isospin space.

The isoscalar part is associated with the scalar σ field φ and
the vector ω field Vµ, while the isospin dependence comes from
the isovector-scalar δ field δi and the isovector-vector ρ field
bi

µ (where µ is a space-time index and i an isospin-direction
index). The associated Lagrangians are

Lσ = +1

2

(
∂µφ∂µφ − m2

sφ
2
) − 1

3!
κφ3 − 1

4!
λφ4,

Lω = −1

4
�µν�

µν + 1

2
m2

vVµV µ,

Lδ = +1

2

(
∂µ

�δ∂µ�δ − m2
δ
�δ2

)
,

Lρ = −1

4
�Bµν · �Bµν + 1

2
m2

ρ
�bµ · �bµ,

where �µν = ∂µVν − ∂νVµ, �Bµν = ∂µ
�bν − ∂ν

�bµ − 
ρ(�bµ ×
�bν), and 
j and mj are, respectively, the coupling parameters of
the mesons j = s, v, δ, ρ with the nucleons and their masses.
The self-interacting terms for the σ meson are included only
for the NL3 and NLδ parametrizations, κ and λ denoting the
corresponding coupling constants.

The density-dependent coupling parameters 
s, 
v , and 
ρ ,
are adjusted in order to reproduce some of the nuclear matter
bulk properties, using the following parametrization:


i(ρ) = 
i(ρsat)fi(x), i = s, v, (18)

with

fi(x) = ai

1 + bi(x + di)2

1 + ci(x + di)2
, (19)

where x = ρ/ρsat and


ρ(ρ) = 
ρ(ρsat) exp[−aρ(x − 1)]. (20)

The values of the parameters mi, 
i, ai, bi, ci , and di, i =
s, v, ρ for TW and DD-ME2 are, respectively, given in
Refs. [33] and [34] and for DDHδ in Refs. [18,35]. In this last
case, the parametrization for the δ and ρ coupling parameters
is also given by Eq. (18) with

fi(x) = ai exp[−bi(x − 1)] − ci(x − di), i = ρ, δ.

The 
i coupling parameters are replaced by the gi coupling
constants in the NL3 and NLδ models.

III. VLASOV FORMALISM

In this paper, we study the dynamic spinodal instabilities
as unstable density fluctuation modes obtained in the Vlasov
framework. The present section gives a short review of the
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Vlasov formalism already introduced in Refs. [20,38,39] and
the resulting expressions for Skyrme and relativistic models.
For simplicity, we consider here nuclear matter for which the
proton electric charge is neutralized on average by a uniform
background. We thus neglect the electron degree of freedom
existing in star matter, which is model-independent and has
only a perturbative effect.

A. Brief review

To describe the time evolution of the nuclear system,
we introduce the one-body phase-space distribution function
in isospin space: f (r, k, t) = diag(fp, fn), and the corre-
sponding one-body Hamiltonian h = diag(hp, hn). The time
evolution of the distribution function is described by the
Vlasov equation:

∂fi

∂t
+ {fi, hi} = 0, i = p, n, (21)

where {, } denotes the Poisson brackets. At zero temperature,
the state that minimizes the energy of asymmetric nuclear mat-
ter is characterized by the Fermi momenta kFi, i = p, n, and is
described by the distribution function f0(k) = diag[�(k2

Fp −
k2),�(k2

Fn − k2)]. To describe small oscillations around the
equilibrium state, we take for the distribution functions fi =
f0i + δfi and introduce a generating function [38]S(r, k, t) =
diag(Sp, Sn) defined in isospin space such that δfi = {Si, f0i}.
In terms of the generating function, the linearized Vlasov
equations for δfi are equivalent to the following time evolution
equations:

∂Si

∂t
+ {Si, h0i} = (δhi)F , (22)

where (δhi)F is the mean-field variation at Fermi level, which
depends on the considered nuclear model.

We will consider the longitudinal fluctuations such that

( Si ; δρi ; δhi ) = ( Sω,i(x); δρω,i ; δhω,i )ei(q·r−ωt), (23)

where x = cos(k, q). The longitudinal normal modes are
obtained substituting the ansatz (23) in the linearized equations
of motion. The dispersion relation takes the form(

1 + FppLp FpnLp

FnpLn 1 + FnnLn

)(
Aωp

Aωn

)
= 0, (24)

where Li = L(si) = 2 − si ln[(si + 1)/(si − 1)] is the Lind-
hard function, with si = ω/(qvFi) in terms of the Fermi
velocity vFi = ∂εFi/∂kFi .

The amplitudes Aωi = ∫ 1
−1 xSωi(x)dx are related to the

transition densities by

δρi = ωN0i

2 si

Aωi,

where N0i is the density of states at the Fermi surface. With
all models, the coefficients F ij appearing in Eq. (24) can be
expressed in terms of two quantities related to the nuclear

residual interaction, U (1)
ij and U (2)

ij , defined by

(δhi)F =
∑

j

[
U (1)

ij + x U (2)
ij

]
δρj . (25)

In this expression, we separate the x-dependent contribution
of the residual interaction x U (2)

ij from the x-independent one

U (1)
ij . On the other hand, Eq. (22) provides the relation

(δhi)F = −iωSi(x) [1 − x/si] . (26)

From Eqs. (25) and (26), we obtain the set of Vlasov equations:

2

N0i

δρi + Li

∑
j

[
U (1)

ij + siU (2)
ij

]
δρj = 0 , (27)

which is equivalent to Eq. (24) with the following identifica-
tion:

F ij = N0j

2

si

sj

(
U (1)

ij + si U (2)
ij

)
. (28)

The model dependence of the Vlasov equations is then
contained in the coefficients U (1,2)

ij that we introduced; next,
more details will be given for both Skyrme and relativistic
models.

Let us note that the instabilities of the system are determined
from the imaginary frequencies which satisfy the dispersion
relation [39]. The finite-size instability region is the envelope
of all the dynamic spinodals corresponding to different values
of the transferred momentum q. For simplicity, throughout this
work we will identify this domain with the dynamic spinodal
for q = 80 MeV, which is a very good approximation for all
the models under study.

B. Vlasov approach with Skyrme models

We identify three contributions to the mean-field variation
δhi : the bulk b, surface ∇, and Coulomb c terms, such that

δhi = δhb
i + δh∇

i + δhc
i . (29)

The bulk term is

δhb
i = δ

[
Ui + k2

2m∗
i

]
(30)

=
∑

j

[
∂2H

∂ρj∂ρi

+ ∂2H
∂τj ∂ρi

(
δτj

δρi

+ k2

)]
δρj . (31)

At zero temperature, we have δτj /δρj = k2
Fj , and taking the

value at Fermi level we get

(
δhb

i

)
F

=
∑

j

[
∂2H

∂ρj∂ρi

+ ∂2H
∂τj ∂ρi

(
k2
Fj + k2

Fi

)]
δρj . (32)

The surface term arises from the density-gradient depen-
dence in the Skyrme Hamiltonian density:

H∇ = C∇
nn(∇ρn)2 + C∇

pp(∇ρp)2 + 2C∇
np(∇ρn∇ρp)

= C∇
11(∇ρ)2 + C∇

33(∇ρ3)2, (33)

where the coefficients C∇ are combinations of the usual
Skyrme parameters (given in Ref. [40]), independent of
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neutron and proton densities. A transferred momentum q then
induces the nuclear mean-field variation

δh∇
i = 2q2

∑
j

C∇
ij δρj . (34)

Let us finally consider the Coulomb mean-field variation. In
the nonrelativistic limit, for nucleons with effective mass m∗

i ,
we have

δ
(
hc

i

)
F

=
∑

j

[
4πeiej

q2

1 − xv∗
Fi ω/q

1 − ω2/q2

]
δρj , (35)

where v∗
Fi = k2

Fi/m∗
i ; en = 0; ep = e = qe/

√
4πε0. Only the

Coulomb term brings an x dependence in δhi .
From the above expressions, we identify

U (1)
ij =

(
∂2H

∂ρj∂ρi

+ ∂2H
∂τj ∂ρi

(
k2
Fj + k2

Fi

))

+ (
2q2C∇

ij

) +
(

4πeiej

q2

1

1 − ω2/q2

)
, (36)

U (2)
ij = −4πeiej

q2

v∗
Fi ω/q

1 − ω2/q2
. (37)

C. Vlasov approach with relativistic models

For relativistic models, the one-body Hamiltonian is written
in terms of the meson fields

hi =
√

(k − V i)2 + m∗2
i + V0i , i = p, n,

where m∗
i = m − 
sφ0 − τi
δδ3 denotes the effective mass of

nucleon i, and

V0i = 
vV0 + 
ρ

2
τib0 + eA0

1 + τi

2
+ �R

0 ,

V i = 
vV + 
ρ

2
τi b + eA

1 + τi

2
,

with τi = 1(−1) for protons (neutrons). The contribution of
the rearrangement term, due to the density dependence of the
coupling parameters 
i , is given by

�R
0 = ∂
v

∂ρ
ρV0 + ∂
ρ

∂ρ
ρ3

b0

2
− ∂
s

∂ρ
ρsφ0 − ∂
δ

∂ρ
ρs3δ3.

The variations of the one-body Hamiltonian that enter the
linearized Vlasov equations are

δhi = δ(m∗
i − m)

m∗
i

εi0
+ δV0i − p · δV i

εi0
, (38)

with

h0i =
√

k2 + m∗
i

2 + V (0)
0i = εi0 + V (0)

0i ,

and δ(m∗
i − m) = −(
sδφ + δ
sφ0 + τi
δ δδ3 + τiδ3δ
δ).

The x dependence of δhi is present through the contribution
of the spatial components of the vector fields: the ω and ρ

mesons and the electromagnetic field.
Using the linearized equations of the fields, we express the

field variations in terms of the proton and neutron particle
densities and scalar densities [39] and reduce δhi to an
expression similar to Eq. (25). The coefficients F ij have been

defined in Refs. [20,22]. The nuclear-energy dependence on
the transferred momentum involves the different meson masses
and is more complex than the Skyrme quadratic expression.
This point will be discussed in more detail in Sec. IV D.

IV. NUCLEAR MATTER PROPERTIES

In this section, we will compare the nuclear matter proper-
ties predicted by all the models under study. We will consider
first the isoscalar properties of the EOS, then the isovector
ones. The spinodal instabilities will also be analyzed: we will
address the thermodynamic instability region and direction
of phase separation, and finally the clusterization properties
within the Vlasov approach.

A. Symmetric nuclear matter

In Fig. 1, we show some bulk isoscalar properties of nuclear
matter as a function of the baryonic density, namely, the
energy per nucleon [Figs. 1(a) and 1(d)], the pressure P =
ρ2∂(E/A)/∂ρ [Figs. 1(b) and 1(e)], and the incompressibility
K = 9∂P/∂ρ [Figs. 1(c) and 1(f)]. Curves are shown for
Skyrme interactions [Figs. 1(a)–1(c)] and relativistic models
[Figs. 1(d)–1(f)]. Skyrme interactions show similar behaviors
between them, except for SIII (stiffer) and LNS (softer).

Globally, the relativistic models present slightly higher
binding energies, lower saturation densities, higher incom-
pressibilities (disregarding SIII), and lower effective masses;
however, we can note that NLδ presents isoscalar saturation
properties quite similar to the Skyrme ones. Let us remember
that the effective mass has a different meaning in each
framework, as was already stressed in other works [17,41]: in
relativistic models, it includes the contribution of the nucleon
scalar self-energy, while for the Skyrme interactions it reflects
the momentum dependence of the single-particle energy.

B. Asymmetric nuclear matter

We will now discuss properties of asymmetric nuclear
matter (ANM). In Fig. 2, we show some properties related to
the isovector channel of the respective models. As expected,
larger differences are observed in this channel; not only
between relativistic and Skyrme models, but also between
different parametrizations inside each framework. We plot the
symmetry energy

as = 1

2

∂2(E/A)

∂y2
= 1

2ρ

∂2(E/V )

∂y2
,

with y = (ρn − ρp)/(ρn + ρp) = ρ3/ρ. Note that this defini-
tion can be generalized at finite temperature: denoting F the
free-energy density, it becomes

as = 1

2ρ

∂2F
∂y2

.

Figure 2 also represents quantities related to the first [Figs. 2(b)
and 2(e)] and second [Figs. 2(c) and 2(f)] density derivatives
of the symmetry energy (respectively denoted by a′

s = ∂as/∂ρ
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FIG. 1. (Color online) Bulk isoscalar properties of nuclear matter, as a function of the baryonic density for nonrelativistic (a)–(c) and
relativistic (d)–(f) models. From top to bottom: energy per nucleon, pressure, and incompressibility.

and a′′
s = ∂2as/∂ρ

2), according to expressions of common
use in the literature [42]: the slope parameter L = 3ρ0a

′
s

related to the symmetry pressure at saturation, and symmetry
incompressibility Ksym = 9ρ2

0a′′
s .

Among the Skyrme forces, the modern parametrizations
(SLy230a, NRAPR, and LNS) show similar values of the
symmetry energy in the presented density range. As expected,
the older SIII parametrization presents atypical features; it
even predicts an isospin instability at ρ = 0.325 fm−3, as can

be seen in Fig. 2(a). SGII follows an intermediate behavior. It
is interesting to see that NRAPR and LNS, despite different
symmetric-matter EOS, almost coincide in the isovector chan-
nel. With L values at saturation of the order of 60 MeV, these
two parametrizations get close to the L range estimated from
the most recent experimental constraints (isospin diffusion
and isoscaling data): L = 88 ± 25 MeV [43–45], while the
other three Skyrme parametrizations have too small symmetry-
energy slopes at saturation. The parametrization SLy230a
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FIG. 2. (Color online) Bulk isovector properties of nuclear matter, as a function of the baryonic density for nonrelativistic (a)–(c) and
relativistic (d)–(f) models. From top to bottom: the symmetry energy and its derivatives with respect to the density, namely, the slope parameter
L and the symmetry incompressibility Ksym.

differs from NRAPR and LNS by its sharp increase of the
symmetry energy at suprasaturation densities. In the following,
we will see how these quantities influence the predictions of
the different models for neutron-rich matter.

Among the relativistic parametrizations used that do not
include the δ meson, the larger differences occur between NL3
and the models with density-dependent couplings, TW and

DD-ME2, which have very similar behaviors in the isovector
channel. In particular, NL3 has a very hard symmetry energy,
which increases almost linearly with the density. The inclusion
of the δ meson significantly reduces the symmetry energy at
ρ < ρ0, but it is also associated with a sharp increase of as

at higher densities. Considering the L value at saturation, we
see a clear separation (roughly a factor of 2) between RMF

055801-7
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and DDH models, situated on each border of the interval of
experimental constraints cited above.

It is interesting to see that TW and DD-ME2 (DDH) behave
like NRAPR and LNS (Skyrme) for all isovector properties.
However, all other parametrizations show large differences
affecting the three quantities as, L, and Ksym. The general trend
is that relativistic models have a stiffer symmetry energy, as
well as a larger symmetry incompressibility. For the presented
results, several relativistic models have a region of positive
Ksym, while SLy230a is the only Skyrme parametrization
to present such a feature. In the following, we will try
to investigate the extent to which the β-equilibrium and
clusterization properties are affected by these differences.

Let us finally investigate the validity of the parabolic
approximation of the isovector EOS, which is model depen-
dent. In this approximation, we have a direct link between
the symmetry energy and the isovector chemical potential
µ3 = µn − µp, which determines the matter composition
at β equilibrium. Indeed, the parabolic expression of the
free-energy density is

F � Fpara = Fs + ρasy
2, (39)

where Fs = F(ρ, 0) is the free-energy density of symmetric
matter. The corresponding isovector chemical potential is then
proportional to y, as

µ
para
3 = 2

∂Fpara

∂ρ3
= 4asy. (40)

The parabolic approximation is exact in the limit of small
asymmetry and actually gives very good predictions for F
until y = 1. However, more significant differences may be
obtained for the ρ3 derivative leading to µ3. This behavior
is shown in Fig. 3, representing both the exact value µ3 =
2∂F/∂ρ3 and the ratio µ3/µ

para
3 . For this, we have fixed two

values of the baryonic density, ρ = 0.05 and 0.3 fm−3. At

low densities, we mostly confirm the validity of the parabolic
approach; more significant differences are observed at high
density. The dominant trend is to have µ3 > µ

para
3 , due to the

kinetic contribution to the symmetry energy; only the SLy230a
and DDHδ show the opposite behavior, at high density.

C. Thermodynamic spinodal instability

The liquid-gas phase transition is a well-known feature of
the nuclear matter EOS. It corresponds to the presence of
an abnormal (negative) curvature of the free-energy density
F as a function of (ρn, ρp), or equivalently (ρ, ρ3). The
thermodynamic spinodal instability corresponds to the region
where the homogeneous matter is locally unstable against the
separation in two infinite homogeneous phases, meaning that
the surface F(ρ, ρ3) presents a local negative curvature. This
bulk property of nuclear matter is at the origin of the dynamic
instabilities leading to matter clusterization. We will consider
next the thermodynamic spinodal properties.

1. Thermodynamic spinodal region

The spinodal contour is defined by the cancellation of the
determinant of the free-energy curvature matrix:

C =
(
F11 F13

F31 F33

)
, (41)

Fij = ∂2F
∂ρi∂ρj

, (42)

where ρ1 = ρ. Inside the spinodal region, the lower eigenvalue
C< of this matrix is negative.

The different spinodal contours are shown on Fig. 4,
using two different representations: the density plane (ρn, ρp)
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[Figs. 4(a) and 4(c)] and the mixed plane (ρ,µ3) [Figs. 4(b)
and 4(d)] where isovector differences appear more clearly.
Although the overall features are similar, the trend is that
relativistic models predict a smaller instability region, both in
isoscalar and isovector directions. The isoscalar extension of
the spinodal is measured by the density ρs , corresponding to
the upper spinodal border for symmetric matter. The different
ρs values are reported in Table II; we can verify that they are
correlated with the ρ0 values. As for the isovector behavior

TABLE II. Characterization of the spinodal shape by the contour
concavity C̃s , depending on the symmetry energy and its density
derivatives taken at the upper spinodal border of symmetric matter
(ρ = ρs).

Model ρ0

(fm−3)
ρs

(fm−3)
as

(MeV)
ρsa

′
s

(MeV)
ρ2

s a
′′
s

(MeV)
C̃s

(MeV fm3)

SIII 0.145 0.098 24.73 12.06 −20.96 −175.72
SGII 0.159 0.100 21.06 12.41 −9.33 17.15
SLy230a 0.160 0.102 25.73 13.21 −9.70 61.60
NRAPR 0.161 0.103 24.60 16.50 −8.24 51.22
LNS 0.175 0.111 24.89 16.92 −8.28 46.27
NL3 0.148 0.096 24.04 23.40 2.86 85.98
NLδ 0.160 0.102 19.06 18.93 3.87 81.33
TW 0.153 0.096 24.71 15.95 −9.91 29.10
DDME2 0.152 0.099 25.57 15.00 −10.92 29.98
DDHδ 0.153 0.096 19.80 10.38 −6.03 80.25

of the spinodal contour, we see that it reaches very high
asymmetries with all models. We can, however, compare
the different extensions obtained in the µ3 direction. They
are found to reflect the subsaturation-density behavior of
the symmetry energy: indeed, as discussed above, in this
density range the isovector chemical potential can be well
approximated by µ3 � 4asy. For instance, NLδ has the
smallest as values at low density, and therefore presents the
narrowest spinodal contour in the µ3 direction. We recall that
the inclusion of the δ meson leads to a reduction of as , which
is observed both with NLδ and DDHδ. The µ3 extension
of the spinodal contour is a feature especially relevant in
the astrophysical context, for the comparison between the
instability region and the constraint of β equilibrium; this point
will be addressed in more detail in Sec. V. Let us now consider
the shape of the spinodal contour: the differences we observe
can be characterized by the convexity of the upper border.
Therefore, we introduced the quantity C̃s (hereafter called
contour concavity), defined as the convexity of the spinodal
contour at point (ρ = ρs, y = 0) [40]:

C̃s = ∂2C<(ρs, 0)

∂y2

= 2

ρs

[
ρ2

s a
′′
s + 2ρsa

′
s(1 − ρsa

′
s/as)

]
. (43)

If C̃s is positive (negative), for a small asymmetry y, the
point (ρs, y) is outside (inside) the spinodal, meaning a
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concave (convex) contour. Equation (43) gives the relation
between C̃s and the density behavior of the symmetry energy,
involving as, a

′
s , and a′′

s (ρ). None of the terms constituting
this expression dominates, as can be appreciated in Table II:
the symmetry energy, but also its first and second derivatives
come into play to determine the contour concavity. Positive
C̃s values are obtained with all the present models except
SIII, whose convex shape is due to the large negative values
of a′′

s (ρs). Concerning the relativistic models, the models
with constant couplings (NL3 and NLδ) have larger a′

s and
positive a′′

s (ρ), giving rise to larger C̃s values. We can note
that the contour concavity is a relevant property for the
study of nonhomogeneities in star matter, since it determines
the sensitivity of the upper spinodal border to the specific
composition that will be imposed by the β equilibrium.

2. Thermodynamic instability direction

The thermodynamic instability direction is the direction
of minimal free-energy curvature, given by the eigenvector of
matrix (41) associated with C<. It is related to the phenomenon
of isospin distillation, which usually leads to the formation of
a dense phase more symmetric than the dilute one. We express
this direction as the ratio δρ3/δρ, giving the deviation with
respect to the isoscalar direction. The eigenvector (δρ, δρ3)<
satisfies

δρ3

δρ
= C< − F11

F13
. (44)

This ratio is zero in the case of symmetric matter, where the
instability direction is purely isoscalar. For extremal asym-
metry y = ±1, it obeys the limit conditions δρ3/δρ = ±1,

which constrains the behavior of δρ3/δρ(y) at high asymmetry.
However, for moderate values of asymmetry, the evolution
of the instability direction is nearly linear with respect to y,
as illustrated in Fig. 5. In this region, the isospin-distillation
properties of the different effective forces can be characterized
by a number d̃ such that

δρ3

δρ
= d̃y + O(y3), (45)

d̃ = as − ρa′
s

as − ρF ′′
s /2

. (46)

In Fig. 6, we show the density evolution of δρ3/δρ at a fixed
proton fraction Yp = 0.3, corresponding to the asymmetry y =
ρ3/ρ = 0.4. Note that this reflects the d̃ values according to the
good approximation d̃ � (δρ3/δρ)/y. For all models, δρ3/δρ

is lower than y = 0.4: this is the normal distillation effect.
It is seen that the relativistic models with constant coupling,
independent of whether they contain the δ meson, predict a
much larger distillation effect (smaller ratio δρ3/δρ); this is due
to the quasilinear behavior of as(ρ) [see Figs. 5(c) and 5(d)],
which leads to low values of d̃. In contrast, the DDH models
behave like the Skyrme forces: both show a reduction of the
distillation effect with density, while NL3 and NLδ present the
opposite behavior (which was also noticed in Refs. [19,46]).

D. Dynamic spinodal instabilities

The bulk liquid-gas instability properties we have discussed
do not manifest themselves directly in nuclear multifrag-
mentation and compact-star matter because of the role of
the Coulomb interaction and the surface tension. However,
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they induce instabilities against finite-size density fluctuations,
leading to the decomposition of the homogeneous matter
into a clusterized medium [47]. We now use the formalism
presented in Sec. III to study the Vlasov unstable modes,
considering plane-wave density fluctuations of wave-number
q. The dispersion relation is defined by Eq. (24), with ω =
i/τ ; τ is the time constant which characterizes the initial
growth of the density fluctuation.

In Fig. 7, we compare the unstable modes obtained
within the different models for fixed average densities
(ρ = 0.05 fm−3, Yp = 0.3), as a function of the wave number.
The top figures represent the growth rate |ω| = 1/τ , and the
bottom ones the direction of the mode in the density plane
given by δρ3/δρ.

Considering the top part of Fig. 7, we first see that
relativistic models are usually characterized by a reduced

instability. To the noticeable exception of NLδ, both the growth
rate and the upper border of the unstable q interval are smaller
within the relativistic models. The bottom part of Fig. 7
gives the phase-separation direction δρ3/δρ associated with
the dynamic modes. All curves decrease with q because of the
Coulomb effect: at low q, the strong Coulomb contribution
quenches the proton-density fluctuation, imposing large values
of δρ3/δρ. This leads to the so-called antidistillation effect
corresponding to δρ3/δρ > ρ3/ρ, namely, a dense phase more
neutron-rich than the homogeneous matter: it is obtained
here below q ∼ 30 MeV/c. For higher q values, we recover
the normal distillation effect with all the models. Comparing
the present dynamic results with the bulk instability direction
(Fig. 6), we see that the behavior of the relativistic models
deserves a comment. Although NL3 remains the model
with the strongest distillation effects, the hierarchy of the
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other curves is widely rearranged when dynamic instabil-
ities are considered: the weaker distillation effect is now
obtained with models including the δ meson, both NLδ and
DDHδ.

Let us now study the most unstable mode, namely, the mode
of largest growth rate, which drives the system to the nonhomo-
geneous phase. The associated wave-number characterizes the
size of the primary clusters formed in spinodal decomposition,
which we can define as the half wavelength of the fastest
amplified mode. In Figs. 8(a) and 8(c), we show the growth
rates and in Figs. 8(b) and 8(d), the associated cluster size of the
most unstable modes. We show results for Yp = 0.3, a proton
fraction close to that of β-equilibrium matter with neutrino
trapping and to the asymmetry values that could be involved in
future multifragmentation experiments with radioactive beams
(for instance, 132Sn has Yp = 0.379).

Consistent with the observations of Fig. 7, the Skyrme
parametrizations, as a general rule, predict larger growth rates
and smaller clusters than the relativistic models. The hierarchy
between the different parametrizations is also essentially
conserved: among Skyrme forces, SLy230a gives the largest
clusters and LNS the smallest ones; among the relativistic
models, NLδ predicts particularly small sizes and DD-ME2
gives the largest clusters. Furthermore, we can notice features
appearing with the density evolution. First, going to lower
densities, the Skyrme cluster sizes decrease more neatly than
the relativistic ones. Thus, the minimal cluster sizes obtained
in each framework are of ∼2.5 fm (Skyrme) and ∼4 fm
(relativistic models). Second, larger sizes are reached near
the border of the unstable region (∼8 fm with Skyrme, and
beyond 10 fm with the relativistic models). These features

accentuate the trend in which the relativistic models predict
larger clusters.

The different q dependences originate in the finite-range
part of the nuclear force, which was introduced in Sec. III.
Since the direction of the density fluctuations is essentially
isoscalar, we can characterize the energy cost of the density
gradient by the quantity C∇

11q
2 (for the nuclear contribution).

This quadratic expression is exact for Skyrme models, but
the q dependence is more complex for relativistic models:
performing a Taylor expansion in powers of fi = q2/m2

i (mi

denoting the meson masses), we obtain a density-dependent
C∇

11 coefficient. The values of C∇
11 are listed in Table III; for

relativistic models, they are given at ρ = 0.05 fm−3, together
with the fi values.

The correspondence between C∇
11 and the maximal unstable

momentum qmax is shown in Fig. 9 for symmetric matter,
as a function of density. Neglecting the Coulomb interaction
(whose contribution is vanishing for the q range of interest),
the quadratic expression of the q dependence leads to the
following relation:

q2
max,quad = |C<|

2C∇
11

. (47)

For the relativistic models, both qmax,quad and the exact qmax

values are shown in Fig. 9(d); the exact values are smaller than
the values calculated in the quadratic approximation. The dif-
ferent C∇

11 values are seen to explain the different cluster sizes
obtained between parametrizations of the same framework
(although atypic |C<| values can distort the correspondence
between C∇

11 and the favored q values). However, it is not
sufficient to explain the difference between relativistic and
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TABLE III. Dependence of the nuclear energy on the transferred momentum characterized by the C∇
11

coefficients. These coefficients are constant for Skyrme models. For relativistic models, they are given at
ρ = 0.05 fm−3, together with the corresponding parameters fi = g2

i /m2
i for i = σ, ω, δ, and fρ = g2

ρ/(4 mρ)2.

Skyrme C∇
11 (MeV.fm5) Relativistic C∇

11 (MeV.fm5) fs (fm2) fv (fm2) fρ (fm2) fδ (fm2)

SIII 63.0 NL3 99.2 15.73 10.53 1.34 0
SGII 54.8 NLδ 43.0 10.33 5.42 3.15 2.5
SLy230a 77.7 TW 115.9 18.97 14.64 1.79 0
NRAPR 64.1 DD-ME2 107.7 18.50 13.99 1.94 0
LNS 43.8 DDHδ 115.9 18.97 14.64 4.16 2.96

Skyrme models: indeed, in the relativistic case, the larger
C∇

11 are compensated for by larger |C<|, leading to values of
qmax,quad similar to the Skyrme ones. The larger cluster sizes
predicted by the relativistic models are due to the nonquadratic
part of their q dependence.

V. STELLAR MATTER

In the last section, we discussed nuclear matter properties
in the framework of Skyrme and relativistic models. We
now want to investigate the consequences of the different
features we obtained in the context of compact-star physics. In
the first part, we discuss the EOS of homogeneous matter
at β equilibrium (disregarding the liquid-gas instabilities),
considering the possibility of neutrino trapping. In the second
part, we address the implications of the dynamic instabilities

for compact-star properties: width of neutron-star crusts and
nonhomogeneities in the cores of type II supernovae.

A. Homogeneous β-equilibrium matter

The β-equilibrium conditions impose the following rela-
tions between the chemical potentials of the particles:

µe − µνe
= µn − µp = µ3,

where µνe
= 0 for neutrino-free matter. Muons are present

if they can be in chemical equilibrium with the electrons,
satisfying

µµ − µνµ
= µe − µνe

;

the muon onset thus occurs when

µe − µνe
= mµ.
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models, we compare qmax,quad (thick lines) ob-
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indicated in the top figures by a thin line (DU).

For neutrino-free matter, this condition reduces to µe = µ3 =
mµ, from which we determine the muon onset density ρµ−onset

for the different nuclear models. The corresponding values are
given in Table IV. In most cases, ρµ−onset belongs to the interval
[0.111; 0.118] fm−3; we can notice the higher values obtained
from SGII and the relativistic models with δ meson. This is
a consequence of the symmetry-energy behavior in this range
of densities. A higher symmetry energy increases the proton
fraction at β equilibrium: the electron chemical potential is
then higher, and the muon onset is reached more easily. We
can verify on Fig. 2 that, for ρ ∼ 0.11 fm−3, the symmetry
energy curves have very similar values, except precisely for
SGII and the models with δ meson for which as is smaller.

In Fig. 10 (top), we plot the proton fractions at β equilibrium
for neutrino-free matter. Results are shown taking muons into
account or considering only electrons. As noticed earlier,
the proton fraction at β equilibrium essentially reflects the
symmetry energy as(ρ); see Fig. 2. For most models, the
proton fraction increases quite softly with density, reaching
a Yp range of ∼[0.08; 0.11] at ρ = 0.45 fm−3. Two kinds
of atypical behavior are observed, following the symmetry-
energy features. (1) The two older Skyrme parametrizations
show a rise and fall of the proton fraction with density,

eventually leading to pure neutron matter. (2) On the opposite
side, the relativistic models with constant couplings show a
very sharp increase of the proton fraction with density. DDHδ

also predicts quite a sharp increase of Yp at high densities, due
to the effect of the δ meson on as(ρ).

TABLE IV. Baryonic density at muon on-
set. For SIII the muons disappear at densities
larger than 0.24 fm−3.

Model ρµ−onset (fm−3)

SIII 0.109
SGII 0.137
SLy230a 0.112
NRAPR 0.111
LNS 0.118
NL3 0.112
NLδ 0.142
TW 0.115
DDME2 0.114
DDHδ 0.166
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FIG. 11. (Color online) Total density at the
crossing between the instability region and the
β-equilibrium condition, as a function of temper-
ature. (a) β equilibrium in neutrino-free matter.
(b) β equilibrium at constant lepton fraction
Yl = 0.4.

However, let us consider the three modern Skyrme forces:
SLy230a, NRAPR, and LNS. Despite very close values of the
symmetry energy, the proton fractions obtained with SLy230a
are much lower. Looking at Fig. 3, we see this is a consequence
of the different behaviors of the ratio µ3/µ

para
3 . For similar

values of the symmetry energy, at high asymmetry the µ3

value is lower for SLy230a than for NRAPR and LNS: the β

equilibrium is thus realized for lower Yp. The same effect can
be observed among the relativistic models, comparing DDHδ

to the other DDH models.
The cooling of neutron stars may occur through a direct/

indirect URCA process [48]. Since the first predicts a too
fast cooling, models that allow it are not adequate for the
description of asymmetric matter. If the muon onset is not
taken into account, the critical proton fraction that allows direct
URCA is yDU = 1/9. In the presence of muons, this fraction
is increased to [49]

yDU = 1

1 + (
1 + x

1/3
e

)3 , xe = ρe

ρe + ρµ

.

Only the relativistic models with constant coupling present
proton fractions large enough for a direct URCA process in
the range of density we show; the sharp as evolution of these
models is thus in contradiction with the neutron-star cooling
observations.

In Figs. 10(b) and 10(d), we consider the β equilibrium in
matter with trapped neutrinos, taking a constant lepton fraction
Yl = 0.4. Because of the presence of electronic neutrinos, for
the range of density that we consider the muon fraction at
equilibrium is vanishingly small; in this situation, we will
include only the constituents n, p, e, νe. In those figures, we
show the proton and neutrino fractions. The most striking
feature is that all models (except SIII) give similar predictions,
with a nearly constant proton fraction in the range ∼[0.3; 0.35]:
when the lepton fraction is fixed, the dependence of matter
compositions on the symmetry energy becomes very weak.

B. Clusterization of stellar matter

In this section, we discuss the formation of nonhomo-
geneities in compact-star matter, considering consequences for
neutron-star crust and supernova core. For neutron-star crust,
we consider neutrino-free matter at T = 0; for the supernova
context, we have to include finite temperature, and it is relevant

to consider the effect of neutrino trapping. Finite temperature
results are given only for Skyrme models and NL3.

Although the spinodal region almost reaches pure neutron
matter at T = 0, it is limited to more symmetric matter as
the temperature increases, until it disappears for a limiting
value of T [40]. We wish to determine under which conditions
compact-star matter at β equilibrium reaches the region of
instability against cluster formation. In Fig. 11, we plot the
total density at the crossing between the instability region and
the β-equilibrium condition, as a function of temperature. We
call Tcross the maximal temperature for which this crossing
occurs. Two cases are considered: neutrino-free matter and
matter with trapped neutrinos (Yl = 0.4). A strong model
dependence is observed in the case of neutrino-free matter,
where the β equilibrium involves very neutron-rich matter.
However, two common features can be seen: (i) for all models,
the instability region is crossed at T = 0; (ii) for most models,
we obtain Tcross < 3 MeV. With SIII, higher temperatures are
reached because of the larger (unrealistic) instability. For the
other parametrizations, Tcross is correlated with the symmetry
energy at low density: the highest value is thus obtained with
SLy230a, and the lowest one with NL3. Indeed, higher as

values lead to a more symmetric composition, deeper inside
the instability region. The reciprocal analysis can be made in
terms of µ3: a spinodal region with a large µ3 extension is more
easily reached at β equilibrium.1 In the case of matter with
trapped neutrinos, a crossing is obtained until T > 10 MeV
for all models; indeed, the proton fractions are now larger
than 0.3. The differences we observe in the upper-density
crossing reflect the various ρs values (upper border of the
thermodynamic spinodal for symmetric matter).

In Table V we give the crossing densities at T = 0 for
the neutrino-free and neutrino-trapping cases. We denote
ρcross,in(ρcross,out) the density at the high (low) density crossing
point.

1Let us consider a point S of the spinodal contour, with a
given density and proton fraction determining the electron chemical
potential µS

e . The isovector chemical potential in this point is µS
3 .

For this density, the β equilibrium is inside the spinodal region if
µS

e < µS
3 . A crossing between the β-equilibrium condition and the

instability region is then favored if the spinodal contour takes large
µ3 values.
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TABLE V. Predicted density at the outer (ρcross,out) and inner
edge (ρcross,in) of the crust of a compact star at zero temperature, as
defined by the crossing between the dynamic instability region and
the β-equilibrium condition for homogeneous, neutrino-free stellar
matter.

Model Yν = 0 YL = 0.4

ρcross,out ×10−2

(fm−3)
ρcross,in

(fm−3)
ρcross,out ×10−2

(fm−3)
ρcross,in

(fm−3)

SIII 0.877 0.110 0.130 0.093
SGII 0.418 0.076 0.029 0.088
SLy230a 0.459 0.079 0.035 0.088
NRAPR 0.475 0.072 0.031 0.088
LNS 0.543 0.077 0.037 0.096
NL3 0.553 0.053 0.083 0.081
NLδ 0.442 0.057 0.086 0.090
TW 0.915 0.075 0.108 0.084
DD-ME2 0.610 0.072 0.060 0.083
DDHδ 0.776 0.079 0.098 0.084

The value of ρcross,in obtained for neutrino-free matter
at T = 0 provides the lowest estimation for the density at
the inner border of the crust, ρcrust,in. Indeed, the finite-size
instability region is the minimal region where the matter at
thermodynamic equilibrium is in a clusterized shape, so it
is contained by the crust. We expect ρcross,in to be a good
approximation to ρcrust,in. Most of the models we present
give ρcross,in ∼ 0.075 fm−3. The lower values obtained with
NL3 and NLδ can be related to their larger spinodal-contour
concavity C̃s , discussed in Sec. IV. Nuclear matter in the crust
of neutron stars has been studied recently [50,51] within RMF,
DDH, and self-consistent Skyrme Hartree-Fock. For matter at
β equilibrium, the transition densities to the homogeneous
phase predicted in these works are 0.085 (Skyrme), 0.061
(DDH), and 0.072 (RMF) fm−3. These values are in reasonable
agreement with the numbers given in Table V, although
according to our results with DDH models the transition
density should be higher than ∼0.07 fm−3. We can also point
out that within each framework, the values depend on the
properties of the chosen parametrization.

On the other hand, the lower-density crossing point ρcross,out

has little significance for the crust, since the outer crust border
does not correspond to a transition to homogeneous matter.
At zero temperature, the very low density matter is always
made of clusters, and the concept of homogeneous nuclear
matter breaks down. Note, however, that both ρcross,in and
ρcross,out may be of physical interest at finite temperature, for
the formation of nonhomogeneities in supernova cores. The
ρcross,out values tend to be larger with the relativistic models,
which is another manifestation of their reduced instability
region.

Let us now consider the crossing densities for matter with
trapped neutrinos, at Yl = 0.4. They are given at T = 0 for
a direct comparison with the case of neutrino-free matter;
however, we should remark that neutrino-trapping occurs
in the early stage of neutron-star evolution, involving finite
temperatures. The value of ρcross,in is higher than for neutrino-

free matter, except for SIII. This also reflects spinodal-contour
concavity, since with trapped neutrinos, the β equilibrium
is shifted toward symmetric matter. The value of ρcross,out is
typically one order of magnitude lower than for neutrino-free
matter.

Let us now comment on the supernova context. A well-
known issue in type II supernova simulation is the difficulty
in obtaining the ejection of the outer layers of the collapsing
star [52]. An additional mechanism is needed to produce a
shock revival after the first bounce, and it is generally assumed
that neutrino transport is a crucial factor in the explosion
dynamics. It has been proposed that the liquid-gas instabilities
in supernova matter could play an important role, since it
affects the transport properties of the neutrinos [53]. We are
then interested in comparing the dynamic spinodal region with
the β-equilibrium condition, in the situation that can be found
in a type II supernova core: high temperature and possibly
neutrino trapping. In Ref. [25], it was shown that an interplay
occurs between neutrino trapping and cluster formation at
temperatures of several MeV. Indeed, neutrino presence leads
to more symmetric matter at β equilibrium, reaching the
instability region even though it is reduced by temperature;
reciprocally, cluster formation is known to favor neutrino
trapping. This feature is illustrated in Fig. 12. We show the
dynamic spinodals at T = 10 MeV in the chemical-potential
representation (µn,µp + µe), where the β equilibrium is a
model-independent straight line, the diagonal µn = µp + µe.
At this temperature, none of the instability regions reach this
line; however, all are crossed by the β-equilibrium condition
for a constant lepton fraction Yl = 0.4. The distance between
each spinodal and the diagonal measures the neutrino chemical
potential needed to reach the instability region. This is related
to the µ3 extension of the spinodals, which gives an example of
distinction between models having high or low values of as at
subsaturation density: disregarding SIII, the smallest neutrino
trapping is needed for SLy230a, and the highest is for NL3.

We finally discuss the typical cluster size obtained ac-
cording to the spinodal-instability properties, in stellar-matter
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condition. As in Sec. IV D, we define it as the half-wavelength
of the most unstable mode, λ0/2. This quantity is given in
Fig. 13 as a function of density, in two different conditions:
cold, neutrino-free matter (for all models) [Figs. 13(a) and
13(b)] and hot matter with trapped neutrinos (for Skyrme
models and NL3), Fig. 13(c). For each density, we estimate
the proton fraction according to the β-equilibrium condition in
homogeneous matter.2 Due to the weak dependence of λ0 on
the system asymmetry, the curves we obtain essentially reflect
the features we had obtained earlier for λ0 at Yp = 0.3 (Fig. 8).
At T = 0, we notice that the high asymmetry leads to a global
increase of the cluster sizes by ∼1 fm; a similar behavior was
obtained in Refs. [20,25]. The effect of temperature is to reduce
the instability region and increase the cluster size (typically by
∼2–3 fm for T = 10 MeV). We finally remark that the range of
cluster sizes we obtain in this spinodal-scenario approach is in
reasonable agreement with pasta-phase calculations performed
in the RMF framework [5,54].

VI. CONCLUSIONS

The present work provides a direct comparison of Skyrme
and relativistic model predictions for nuclear and compact-star
matter properties, involving the bulk equation of state and the
finite-size liquid-gas instabilities. In our comparison, many
similarities are found, and some differences are pointed out.

As expected, the largest differences are obtained for the
isovector properties. The relativistic models with constant
couplings have a very hard symmetry energy. In contrast,
the older Skyrme forces predict a decrease of the symmetry

2We should note that the β-equilibrium condition, established for
homogeneous matter, is only intended here to give an estimation of
the relevant proton fraction. Indeed, since we are inside the instability
region, the homogeneous matter is quickly decomposed into clusters,
long before it can reach the β equilibrium associated with this density.
On the other hand, a calculation of β equilibrium in the clusterized
medium does not enter our study, which addresses the dynamic
instability properties of homogeneous matter.

energy at high density. Between these two extremes, modern
Skyrme forces and DDH models present similar behaviors.
However, we can notice the specificities of DDHδ and SLy230a
in the high-density region: both present a stiffer as evolution
and atypical rates µ3/µ

para
3 (for DDHδ, this is linked to the

inclusion of the δ meson).
Concerning the thermodynamic spinodal region, we have

verified that its isoscalar-density extension ρs is correlated to
the saturation density ρ0. At zero temperature, the spinodal
contour reaches very high asymmetry for all models; using
the (ρ,µ3) representation, we have obtained different µ3

extensions, reflecting the low density values of the symmetry
energy. Relativistic models tend to yield smaller spinodal
regions, both in ρ and µ3 directions. The thermodynamic
instability direction leads to the usual isospin distillation for
all models; however, for larger densities this effect becomes
stronger for RMF models with constant couplings and presents
a reduction for Skyrme and DDH models. Some very recent
DBH results seem to confirm this trend, although with a smaller
reduction [55].

The dynamic finite-size instabilities leading to matter
clusterization have been addressed in the Vlasov formalism.
The wavelength associated with the most unstable mode gives
an estimation of the cluster size issuing from a spinodal
decomposition: it was shown that Skyrme parametrizations
show larger growth rates and favor fluctuations of shorter
wavelengths. The favored wavelengths reflect the finite range
behavior of the force. In the Skyrme parametrizations, only q2

terms are included. With relativistic models, the finite range
is described by the exchange of mesons. For all models, the
dynamic distillation effect is reduced with respect to the bulk
one; this reduction appears stronger for relativistic models
including the δ meson.

For the study of compact-star matter properties, we con-
sidered β equilibrium under two different conditions: for
neutrino-free matter, and for matter with trapped neutrinos
according to a fixed lepton fraction. For neutrino-free matter,
the proton fraction at β equilibrium is very sensitive to the
symmetry energy as(ρ). The RMF models with constant
couplings thus predict very high proton fractions, allowing the
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direct URCA process already at quite low densities. However,
it was observed that the proton fraction is not uniquely
determined by as(ρ), but also depends on the parabolic
behavior of the isovector EOS; see SLy230a and DDHδ,
leading to proton fractions lower than other models with
similar symmetry energy. The situation is different for matter
with trapped neutrinos: fixing a lepton fraction Yl = 0.4, all
models (except SIII) predict a nearly constant proton fraction
∼0.3–0.35.

We also discussed clusterization of stellar matter in two
different contexts: at zero temperature, where it is related to the
extension of the neutron-star crust, and at finite temperature,
where it should influence supernova dynamics. In the first
case, we give a lower estimation (ρcross,in) of the transition
density at the inner edge of the crust. Our results are in
reasonable agreement with values obtained within pasta-phase
calculations. Modern Skyrme parametrizations and DDH
models give similar results, ρcross,in ∼ 0.75 fm−3.

Stellar matter at finite temperature is addressed only with
Skyrme models and NL3. Finite-T calculations still have to be
performed for the relativistic models with density-dependent
couplings, but we do not expect those results will affect our
present conclusions. For all the models we show, neutrino

trapping is needed to reach the instability region at T =
10 MeV. The required trapping rate is higher for models with
low symmetry energy at subsaturation density, such as NL3.

Globally, we can say that the isovector EOS shows quite
large quantitative differences even between modern forces:
new data are still needed to better constrain the neutron-rich
matter properties. We have shown the consequences of the stiff
symmetry energy of the RMF models: stronger distillation,
smaller µ3 extension of the spinodal, and larger proton
fractions at high density, allowing the URCA process. The
finite range of the force is also important: its different behavior
between Skyrme and relativistic models causes the difference
in the predictions of typical cluster size.

A similar work comparing phenomenological models with
results from other approaches such as Brueckner-Hartree-Fock
should be performed.
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